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Abstract

Monitoring species-specific dry herbage biomass is an

important aspect of pasture-based milk production systems.

Being aware of the herbage biomass in the field enables

farmers to manage surpluses and deficits in herbage supply,

as well as using targeted nitrogen fertilization when neces-

sary. Deep learning for computer vision is a powerful tool

in this context as it can accurately estimate the dry biomass

of a herbage parcel using images of the grass canopy taken

using a portable device. However, the performance of deep

learning comes at the cost of an extensive, and in this case

destructive, data gathering process. Since accurate species-

specific biomass estimation is labor intensive and destructive

for the herbage parcel, we propose in this paper to study

low supervision approaches to dry biomass estimation using

computer vision. Our contributions include: a synthetic

data generation algorithm to generate data for a herbage

height aware semantic segmentation task, an automatic pro-

cess to label data using semantic segmentation maps, and a

robust regression network trained to predict dry biomass us-

ing approximate biomass labels and a small trusted dataset

with gold standard labels. We design our approach on a

herbage mass estimation dataset collected in Ireland and

also report state-of-the-art results on the publicly released

Grass-Clover biomass estimation dataset from Denmark.

Our code is available at https://git.io/J0L2a.

1. Introduction

Local monitoring of the biomass composition of grass-

land has great potential to improve the reasonable use of

fertilizers on dairy farms. Nitrogen over-fertilization has

detrimental effects on the environment such as the pollution
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Figure 1: Overview of the dry herbage mass prediction task

of underground water or nearby rivers and a reduction in

crop yield [3, 25, 39]. Clover is an important ally to reduce

the need for nitrogen fertilization as it influences the impact

of the fertilization process [52, 41]. Mapping the density of

the clover content in grassland enables a targeted fertilization

(as opposed to a uniform fertilization), which allows farmers

to anticipate the amount of nitrogen required, and to limit

over-fertilization. Balanced amounts of clover also have a

important role to play in the final dry feed for the cow, as

sufficient amounts of clover in the cow feed increases food

intake and augments dairy production [38].

Species phenotyping proposes a direct application of

computer vision where a canopy view of the objects is

passed to an algorithm tasked with a computer vision prob-

lem. Some examples of these tasks include semantic seg-

mentation [51, 18, 36], object counting [27, 6], classifi-

cation [14, 17, 37], object detection [24, 47] and regres-

sion [38, 40]. The principal limitation when applying deep

learning approaches to species phenotyping remains the large

amount of annotated data required. Lower supervision alter-

natives using semi-supervised or unsupervised approaches

can lower the annotation burden and enable a stronger con-
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vergence than using a small number of annotated images

alone. In the case of grass/clover biomass estimation this is

even more important, as the annotation process is destructive.

To accurately measure biomass the region of interest has to

be cut, separated, and weighed in a laboratory whereas the

collection of un-annotated images is fast and simple.

In this paper, we use a large collection of unlabeled im-

ages together with a small annotated subset to improve the

accuracy of a dry herbage mass predicting convolutional

neural network (CNN, see Figure 1). We first learn a weakly-

supervised semantic segmentation network on synthetic im-

ages to estimate the species density in the herbage. We then

use the segmentation masks to generate automatic biomass

labels for the unlabeled images using a simple regression

algorithm. Finally, we train a convolutional neural network

on a mix of the automatically labeled data and a small num-

ber of manually labeled examples to improve the regression

accuracy over training on the small number of manually la-

beled examples alone. We construct our algorithm on an

Irish dry herbage mass dataset [19] and validate our results

on a publicly available dry biomass dataset [51] collected in

Denmark.

Our contributions are:

1. A herbage height aware, weakly supervised, semantic

segmentation algorithm trained on synthetic images that

is used to automatically label data;

2. An algorithm leveraging automatically labeled images

to improve grass/clover/weed dry herbage mass estima-

tion;

3. A detailed study of the importance of the low supervi-

sion elements for the final accuracy of our algorithm,

and a comparison against the state-of-the-art on a pub-

licly available dataset.

2. Related work

2.1. Image analysis for plant phenotyping

Plant phenotyping and dry matter prediction are excellent

domains for the application for image analysis approaches

since they enable insight to be extracted from the environ-

ment in a non-destructive manner. Existing works explore a

variety of computer vision applications for plant phenotyping

and in this section we review some of the most relevant to our

work. Weed detection aims at localizing unwanted weeds to

ultimately remove them by hand or using a robot. Common

approaches include employing color filtering, edge detection,

and area classification [44, 43, 54]; utilising color features

used to train random forest algorithms and support vector

machines [21, 22], or using neural networks used to seman-

tically segment images [29]. Fruit or vegetable detection

and counting reduces human labor by enabling automatic

fruit treatment or collection on the farm. Examples include

tomato segmentation and counting using a convolutional neu-

ral network [1], large scale fruit detection in trees [47], or

real-time detection using a lightweight neural network [9].

Some approaches use UAV imaging as opposed to ground-

level image capture, introducing a fast solution to mapping

weeds in a field [15, 22]. As well as using RGB images alone,

additional sensors can be added to reduce the difficulty of

the phenotyping task [35] such as radar or lidar [30].

2.2. Species biomass estimation from canopy view
images

Biomass estimation from canopy view images aims at

providing solutions for targeted fertilization in fields. This

opens the way for automated fertilization, reducing costs

for the farmer and reducing water pollution due to over-

fertilization [3, 52]. The heavy occlusions present in canopy

images (see Figure 1) poses significant challenges as the

biomass estimate should account for elements hidden from

the canopy view.

Himstedt et al. [20] study the biomass of clover in a

legume-grass mixture and demonstrate a good capacity to

detect clover from the legumes using morphological filtering

and color segmentation to detect the clover. The authors

were then able to accurately predict the clover biomass in a

controlled environment under the assumption that the total

biomass is known. Mortensen et al. [38] propose segment the

grass clover mixture using color filtering and edge detection

before employing a linear regressor to learn the mapping

between coverage area of each species and dry biomass

content. The authors were then able to directly predict the

dry biomass of each element from the image alone. The cow

feed scenario presents the added constraint of estimating dry

biomass from an image of the fresh pasture.

Skovesen et al. [50] propose an improvement over pre-

vious work by using a neural network to segment images,

and then fitting a linear regressor to the detected species

percentages to predict the biomass percentages. To train the

neural network, a synthetic dataset is generated using sample

crops of relevant species pasted on a soil background. This

allows the authors to generate an infinite amount of training

images with ground truth from a similar visual domain for

their segmentation algorithm. Based on this work, the Grass-

Clover dataset challenge [51] asks entrants to improve the

author’s baseline using the synthetic images together with a

large collection of unlabeled real images and a small set of

manually labeled real images.

2.3. Semantic segmentation on synthetic images and
domain adaptation

Semantic segmentation aims at predicting the object that

each pixel in an image belongs to [16]. The human anno-

tation required for semantic segmentation tasks is exten-
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sive, often requiring several hours per image [33]. This

makes training strategies using fewer human annotated im-

ages attractive. Synthetic images promise to solve part of

the problem by providing an unlimited amount of perfectly

segmented training images. Popular synthetic datasets for se-

mantic segmentation include The Grand Theft Auto V (GTA

V) [45] or SYNTHIA [46] datasets that create synthetic im-

ages of cities using graphics engines.

Although the large quantity of labeled data allows a se-

mantic segmentation neural network to converge on a syn-

thetic dataset, the results need to generalize to real world

data. Domain adaptation aims at learning domain agnostic

features that can generalize from synthetic data to the real

world. Domain adaptation strategies can be applied at differ-

ent stages in a network: input adaptation, feature adaptation,

or output adaptation. Input adaptation strategies aim at trans-

forming synthetic images to look more realistic by applying

a realistic style on synthetic images, often using a Generative

Adversarial Network [60, 49, 48, 12].

Feature adaptation approaches aim to discover domain

invariant (or aligned) features. Chen et al. [11] propose

to use a maximum square loss to enforce a linear gradient

increase between easier and harder classes. Luo et al. [34]

use a significance aware adversarial information bottleneck;

Chen et al. [13] propose a knowledge distillation approach

by matching network activations to a network pretrained on

ImageNet.

Output adaptation techniques constrain the network pre-

diction directly to enforce better generalization. This can be

achieved using adversarial approaches where the predictions

made on synthetic and real data should be indistinguishable

to a discriminator network [8], or by enforcing low entropy

(more confident) predictions [56]. Batch normalization fine

tuning on real data where the batch normalization parame-

ters are tuned on the real images before evaluation has also

been shown to be a simple but effective domain transfer strat-

egy [32]. For a more detailed study of domain adaptation for

semantic segmentation, we refer the reader to the domain

review of Toldo et al. [55]

2.4. Semisupervised learning and label noise

Training computer vision algorithms with limited super-

vision aims at learning representative features for a down-

stream task with little to no supervision. In the scope of

this paper we train models using a small annotated subset

together with a large amount of un-annotated images, which

we refer to as a semi-supervised learning scenario. We ad-

ditionally introduce label noise literature references, which

tackles the scenario of approximately labeled data. This is

related to the automatic labels we use in this paper.

Semi-supervised learning aims at learning robust fea-

tures to solve a task using limited annotations. Annotations

are necessary in supervised learning to compute the weights

of a neural network using gradient descent on a loss com-

puted using the ground truth annotations. In the case of

semi-supervised learning, only part of the dataset has been

annotated by humans and the rest is unlabeled images. It-

eratively approximating labels for the unlabeled data is a

tedious task as the errors made by the network will be ampli-

fied (confirmation bias [5]). State-of-the-art semi-supervised

learning uses consistency regularization mechanisms where

labels are guessed using multiple views of a sample (different

data augmentations) [7], sometimes coupled with pseudo-

labeling [53].

Label noise proposes robust algorithms to mitigate ap-

proximate labeling. Approximate labelling can occur when

a dataset is created from web queries [31] or when labels are

inferred using label propagation [2]. Solutions for training

a neural network on label noise datasets include lowering

the contribution of noisy labels in the training loss [23],

correcting the label using the network prediction [4], meta-

learning inspired corrections [57], monitoring feature space

consistency [42], or robust data augmentation [59].

3. Biomass prediction in grass-clover pastures

This section introduces the semi-supervised learning prob-

lem of dry biomass estimation of grass-clover pastures, the

datasets used, the synthetic image generation process, the

automatic labelling pipeline, and our automatic label robust

biomass regression algorithm.

3.1. Semisupervised biomass estimation in grass
clover pastures

We consider here a semi-supervised regression prob-

lem with XL = {xi}
L
i=1

labeled canopy images of grass

and clover, and their corresponding label assignment Y =
{yi}

L
i=1

, Y ∈ R
C where C is the number of species to pre-

dict. The small labeled set is complemented by a large set

of unlabeled images XU = {xi}
D
i=1

with no corresponding

labels and |XU | ≫ |XL|. We note the complete dataset used

to train the network X = XL ∪ XU . This paper aims to

solve the dry biomass prediction problem from images using

a convolutional neural network Φ : X → Y using unlabeled

images to the improve the regression accuracy.

3.2. Grass clover dry biomass datasets

We consider two different dry biomass prediction datasets,

both centered around grass and clover biomass prediction.

The first dataset we will refer to as the Irish dataset [19]

consists of 528 images labeled with: total dry herbage mass

(kg DM/ha), dry grass biomass percentage (%), dry clover

biomass percentage (%), and dry weed biomass percentage

(%). We study here the low supervision version of the dataset
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Figure 2: Herbage height aware semantic segmentation on synthetic images

which includes 156 fully annotated images (52 for training

and 104 for validation) and an additional 594 unlabeled

images. The images were collected using a high resolution

Canon camera in Ireland in the summer of 2020.

The second dataset is the GrassClover dataset [51] which

contains 152 images labeled with: dry grass biomass percent-

age (%), dry white clover biomass percentage (%), dry red

clover biomass percentage (%), and dry weed biomass per-

centage (%). Contrary to the Irish dataset, the GrassClover

dataset distinguishes between red and white clover species

but does not target the direct estimation of the dry herbage

biomass (kg DM/ha). The fully annotated images are com-

pleted with 31 600 unlabeled images without corresponding

ground truth. The dataset was collected in Denmark in 2017

and 2018.

Clover flower
11 samples

Clover leaf 
21 samples

Grass
26 samples

Weeds
14 samples

Dry grass
6 samples

Figure 3: Cropped out samples for every species

3.3. Herbage height aware semantic segmentation
on synthetic images

The task we aim to solve in this section is to first predict a

semantic segmentation of the herbage into grass, clover (pos-

sibly red-white), and weeds; and second, a herbage height

map. Since human annotation of ground truth for semantic

segmentation can take up to several hours per image [33] and

since a pixel specific herbage height is difficult to estimate in

practice, we propose (similar to [51]) to train our semantic

segmentation network Ψ on a synthetically generated dataset

X̃ . We generate the synthetic semantic segmentation images

together with their 100% pixel-accurate synthetic segmen-

tation ground truth using manually cropped out elements

from the unlabeled images. In accordance to the low super-

vision scope of this paper, we only crop out 78 samples (see

Figure 3) and collect 8 bare soil images to paste elements

onto. The bare soil images are collected at the same site and

using the same equipment as Hennessey et al. [19] during

the Summer of 2021.

To produce images similar to the real images we aim

to make predictions for, we respect the species ratio in im-

ages by enforcing the probability of a species to be pasted

according to the observed average dry biomass distribu-

tion in the training dataset: 90% grass, 7% clover, 3%
weeds. We draw the probability of each species to be pasted

from a 3 component Dirichlet distribution with parameters

(9, 2, 1) for (grass, clover, weeds). Once the species has

been decided, we randomly draw a sample for this category

and apply a series of transformation to increase the diver-

sity of the synthetic images. The transformations include:

(uniform) random rotation (±180◦), random Gaussian blur

(radius ∈ [0, 5]), random brightness change [0.6, 1], and

random resizing (50− 150%). Finally, we select a random

center location to paste the sample on the background images
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Figure 4: Automatic labeling from semantic segmentation

as well as a mask of the sample’s label on the ground truth

map. We additionally approximate the herbage height in the

synthetic images as the sum of the total number of succes-

sive elements pasted on a pixel. In the rest of the paper, this

approximation made on synthetic images will be referred to

as herbage height. For example, if three samples have been

pasted at the same pixel (clover on top of grass on top of

clover), we define the un-normalized herbage height as 3 for

the given pixel. Once the synthetic dataset has been fully

generated, we compute the 75th percentile of the herbage

height for every pixel in all generated images (allowing us to

filter outliers) and use this value to clip overly high herbage

height numbers and produce a normalized herbage height

between 0 and 1 for every pixel in every synthetic image.

The normalized herbage height becomes the ground truth

target for the segmentation network. Additionally, we found

that the quality of the segmentation learnt by Ψ is best when

the number of elements to paste is in [400, 800] per image

(randomly varied across images); beyond this the synthetic

images become overly cluttered. Images are generated at a

2000× 2000 resolution. The RGB images are stored in the

JPEG format, the grayscale ground truth maps are stored as

PNG images, and the herbage height matrix is stored as a

compressed numpy array. Figure 4 illustrates the automatic

labeling pipeline.

3.4. Generating synthetic images suitable for
herbage mass estimation

To concurrently solve the tasks of semantically segment-

ing the herbage images and estimating the herbage height

for every pixel in the images, we propose a herbage height

aware semantic segmentation network Ψ consisting of a sin-

gle feature extractor coupled with two decoder branches (see

Figure 2). We concurrently train the species segmentation

branch using a pixel-level cross-entropy loss:

lspecies = −

C
∑

i=1

ỹi log(si),

where S = si
C
c=1

is the softmaxed prediction of the network

and Ỹ = ỹCi=1
are the synthetic segmentation labels. The

herbage height branch is trained using a root mean square

error (RMSE) loss:

lheight =

√

√

√

√

1

P

P
∑

p=1

(

h̃− h
)2

,

where P is the total amount of pixels in the images, h is the

ground truth synthetic height label, and h̃ is the network pre-

diction (sigmoid). The total training loss of the segmentation

network Ψ is l = lspecices + lheight.

3.5. Automatic label prediction from species density
estimations

The herbage height aware semantic segmentation network

Ψ allows us to reduce the complexity of the biomass pre-

diction problem by simplifying the input domain from high

resolution real RGB images to the surface area occupied by

each species in the canopy as well as an estimated herbage

height map. From there, we compute the relative area occu-

pied by each species in the canopy (in %) and the predicted

herbage height over each image and train a simple ridge

regression algorithm using the small number of labels, Y , to

predict approximate labels for XU . This intermediate task

allows us to generate accurate automatic labels for XU even

if the number of images in XL is very limited.
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Table 1: Importance of data augmentation and batch normalization tuning when training on synthetic images.

HRMSE RMSE

Total Grass Clover Weeds Avg. HRAE Grass Clover Weeds Avg.

Simple DA 357.35 328.66 55.74 26.75 137.05 35.26 8.11 6.87 3.22 6.07

+ ColorJitter 319.92 289.32 60.81 31.40 127.18 35.46 8.63 7.68 3.55 6.62

+ BN tuning 284.60 258.34 51.92 27.05 112.44 31.79 6.49 4.94 3.24 4.89

3.6. Regression on automatic labels with a trusted
subset

Although the biomass information can be directly pre-

dicted using the automatic annotation process (as done in

Skovsen et al. [51]), we propose to attempt to decrease the

regression error further by solving the regression problem

directly from the RGB images using a convolutional neural

network, Φ, and both human-labeled and automatically la-

beled image datasets: XL coupled with ground truth labels

Y (the trusted set) and XU coupled with approximate labels

Ỹ (the automatically labeled set). Φ is trained to predict

the biomass composition (%) and the dry herbage mass (kg

DM/ha) from RGB images alone; the automatic images are

only used in Ψ to help predict the automatic labels Ỹ for

unlabeled images in XU . To ensure that Φ will not over-fit

to incorrect approximate labels, we use three mechanisms.

First, we over-sample the trusted data to ensure that a fixed

percentage will always be presented to the network in every

mini-batch ( 3
4

approximate labels, 1

4
trusted labels). Sec-

ond, we use a label perturbation strategy where we randomly

perturb the automatic labels to avoid over-fitting incorrect

targets, and to avoid penalizing the network for making a

prediction slightly different than the incorrect prediction. In

practice, we randomly perturb the label by ± two times the

observed RMSE of the automatic labels on the validation set.

Finally, we find that adding vertical flipping and randomly

grayscaling to the input images to be interesting augmenta-

tions that preserve the full herbage information of the image

and help further decrease validation error.

4. Experiments

4.1. Training details

We use two different neural networks to solve two distinct

tasks. For the semantic segmentation network Ψ, we use a

state-of-the-art architecture: DeepLabV3+ [10] where we

duplicate the decoder to create the herbage height branch.

Ψ is trained on 800 synthetic images and uses 200 synthetic

images for validation. We use a ResNet34 [26] as the feature

extractor, initialized on ImageNet [28], and with an output

stride of 16 for both training and testing. We use the “poly” lr

schedule [10] starting at 0.007, a batch size of 4, and train for

60 epochs. For the base data augmentation we resize images

to 1024 on the short size, randomly crop a 1024 × 1024
square, randomly flip horizontally, and normalize the images.

For the regression network Φ, we use a ResNet18 net-

work [58] pretrained on ImageNet to solve the regression

problem from RGB images directly. We train for 100 epochs,

starting with a learning rate of 0.03 dividing it by 2 at epochs

50 and 80. We use the same base data augmentation as for Ψ
but with a resolution lowered to 512×512. For the strong(er)

data augmentation, we add random vertical flipping and ran-

dom grayscaling (p = 0.2). We train with a batch size of

12.

We use the Irish dataset [19] in its low supervision config-

uration (52 images are used for training, 104 for validation

and 372 for testing) for our exploratory studies, and generate

1000 synthetic images to train Ψ according to the process

described in Section 3.4. We validate our results on the

GrassClover dataset [51] and use the full 152 fully annotated

biomass images, dividing them into 100 for training and 52
for validation; we use the 174 images withheld for the Co-

daLab 1 for testing. We make use of 800 randomly selected

synthetic images out of the 8000 generated by the authors

for Ψ, keeping 200 extra images for validation. We do not

train the herbage height branch on the GrassClover dataset.

To evaluate the performance of the algorithms, we report

the RMSE when predicting the dry biomass species percent-

age for both the Irish and GrassClover datasets. For the

Irish dataset, we additionally report the RMSE of the global

herbage mass prediction (HRMSE, kg DM/ha), the herbage

relative absolute error lrelative =
1

N

∑N

i=1

|yi−ỹi|
yi

(HRAE, in

%) and the HRMSE specific to each species (kg DM/ha).

4.2. Semantic segmentation on synthetic images

To encourage Ψ to learn robust features that will gen-

eralize to unseen real images, we augment the synthetic

images using color jittering and Gaussian blur. Furthermore,

once the network has converged on the synthetic dataset

and before predicting on the real images, we perform batch

normalization tuning which is a common domain adaptation

strategy [32] on the real images. An ablation study on the im-

portance of the data augmentation and batch normalization

tuning is given in Table 1, where we use the best performing

regression algorithm from 4.3.

1https://competitions.codalab.org/competitions/21122
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Table 2: Ablation study for predicting approximate labels. We report the biomass prediction errors on a heldout validation set.

HL: hard labels, SL: soft labels, H: herbage height

HRMSE RMSE

Total Grass Clover Weeds Avg. HRAE Grass Clover Weeds Avg.

HL 351.54 332.88 51.34 28.29 137.50 41.61 6.82 6.20 3.25 5.42

SL 310.68 279.98 57.48 28.15 121.87 34.18 7.61 5.20 3.24 5.35

HL + SL 315.20 288.52 53.37 28.11 123.33 34.33 6.49 4.91 3.23 4.88

HL + SL + H 284.60 258.34 51.92 27.05 112.44 31.79 6.49 4.94 3.24 4.89

Table 3: Ablation study on training with approximate labels. We report results on the validation set using the linear regression

baseline LR or training on the trusted data only T, the automatic data only A, or combinations of both T+A

HRMSE RMSE

Total Grass Clover Weeds Avg. HRAE Grass Clover Weeds Avg.

LR 284.60 258.34 51.92 27.05 112.44 31.79 6.49 4.94 3.24 4.89

T 249.48 253.63 45.62 32.67 110.64 21.67 6.28 5.07 3.94 5.10

A 258.00 239.81 46.51 27.74 104.69 23.48 5.72 5.20 3.29 4.74

T + A 245.04 233.34 34.94 26.32 98.20 21.60 4.70 4.45 3.17 4.11

+ random GS 234.25 217.55 37.57 27.72 94.28 21.55 4.66 4.47 3.27 4.13

+ trusted oversampling 232.08 220.09 35.93 26.34 94.12 21.36 4.33 4.17 3.15 3.88

+ random perturbation 229.93 216.23 35.79 26.05 92.69 19.96 4.22 4.21 3.10 3.84

4.3. Regression from species coverage

We compare different sets of simple features to extract

from the segmentation masks as well as the importance of the

herbage height prediction when estimating the dry herbage

mass. For features directly related to the dry biomass percent-

ages, we compare averaging the most confident prediction

for every pixel only (hard label, HL), averaging the full

softmax prediction at each pixel (soft label, SL), or using

the two sets of features jointly (HL+SL). In the regression

model each feature is the average of the observations over

the whole image: 4 features (soil %, grass %, clover %,

weeds %) for HL or SL (8 for HL+SL), and 1 feature for the

herbage height.

We fit a least squares L2 regularized (ridge) regression

algorithm to all features with a regularization factor of 1,

and train on the small subset of annotated images before

evaluating on the validation set (Table 2). First, we report

the RMSE error of the total herbage mass error (kg DM/ha),

as well as the detailed grass/clover/weed herbage mass esti-

mation (kg DM/ha). Second, we report the relative RMSE

for the total herbage mass (%) and the RMSE for the rela-

tive dry biomass estimation (%) for the grass/clover/weeds.

We notice that using SL is better than HL when predicting

the herbage mass, demonstrating the interest of capturing

the full softmax information over the max prediction only.

The precision of HL is still beneficial as we observe a good

improvement in terms of dry biomass percentage RMSE

when the two sets of features are coupled. When adding the

information about the herbage height, a decrease in HRMSE

error is observed, validating the importance of the herbage

height module in the segmentation architecture.

4.4. Biomass prediction using automatic labels and
a trusted subset

We use the automatic labels to enhance the generalization

of the regression CNN Φ in order to improve over the linear

regression from the predictions of Ψ, especially in terms

of herbage mass prediction. Table 3 reports the ablation

study showing how the additional mechanisms we introduce

allow us to be robust to the approximate automatic regression

labels. The reported metrics are described in Section 4.1.

We also compare the performance of the regression network

against the linear regression from the prediction of Ψ.

4.5. Comparison against other works on the Grass
Clover dataset

We compare the improvements of our approach on the

publicly released GrassClover dataset [51]. The target met-

rics for this dataset are limited to the dry biomass percent-

ages, for which we report RMSE errors. Table 4 reports the

performance of our algorithm with and without automatic

labels on the test set available on the CodaLab challenge 2

and compares against the best available results. We report

2https://competitions.codalab.org/competitions/21122
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Table 4: Results on the GrassClover test set (RMSE).

Clover

Grass Total White Red Weeds Avg.

Skovsen et al. [51] 9.05 9.91 9.51 6.68 6.50 8.33

Naranayan et al. [40] 8.64 8.73 8.16 10.11 6.95 8.52

Trusted data 10.28 10.32 9.24 9.54 7.37 9.35

+ Automatic data 8.78 8.35 7.72 7.35 7.17 7.87

a lower RMSE on average than the methods we compare

against and show that our algorithm is capable of using un-

labeled images to reduce the biomass estimation error for

every species over training on the small trusted subset alone.

5. Conclusion

This paper proposes to improve upon existing low super-

vision baselines in dry grass clover biomass prediction by

making use of unlabeled images. To do so, we first train

a herbage height aware semantic segmentation network on

synthetic images that we use to generate automatic labels for

the unlabeled data using a small set of labeled images. We

then train a regression CNN on RGB images directly using

the automatic labels to improve the accuracy over using the

trusted data alone. We demonstrate the importance of our

herbage height aware segmentation network when predicting

dry herbage masses from canopy view images as well as

the noise robust mechanisms we use to train on automat-

ically labeled data. We improve over our baseline on the

Irish dry herbage biomass dataset and set a new state-of-the-

art performance level on the publicly available GrassClover

dataset.
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