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Abstract

Near infrared spectroscopy (NIR) provides rich informa-
tion in agricultural operations and experiments to deter-
mine crop parameters which are not visible to the human
eye. Collecting the NIR spectral band requires a multispec-
tral camera which is typically more expensive and has lower
resolution than a comparable RGB camera. We investigate
image-to-image translation as a means to generate an NIR
spectral band from an RGB image alone in aerial crop im-
agery. Aerial images were captured via a multispectral sen-
sor mounted on an unmanned aerial vehicle (UAV) flown
over canola, lentil, dry bean, and wheat breeding trials. A
software workflow was created to preprocess raw aerial im-
ages creating a dataset suitable for training and evaluating
deep learning based band inferencing algorithms. Two dif-
ferent experiments including in-domain and out-of-domain
experiments over different crop types in our dataset were
conducted to evaluate efficacy in an agricultural context.

1. Introduction

A growing world population and increasing climate in-
stability are projected to strain global food production [44].
Crop breeding programs are key tool in increasing crop
yield and stability under varying climate [12]. Crop breed-
ing remains a labor intensive process, with experts manually

surveying tens of thousands of breeding plots per trial. Sev-
eral techniques have been developed to analyze plant phe-
notypes, but these traditional methods are slow, destructive
and laborious [13]. Automated phenotyping could alleviate
some of the labor burden of crop breeding and increase crop
breeders’ productivity [26]. In particular, image-based plant
phenotyping has the potential to increase the speed and re-
liability of phenotyping by employing unmanned aerial ve-
hicles (UAVs) to image large breeding fields quickly with
relatively low overhead.

Aerial crop imaging has focused on multispectral imag-
ing, due to the correlation between plant respiratory pro-
cesses and emissions of particular wavelengths, with partic-
ular stress placed on the red edge (680 nm to 730 nm), near
infrared (NIR) (800 nm to 2,500 nm), and infrared (700 nm
to 1 mm) [53] portions of the spectra given their correlation
with plant metabolic processes [24, 65]. While cameras ex-
ist to capture these spectral bands (for example the Micas-
ense Rededge) they tend to be more expensive, lower reso-
lution and more difficult to attach to UAVs than their RGB
counterparts. A method to provide equivalent information
on plant health and metabolism from an RGB camera would
make UAV imaging of fields more lower cost, and allow ac-
cess to the rapid development and economies of scale of
consumer RGB cameras.

Cross modality of images can be achieved using ma-
chine learning, where a model is trained to map features
in one band to another as long as sufficient correlation be-
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tween the bands exist [65]. For example extensive work
has been performed in inferring spectral bands from satel-
lite data [19, 18], fixed cameras [51], and drone images of
everyday objects [21, 15].

The existence of distribution shift is common in real-
world image-to-image translation problem. In outdoor agri-
cultural imagery, this issue is more obvious when training
distribution is in a crop type dataset, or a modality differing
from test distribution [27, 9]. A domain adversarial learn-
ing approach was proposed to detect plant organs in field
images where domain shift exists between source and tar-
get datasets [3].

In this paper, we present a new dataset of three different
crops imaged with a multispectral camera. Training existing
machine learning models using this dataset, we were able to
recreate the NIR channel from the RGB image with a high
degree of fidelity, and demonstrate its utility in crop area
measurement. Tests of this model, both within and across
crop types indicate that RGB image data of crops can be
used to approximate the NIR band in a number of circum-
stances. These findings indicate that, under many circum-
stances, flying less expensive RGB cameras and inferring
the NIR band post-hoc is a viable approach for field phe-
nomics in breeding programs.

The contributions of this study include:

• A new dataset containing color-calibrated aerial im-
ages of different agricultural crops, employing a mul-
tispectral sensor mounted on a UAV. The dataset con-
sists of aerial images of canola, lentil, dry bean, and
wheat crops ranging from early to late growth stages.

• An evaluation of image-to-image translation for gen-
erating NIR reflectance images from visible spectrum
aerial images for different crop species.

• An out-of-domain experiment to evaluate the gener-
alizability of the image-to-image translation models
for generating NIR images when trained on one crop
species and tested on a different crop species.

• Comparison of vegetation segmentation using visible
spectrum excess-green index vs. vegetation segmenta-
tion using NDVI based on generated NIR images.

2. Background & Related work
Image-to-image translation (I2I) aims to transfer images

from a source domain (A) to a target domain (B), pre-
serving the source content representations. This is impor-
tant in computer vision tasks when different style, restora-
tion, modality or segmentation of the source domain are
required [16]. In remote sensing, providing a large cover
of different spectral bands, which has obvious benefits to
employ techniques for image translation from one modal-
ity to another modality, especially in precision agriculture

is required [35, 51]. Examples include the image trans-
lation from aerial images to maps [19], from satellite im-
ages to optical images [56], or from certain spectra to sev-
eral different spectra [18]. The core idea of I2I was orig-
inally proposed as an image analogy task [16], where the
transformation between two images, A and A′, are learned.
Once learned, the transformation can be used to generate
the transformation between a different set of images, B and
B
′. With the advent of deep generative models [60, 41],

most recent I2I approaches use generative models to learn
the mapping between different image domains. This ap-
proach creates models of the distribution of the target do-
main resulting in images drawn from the target domain dis-
tribution. In this paper, we focus on Generative Adversarial
Network (GAN) based methods [14], rather than other I2I
techniques [47, 48].

Current I2I tasks are divided into two-domain or multi-
domain categories. In this study, we focus on the two-
domain category. Two-domain I2I can be used in seman-
tic segmentation [67], editor applications [30], and image
super resolution [63, 64]. Two-domain I2I methods can be
further classified into supervised I2I [22], unsupervised I2I
[66], semi-supervised I2I [31], and few-shot I2I [32].

Supervised I2I translates source images to target images
from a dataset of paired, corresponding images. In [22], a
conditional GAN (cGAN) was employed to solve a wide
range of supervised I2I problems. A version of cGAN was
proposed to overcome the blurred output of high resolution
images [57]. In [54], a GAN model was proposed to solve
the cross-view translation problem in which source and tar-
get images have little or no overlap. Disentangled repre-
sentation is another approach to produce diverse translated
images, where each feature is encoded as a separate dimen-
sion [10, 23]. A supervised deep learning approach was
employed to segment apple trees in occluded images [8].

Unsupervised I2I employs two unpaired training sets to
translate images from one domain to another. In [66], a
GAN model constrained using cycle-consistency was pro-
posed to translate two-cross domain representations. In
[52], NIR spectral band was obtained from its grayscale
counterpart in which minimal spatial misalignment exists
between input and target images. A shared latent space as-
sumption was introduced to map a pair of corresponding
images from different domains to the same latent code in
the shared latent space [33]. In [1], a Siamese network was
used to output a transformation vector over the two images
from each domain and minimize the distance between the
two image vectors. Semi-supervised I2I is used in special-
ized applications such as artistic reconstruction. In this ap-
proach, fewer labeled data are required to guide the algo-
rithm. A semi-supervised I2I model was introduced em-
ploying transformation consistency regularization to learn a
mapping between two-domain images [39]. In [4], a semi-
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supervised deep learning technique was used to generate
synthetic agricultural images including bell pepper images
for further image-based agricultural analysis. Few-shot I2I
is still in its infancy. In [32], a few-shot I2I model was intro-
duced to incorporate several domain translation tasks where
each task consists of limited examples.

Image processing techniques cannot translate RGB im-
ages to other spectrum when there is no overlap between
wavelengths. In image-based plant phenotyping, a multi-
spectral camera, which is usually expensive with low res-
olution, or applying a filter over an RGB camera captur-
ing low quality images with a different wavelength, are em-
ployed. The lack of a paired dataset from different modal-
ities, which has a sufficient coverage of plant species and
growth stages, limits the ability to apply new I2I models
to plant phenotyping. There are a few datasets that include
different modalities captured with satellite imagery, thermal
cameras, or stationery cameras [7, 49, 50], but so far high
resolution aerial crop images have not been investigated for
I2I across spectra.

Date Canola Lentil Dry bean-1 Dry bean-2 Wheat
28 Jun 2018 293 - - - -
27 Jul 2018 - 113 - - 115
30 Jul 2018 938 - - - -
29 Aug 2018 - 114 - - 114
31 Aug 2018 370 - - - -

26 Jul 2019 646 - - - -
27 Jul 2019 - - - - 942
06 Aug 2019 832 - - - -
13 Aug 2019 - - - - 972
30 Aug 2019 - - - - 1009

14 Jun 2020 - - 371 278 -
25 Jun 2020 - - - 416 -
04 Jul 2020 - - 433 - -
30 Jul 2020 - - 412 - -
06 Aug 2020 - - 556 327 -
20 Aug 2020 - - 384 362 -
Total 3079 227 2156 1383 3152

Table 1: The number of images in each dataset captured for
different acquisition dates.

3. Materials & Methods
Our code and dataset is available at https://

github.com/p2irc/rgb2nir.

3.1. Dataset Collection

We collected aerial datasets consisting of raw multispec-
tral images, captured by the Micasense Rededge camera
mounted on a UAV, as depicted in Figure 1. Similar to many
multispectral cameras, the Micasense camera includes five
separate sensors that are not synchronized, which causes
spatial misalignment among images from different bands.

Figure 1: The Micasense Rededge sensor with five sepa-
rated spectral bands [37] mounted on a UAV.

Therefore band-to-band spatial registration was required.
The resulting aligned dataset enables training a model in an
end-to-end fashion to translate aerial RGB images to NIR.

We obtained aerial images from breeding trial fields for
four crops: canola, wheat, lentils and dry beans. Two dif-
ferent dry bean trials were imaged (dry bean-1 and dry
bean-2). The lentil and dry beans trials were aggregated
into a “pulse” dataset, representing edible plant seeds in the
legume family. We combined all crops to create the “all-
crop” dataset.

The images were acquired over multiple growing sea-
sons, between 2018 and 2020, and include images for each
crop from early, mid to late growth stages, as reported
in Table 1. Each dataset covers a diverse range of geno-
types where substantial variations exist in appearance in the
dataset.

The Micasense camera covered blue, green, red, NIR,
and red edge wavelengths centering at 477 nm, 560 nm,
668 nm, 840 nm, and 717 nm, respectively [53]. The cam-
era was mounted on an Ronin-MX gimbal on a DJI Matrice
600 UAV. The flight altitude was not consistent over all trial
fields in different years. The differences in flight altitudes
lead to various ground sampling distance (GSD) among
datasets, meaning a larger GSD represents a smaller spatial
resolution. The flight altitudes varied from 20 to 30m above
the ground for different crops. As the field of view for the
Micasense Rededge is 47.2°, the GSD varies between ap-
proximately 12 mm/pixel and 18 mm/pixel across images
in the dataset.
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Figure 2: Example images from our canola, lentil, dry bean-1, dry bean-2, and wheat datasets showing: (a) unaligned raw
RGB image, (b) the corresponding NIR band, (c) radiometrically calibrated and aligned RGB composite, (d) the correspond-
ing radiometrically calibrated and aligned NIR band.

3.2. Image Pre-processing

In passive imaging, reflectance measurement is influ-
enced by natural disturbances such as scattering light in
the atmosphere, the spectral and directional reflectance of
an object, and the topography of an object [17]. We em-
ployed the proscribed process for the Micasense Rededge
to convert raw multispectral pixels to radiance and then to
reflectance as unitless images [2, 36]. To obtain a unitless
band, an image of a calibrated reflectance panel (CRP) is
captured before or after a flight to measure the amount of
light in the surrounding environment, which is used to can-
cel out the illumination and energy from multispectral im-
ages. To determine the transfer function from raw pixels to
reflectance for the i-th band of the multispectral image:

Fi =
ρi

avg(Li)
(1)

where Fi is the calibrated reflectance factor for band i, ρi
denotes the average reflectance of the CRP for the i-th band,
and avg(Li) represents the average value of the radiance for
pixels inside the panel for the i-th band.

Because the multispectral bands are spatially misaligned
and supervised learning requires pixel-to-pixel alignment
between the input and target images, we register the RGB
and NIR bands pixel-wise, where every pixel of the RGB
image corresponds to a pixel of the NIR counterpart. We
employ the scale invariant feature transform (SIFT) algo-
rithm to perform image registration [34]. We followed a
traditional approach for multispectral image registration,
where a band is selected as a reference image and the other
bands are aligned accordingly [45]. We chose the NIR im-
age as the reference.

Our dataset contains 9997 paired images with the size of
(800, 1100) pixels including canola, pulse and wheat crops
where 80% and 20% of each dataset build training set and
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test set, respectively. Table 1 represents the number of crop
images in each captured date and the total number of images
per dataset. The pulse dataset containing lentil, dry bean-1
and dry bean-2 crops has 3766 images in total.

3.3. Experiments

Having created a paired image dataset with correspond-
ing images in the source (RGB) and target (NIR) domains,
we chose to employ supervised I2I translation. Several dif-
ferent models have been introduced for supervised I2I trans-
lation [22, 55, 42, 57]. These models differ in their network
structure and vary substantially in the required computa-
tional cost for training and inference. Because our dataset
consists of self-similar and repeating plant structures, we
chose to use the cGAN architecture [22], which is a rela-
tively small network. We expect that this simpler I2I net-
work will have sufficient capacity for our task.

The cGAN [22] is a conditional GAN model that learns a
mapping from an observed image x and random noise vec-
tor z to a target image y. In our case, the observed image
is the aligned RGB image and the target is the correspond-
ing NIR band. For the generator, we employed UNet, a
standard architecture for image segmentation [46], and we
chose PatchGAN for the discriminator [22, 38]. In the orig-
inal cGAN [22], L1 distance along with the GAN objective
was used to generate more realistic images, but we replaced
theL1 objective with Charbonnier penalty function which is
a smoothed form of L1 to improve loss minimization during
model training [29].

We train the cGAN [22] on our dataset from scratch
without employing pretrained model. We crop one patch
per image during the training and inference. We train
the model with stochastic cropped images to enhance the
model’s performance. The input data is normalized to
[0, 1]. Data augmentation is performed by randomly ro-
tating and horizontally flipping the input. The Adam solver
[25] with default parameters (β1 = 0.9, β2 = 0.999, ε =

10
−8) is employed to optimize the network parameters. The

learning rate is set at 10−4 and is decayed linearly. The
model is trained for 1000 epochs.

To test the generalizability of the model on aerial crop
images, we conduct two in-domain and out-of-domain ex-
periments to evaluate whether training a model on each in-
dividual crop species is required, or if training a model on a
single or combined dataset is sufficient.

Experiment1: In-domain. For the in-domain experiment,
we train the model with RGB and NIR images from a sin-
gle crop and test the model with images from the same crop.
We also include a all-crop model trained on images from all
crops combined. A random uniform 256× 256 patch of the
RGB image is used as input for the model and it is trans-
lated to NIR image with the same size. At inference, we
compare the performance of the trained model with a test

set from the same dataset, but with larger patches of size
512 × 512 as input. This experiment assesses the perfor-
mance of the algorithm within the same data distribution to
provide an approximate upper bound of the performance,
because it solves the simpler in-domain problem.

Experiment2: Out-of-domain. For the out-of-domain ex-
periment, we use the models trained models from the in-
domain experiment on single crops and test them with im-
ages from different crops. At inference, we crop a larger
patch of size 512 × 512 as input from a different type of
crop. This experiment is meant to evaluate how well the
models trained on a single or combined aerial crop dataset
generalize to other unseen aerial crop datasets. We include
tests with the all-crop trained model as well, as an upper
bound for out-of-domain performance.

3.3.1 Evaluation Measures

To evaluate the performance of the I2I model, we employ
four standard measures, including: the Structural Similarity
Index (SSIM) [58], the Peak Signal-to-Noise Ratio (PSNR)
[20] used in many computer vision tasks, the Dice Similar-
ity Coefficient (DSC) [11] to assess vegetation segmenta-
tion accuracy, and Spectral Angle Mapping (SAM) [28] to
quantify spectral similarity between the generated and refer-
ence spectral bands for each pixel. Higher SSIM, PSNR and
DSC values represent a better performance of the model,
while lower SAM shows the generated spectrum is closer to
its target.

Vegetation segmentation. To evaluate the image quality
in terms of vegetation segmentation, which is important for
characterizing a crop’s vigor and canopy coverage[61], we
computed Normalized Difference Vegetation Index (NDVI)
[6] for the real NIR images and the generated NIR images.
We also computed excess green index (ExG) [59] exclu-
sively from RGB images to compare vegetation segmenta-
tion obtained from NIR-based index with an RGB-based in-
dex.

The NDVI quantifies the presence of living vegetation
using reflected visible light and NIR bands. NDVI is an in-
dicator of the density and plant health of each pixel [43].
Generated NDVI means the NDVI computed using the real
red band and the generated NIR image, whereas real NDVI
refers to using real red and NIR images. Excess green in-
dex provides a grey scale image, outlining a plant region of
interest and is computed as follows:

ExG = 2g − r − b (2)

where g, r, b represent green, red and blue bands respec-
tively. We obtained vegetation segmentations by apply-
ing Otsu’s thresholding [40] to both the generated and real
NDVI images along with the ExG images. We compared the
real and generated NDVI segmentations to the ExG based
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Experiments 1 & 2

Train
Test Canola Pulse Wheat All-crop

PSNR SSIM SAM DSC PSNR SSIM SAM DSC PSNR SSIM SAM DSC PSNR SSIM SAM DSC
Canola 30.91 0.92 0.03 0.96 29.17 0.85 0.05 0.92 29.35 0.89 0.06 0.95 29.66 0.89 0.05 0.94
Pulse 29.12 0.88 0.05 0.92 31.71 0.93 0.03 0.96 29.20 0.89 0.05 0.9 29.95 0.9 0.05 0.93
Wheat 29.15 0.87 0.05 0.94 28.85 0.89 0.05 0.94 31.11 0.93 0.03 0.95 29.7 0.9 0.05 0.94
All-crop 30.85 0.92 0.03 0.96 31.73 0.93 0.03 0.96 31.06 0.92 0.03 0.94 31.21 0.93 0.03 0.95

Table 2: Average PSNR, SSIM, SAM and DSC values for the in-domain and out-of-domain experiments. DSC was applied
over the generated and real NDVI segmentations. The shaded experimental evaluations correspond to the in-domain tests.
The all-crop model tested on single crop datasets represents an upper bound because its distribution covers the other crop’s
distribution.
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Figure 3: Example test images from the in-domain experiment for the canola, pulse, and wheat datasets in the mid growth
stage. The real and generated NIR images are shown in grayscale, as well as the vegetation segmentation produced with
NDVI for each (‘Veg Seg’). The type of crop is shown beside each row. PSNR, SSIM, SAM, and DSC values are listed
below each image. In the segmentation images, red and blue pixels denote vegetation and ground, respectively.

Experiments 1 & 2 (segmented ExG vs. segmented NDVI)

Train
Test Canola Pulse Wheat All-crop

Real NDVI Gen NDVI Real NDVI Gen NDVI Real NDVI Gen NDVI Real NDVI Gen NDVI
Canola 0.8 0.79 0.85 0.85 0.69 0.7 0.78 0.78
Pulse 0.82 0.79 0.85 0.85 0.71 0.69 0.8 0.78
Wheat 0.81 0.79 0.85 0.84 0.7 0.7 0.79 0.78
All-crop 0.8 0.79 0.86 0.85 0.7 0.69 0.78 0.78

Table 3: Average DSC values for comparison between segmented ExG and NDVI values in the in-domain and out-of-
domain experiments. The DSC values representing the overlap between the ExG and real NDVI segmentations and the
overlap between the ExG and generated NDVI segmentations are reported below ‘Real NDVI’ and ‘Gen NDVI’, respectively.
The shaded experimental evaluations correspond to the in-domain tests. The all-crop model tested on single crop datasets
represents an upper bound because its distribution covers the other crop’s distribution.
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RGB ExG Real NDVI Gen NDVI ExG-based Real NDVI Gen NDVI
(veg seg) (veg seg) (veg seg)
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Figure 4: Example test images from the in-domain experiment for the canola, pulse, and wheat datasets for different growth
stages. False colored (‘jet’ colormap) ExG, real NDVI and generated NDVI images are shown from columns 2 to 4 respec-
tively, as well as the vegetation segmentation produced with each (‘Veg Seg’), shown in the last three columns. The type of
the crop is shown beside each row. The DSC value representing the overlap between the real NDVI and ExG segmentations
and the overlap between the generated NDVI and ExG segmentations are listed below ‘Real NDVI (veg seg)’ and ‘Gen NDVI
(veg seg)’, respectively. In the segmentation images, red and blue pixels denote vegetation and ground, respectively.

segmentation using DSC to demonstrate the difference be-
tween using generated NIR vs. visible spectrum alone for
vegetation segmentation.

4. Results

Table 2 represent the PSNR, SSIM, SAM, and DSC val-
ues in both the in-domain and out-of-domain experiments.
In the in-domain experiment where the model tested on the
crop of interest, all datasets achieved above 92% accuracy in
SSIM values meaning the distribution of the generated im-
ages is closely matched with the target distribution. SAM
values have shown low numbers which is another proof for
having substantial overlap between the two generated and

target image distributions. PSNR values show that noise
was removed from the generated NIR image. DSC val-
ues have an almost complete overlap between the gener-
ated and real NDVI segmentations. The results for the
in-domain experiment indicate that the model can produce
high fidelity results required for further agricultural analysis
when a model is trained on the crop of interest. The out-of-
domain experiment where the model tested on different crop
types, have reported above 90% overlap between the gener-
ated and real NDVI segmentations via DSC values, meaning
the model trained on a single crop type can generalize well
on unseen data from another crop. SSIM, PSNR, and SAM
also achieved relatively high accuracy for a shifted domain
problem. The all-crop dataset is not considered as out-of-
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domain evaluation because the distribution of the dataset
covers a larger data distribution consisting of every single
crop type, and represents a generalization upper bound.

Figure 3 shows the quality of the generated images both
quantitatively and qualitatively for the in-domain experi-
ment. The pulse dataset including lentil, dry bean-1, dry
bean-2 crops, contains imbalanced number of images of the
lentil grain. However, the model has successfully learned
the target domain distribution despite of the lowest number
of lentil images in the dataset, visualized in the second row
of Figure 3.

Table 3 report the overlap (DSC) between the NDVI
and ExG based segmentations in the in-domain and out-of-
domain experiments across the entire growing season. In
general, segmentations produced by generated NDVI are
a better match to actual NDVI than ExG based segmen-
tations. We observe a plant type and plant growth stage
effect in this result. Figure 4 demonstrates that these two
indices are closer in the mid growth stage for crops with
relatively low density in vegetation. ExG predicts less plant
pixels and consequently it shows a closer match with NDVI
in the canola and pulse datasets. The overlap between the
ExG and NDVI segmentations is lower in the wheat dataset
where the wheat plants are narrow and dense. In the late
season examples, both segmented ExG and NDVI are in-
consistent because of less prominent reflection of NIR and
green spectral bands.

5. Discussion
The in-domain experiment achieved the most promising

performance because there is no concern of domain shift,
as shown in Table 2. The all-crop dataset in the in-domain
experiment has shown a comparable result with each single
crop dataset, where the model was trained on a larger sam-
ple size covering more variations and tested on a smaller
population. In the out-of-domain experiment, the all-crop
dataset has shown a close performance to each single crop
dataset in the in-domain experiment, because of its cover
over the other datasets. The generalizability of the model is
encouraging for applying this model to new crops or differ-
ing field conditions with little or no retraining.

Many remote sensing research studies have investigated
the cross modality inference problem using satellite im-
agery. In [62], a cGAN with the same architecture as our
model was employed to produce NIR spectral band from
RGB satellite images. They assessed their results with
Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) and SSIM measures. They achieved 92.28%
SSIM using the L1 robust loss function, which is similar
to our results for the in the in-domain experiment. Despite
the substantially increased ground resolution of our UAV
images as compared to satellite images, RGB to NIR trans-
lation performance remained consistent.

Vegetation segmentations produced from real versus
generated NDVI were nearly identical across all crops and
growth stages. This is a promising result for using generated
NIR in agricultural applications. The generated NIR images
can be used in several different agricultural indices com-
bining with visible spectrum to enhance the contribution
of vegetation properties. For example NDRE [5], which
is more sensitive than NDVI for a certain period of crop
maturation.

The segmentations produced by generated NDVI were
also mostly consistent with the standard ExG based seg-
mentations. In general, the ExG segmentations appeared
tighter to the vegetation than the NDVI based segmenta-
tions. This may be due to NDVI becoming saturated and
providing slightly less vegetation discrimination than ExG.
However, in later growth stages, as seen in the mature
canola and wheat in Figure 4, NDVI provided a better seg-
mentation of plant pixels. This is expected due to the lack
of green reflectance after senescence in wheat and canola.

While our work has made substantial contributions to
the analysis of crops from aerial imagery, it is not with-
out shortcomings. First, we only investigated four crops.
Other staple crops such as corn, cassava, or soybean might
have significantly different responses to the model. Fur-
ther model verification with additional crops would be ben-
eficial. Second, we only evaluated a single multispectral
camera, and only inferred a single band. Additional hard-
ware and frequency band characterization would extend
this work. Finally, we examined well-maintained breeding
crops, and did not consider crops under disease or environ-
mental stress. Extending the model to include these data
would enhance utility and generalizability.

6. Conclusion

In this work, we have demonstrated the effectiveness
of generating an NIR reflectance band from RGB bands
for aerial crop images using image-to-image translation.
We collected raw sensor data via a multispectral sensor
mounted on a UAV over four trial fields. Raw images
were processed to be radiometrically calibrated and pixel-
wise aligned with their NIR counterpart. We conducted two
deep-learning based experiments trained and tested on dif-
ferent combinations of our dataset. We performed extensive
quantitative and qualitative assessments considering stan-
dard and agricultural domain-specific measures to evaluate
the quality of the generated NIR images. Our evaluation
demonstrates that the generated NIR images are compara-
ble to real NIR images across different crop species and
growth stages. These results show that combining inexpen-
sive RGB aerial imaging with image translation methods to
synthetically generate NIR images is a promising approach
for image-based plant phenotyping.
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[52] Patricia L Suárez, Angel D Sappa, Boris X Vintimilla,
and Riad I Hammoud. Image vegetation index through a
cycle generative adversarial network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019.

[53] Richard Szeliski. Computer vision: algorithms and applica-
tions. Springer Science & Business Media, 2010.

[54] Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J Corso,
and Yan Yan. Multi-channel attention selection gan with cas-
caded semantic guidance for cross-view image translation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2417–2426, 2019.

[55] Chao Wang, Haiyong Zheng, Zhibin Yu, Ziqiang Zheng,
Zhaorui Gu, and Bing Zheng. Discriminative region pro-
posal adversarial networks for high-quality image-to-image
translation. In Proceedings of the European conference on
computer vision (ECCV), pages 770–785, 2018.

[56] Lei Wang, Xin Xu, Yue Yu, Rui Yang, Rong Gui, Zhaozhuo
Xu, and Fangling Pu. Sar-to-optical image translation us-

1321



ing supervised cycle-consistent adversarial networks. IEEE
Access, 7:129136–129149, 2019.

[57] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018.

[58] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[59] David M Woebbecke, George E Meyer, Kenneth Von Bar-
gen, and David A Mortensen. Color indices for weed identi-
fication under various soil, residue, and lighting conditions.
Transactions of the ASAE, 38(1):259–269, 1995.

[60] Jungang Xu, Hui Li, and Shilong Zhou. An overview of deep
generative models. IETE Technical Review, 32(2):131–139,
2015.

[61] Jinru Xue and Baofeng Su. Significant remote sensing veg-
etation indices: A review of developments and applications.
Journal of sensors, 2017, 2017.

[62] Xiangtian Yuan, Jiaojiao Tian, and Peter Reinartz. Gener-
ating artificial near infrared spectral band from rgb image
using conditional generative adversarial network. ISPRS An-
nals of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, 3:279–285, 2020.

[63] Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang,
Chao Dong, and Liang Lin. Unsupervised image super-
resolution using cycle-in-cycle generative adversarial net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 701–710,
2018.

[64] Yongbing Zhang, Siyuan Liu, Chao Dong, Xinfeng Zhang,
and Yuan Yuan. Multiple cycle-in-cycle generative adversar-
ial networks for unsupervised image super-resolution. IEEE
transactions on Image Processing, 29:1101–1112, 2019.

[65] Fan Zhao, Wenda Zhao, Libo Yao, and Yu Liu. Self-
supervised feature adaption for infrared and visible image
fusion. Information Fusion, 2021.

[66] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017.

[67] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5104–
5113, 2020.

1322


