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Abstract

Automatic classification of pests and plants (both healthy
and diseased) is of paramount importance in agriculture to
improve yield. Conventional deep learning models based on
convolutional neural networks require thousands of labeled
examples per category. In this work we propose a method to
learn from a few samples to automatically classify different
pests, plants, and their diseases, using Few-Shot Learning
(FSL). We learn a feature extractor to generate embeddings
and then update the embeddings using Transformers. Using
Mahalanobis distance, a class-covariance-based metric, we
then calculate the similarity of the transformed embeddings
with the embedding of the image to be classified. Using our
proposed architecture, we conduct extensive experiments on
multiple datasets showing the effectiveness of our proposed
model. We conduct 42 experiments in total to comprehen-
sively analyze the model and it achieves up to 14% and 24%
performance gains on few-shot image classification bench-
marks on two datasets.

We also compile a new FSL dataset containing images
of healthy and diseased plants taken in real-world settings.
Using our proposed architecture which has been shown to
outperform several existing FSL architectures in agricul-
ture, we provide strong baselines on our newly proposed
dataset.

1. Introduction

In agriculture, correct classification of different pests and
plants (both healthy and diseased) is a major issue due to the
high similarity and shared characteristics between different
species. Automatic classification of different categories us-
ing deep learning is an area of active research [28, 22, 6, 33].
However, in practice, people still rely on manual classifica-
tion by experts for classification of different species. This
can be partly attributed to the fact that using traditional deep
learning networks based on Convolutional Neural Networks
(CNNs) for classification require thousands of labelled ex-

*equal contribution; order determined by a coin toss

amples per target category for training [16] and labeling
samples on such a large scale requires domain experts. Fur-
ther, the number of categories a trained CNN-based model
can recognize remains fixed after training. To expand the
set of categories that the network can recognize, it has to
be further trained with new samples from novel classes, a
process called fine-tuning [4]. Moreover, during training it
is important that there is enough data (thousands per class)
to prevent the network from overfitting [9]. Humans, on
the other hand learn new tasks with very little supervision
- a child can generalize the concept of “horse” from a sin-
gle picture. Also, humans can generalize to recognize novel
categories from only one or a few examples [17]. To enable
networks to learn from a few examples, recently a lot of fo-
cus has been placed on Few-Shot Learning (FSL). FSL aims
to tackle the problem of classification with very few train-
ing examples, and it is becoming popular in many fields
[5, 19, 27, 34]. Specifically, in FSL, we are given two sets
of labelled image data: meta-train and meta-test such that
the image classes in both sets are mutually exclusive. The
aim is to use the data in the meta-train set and learn trans-
ferable knowledge (also called meta-training) to construct
a classifier on the visual classes in meta-test set which can
classify a given query sample even with very few labeled
(support) examples. Further, if the domain of visual classes
in the meta-train set is different from that of meta-test set it
is called cross-domain FSL. Feature distribution discrepan-
cies across domains is one of the main challenges in cross-
domain FSL. Similarly, in mixed-domain FSL, both the
meta-train and meta-test sets contain classes from multiple
domains and single-domain FSL contains instances from a
single domain.

Recent FSL approaches in agriculture [20, 21] learn an
embedding function using the meta-train set which is then
used to generate embeddings of the samples in the meta-
test set. Finally, for a given query sample, a distance met-
ric applied on the embeddings of the support samples gives
the final prediction. A major limitation of this approach
is the assumption that the transferable knowledge learned
using meta-train classes can be directly applied to classi-
fication tasks generated using meta-test classes [35]. For
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example, this approach assumes that the discriminative fea-
tures for differentiating two plant species is same as the
discriminative features required for differentiating two pest
species. This problem becomes even more pronounced in
cross-domain settings. In this work, we adopt an adapta-
tion method that modifies the representations derived from
the embedding function. The modified representations are
tailored to maximize the discriminative power of the visual
representations for a task at hand. Following [35], we use a
Transformer [31] as a set-to-set function approximator that
adapts the generated embeddings to the current task.

Secondly, the existing few-shot architectures in agricul-
ture [1, 21] focus on using the Euclidean distance to com-
pute the similarity of instance representations. However,
using the Euclidean distance assumes that the feature di-
mensions are un-correlated and the feature dimensions have
uniform variance [2], which do not always hold. Hence,
inspired by [2], we use Mahalanobis distance [8], a class-
covariance-based metric, to compute the similarity of the
embeddings.

Finally, the existing few-shot plant datasets for agricul-
ture [21, 13] contain images of a single leaf in laboratory
settings as shown in Fig 3. However, in real-world ap-
plications of agriculture, we rarely get such images of a
single leaf for classification. For instance, an image cap-
tured by a person using the ubiquitous smartphone camera
is very different and contains challenging scenarios of light-
ing, orientation and background. As a result, it is imperative
to design and test machine learning frameworks that per-
form well even with images containing the entire plants and
not just a single leaf under varied conditions. To address
this issue, we collected samples from publicly available re-
sources (e.g., https://edenlibrary.ai/home) and
compile a dataset of healthy and diseased plants. We also
provide a strong baseline for our new few-shot dataset.

To test our architecture, we conduct extensive FSL ex-
periments on multiple datasets, namely, the Plant and Pests
(PP) dataset [21] and the PlantVillage dataset [13]. The for-
mer is a dataset of plants and pests and enables us to ex-
periment with mixed and cross-domain settings. We im-
prove the state-of-the-art accuracy of this dataset signifi-
cantly, both in mixed-domain and cross-domain settings.
On the other hand, the PlantVillage dataset consists of im-
ages of healthy and diseased plants. Our model outperforms
the current best-performing models on this dataset by a sig-
nificant margin.

The contributions of this work are three-fold: 1) We pro-
pose a new architecture for FSL using Transformers for
enhancing the feature representations and class-covariance-
based distance metric for calculating the feature distance.
2) We conduct extensive experiments under different set-
tings on multiple datasets to establish the superiority of
the model. Various settings include single-domain, mixed-

domain, and cross-domain (including cross-dataset). 3) We
collect samples from publicly available resources to create a
new FSL dataset containing images of healthy and diseased
plants which represent the real-world applications of com-
puter vision in agriculture. We also provide strong baselines
on the proposed dataset.

2. Related Work

In the field of agriculture, many recent works on vision
have tried to solve the classification task with limited train-
ing samples. In [12], the authors used DC-GAN [25] to
generate augmented images for training. Another approach
proposed in [20] is based on prototypical networks [27] and
trains a CNN feature extractor followed by Euclidean dis-
tance calculation. The framework is trained using a triplet
loss function. Another recent work [21], used FSL to train
a model with limited samples. In [1], the authors trained a
CNN to extract general plant leaf characteristics and used
Siamese networks combined with triplet loss for classifica-
tion. In [1], the authors tested their work using the PlantVil-
lage [13] dataset. In [21], the authors used a part of the
PlantVillage [13] dataset.

The existing FSL datasets [13, 21, 1] of plants contain
images of plants in an ideal setting with contrasting back-
grounds, single leaves, no occlusions, and constant light-
ing conditions. To facilitate development of robust com-
puter vision approaches in agriculture, we introduce Plants
in Wild, a new FSL dataset with images of diseased and
healthy leaves in real-life setting.

In general, there are two main components of FSL: 1)
learning generalizable instance embeddings and 2) distance
computation between support and query instances to clas-
sify the input images. In many works, generalizable in-
stance embeddings [11, 23, 32, 29, 3] are learned and they
are used for further classification using simple classifiers
like nearest-neighbor methods and linear classifiers. In [32],
the authors use a nearest neighbor approach. MetaOptNet
[18] uses a linear classifier. Siamese networks [15] use a
shared feature extractor and classification is done using the
smallest L1 distance between the query sample and the sup-
port samples. Our work improves on the current models
by altering both the components of FSL stated above. Fol-
lowing [35], we change the way instance embeddings are
learnt by enhancing the embeddings using a transformer
[31] based set-to-set function approximator. Transformers
have been effective to contextualize the representations of
inputs and have found applications in diverse fields [14, 30].
Secondly, to compute the similarity between query and sup-
port examples, we use class-covariance based deterministic
metric - Mahalanobis distance [8, 2], which takes into ac-
count the distribution in feature space of each class, result-
ing in improved non-linear classifier decision boundaries.
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Figure 1. Illustration of the proposed architecture. We adapt the extracted features of the support set for each task using a Transformer
before calculating the class-covariance based distance between support set features and query features.

3. Problem formulation

Assume that we are given two labeled sets Dmeta train

and Dmeta test, such that the labels of the two sets are mutu-
ally exclusive i.e. ymeta train ∩ ymeta test = φ. In both the
datasets yi is a one-hot encoded vector denoting the label of
the corresponding sample.

In the FSL paradigm, we are given a set of episodes
{T i}. Each episode T i is made up of a support set and a
query set. We denote support set by Dsupport and the ex-
amples in the support set by (xs, ys). Similarly, we denote
the examples in a query set (Dquery) by (xq, yq). We also
note that some existing works refer to support set, query set,
and episode as training set, test set, and task respectively.
In this work, we use these terms interchangeably. Each
episode is represented as an M -shot N -way classification
problem, where N classes are randomly selected from a set
of classes ymeta test with M support examples for each of
the N classes. The goal is to learn a classifier f such that
given a query sample xq and the support set Dsupport, the
classifier is able to predict yq . In a few-shot scenario the
value of M is very small (1, 5, 10).

In order to learn the parameters of the classifier f we
use a larger dataset called a meta-training dataset denoted

by Dmeta train to sample multiple M -shot N -way episodes
[32, 35, 7]. In each of the episodes, the classifier labels
the input xmeta train

q as one of the N ∈ ymeta train classes.
During the learning process, we minimize the average loss
value of all the sampled tasks. To evaluate the performance
of the classifier, we followed similar steps on Dmeta test.

4. Architecture
The classifier f consists of two main components: an em-

bedding function and a distance calculation. Next, we dis-
cuss both of these components in detail.

4.1. Embedding function

The embedding function is trainable and consists of two
parts: feature extraction φx and transformation ψx. The
feature extraction step φx extracts the features and projects
them to a d-dimensional space. The feature extractor ar-
chitecture consists of a ResNet-18 [10] network pre-trained
on Imagenet [26]. The extracted features, however, are not
ideal and do not capture important discriminative visual fea-
tures for a specific episode[35]. In other words, simply
using an embedding generated by φx does not incorporate
any information about other support samples in the current
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Figure 2. An example of meta-train set (top row) and meta-test set (bottom row) for mixed domain classification on PP dataset [21].

Figure 3. An example of set containing samples only from plant classes from PP dataset [21].

episode. As a result, irrespective of the cohort, the embed-
ding of a given image is always the same. Having such
deterministic features is detrimental for discriminating the
elements of the set. To overcome this, the embeddings need
to be contextualized. Inspired by FEAT algorithm proposed
in [35], the outputs of φx are transformed using a set-to-set
function (ψx), which enriches the embedding of each image
by considering those of all other images in the support set.
By enabling interaction between embeddings of various im-
ages in the set it leads to richer representations and discrim-
inative features. Another desired feature of the set-to-set
function is that it should be permutation-invariant. Follow-
ing [35], we implement ψx using Transformer architecture
[31], which fit the criteria of the required set-to-set function.
Transformers rely on the self-attention mechanism which
updates the representation of every input by weighing the
relevance of all the other inputs. They map a query and a
set of key-value pairs to an output.

ψxi = φxi +

∑
∀j

V (sj)f(φxi , φxj )

 , (1)

where f(φxi
, φxj

) is used to measure the similarity be-
tween φxi , φxj .

f(φxi
, φxj

) = softmaxj

(
Q(φxi)

TK(φxj )
√
d

)
, (2)

where the functions Q and K are learned linear projec-

tions. Combined with V, which is also a learned linear
projection, the functions Q and K project the inputs to a
common representation space before applying the similar-
ity measure.

The resultant transformed embeddings (ψx) act as inputs
to the distance computation module.

4.2. Distance computation

In this step, we calculate the distance between the em-
beddings of the support samples with the query sample to fi-
nally classify the query. Following [2], we use Mahalanobis
distance [8], a class-covariance based distance metric esti-
mated at test-time, which has been shown to be better than
using other metrics such as Euclidean or cosine. The final
prediction is calculated as follows:

p(yq = n|ψxq
, St) = softmax(−dn(ψxq

, µn)), (3)

where n ∈ N is one of the support classes in the current
episode/task t ∈ T , St is the support set for the current
episode/task, µn is the mean transformed embedding (ψx)
of all the M samples corresponding to the class n and dn is
the squared Mahalanobis distance defined as below:

dn(x, y) =
1

2
(x− y)T (Qt

n)−1(x− y), (4)

where Qt
n is the covariance matrix of class n ∈ N for

episode/task t ∈ T . We calculate the covariance matrix
Qt

n using a regularized estimator
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Figure 4. An example of set containing samples only from pest classes from PP dataset [21].

Qt
n = λtkΣt

n + (1− λtk)Σt + βI, (5)

where Σt is the covariance matrix of all the classes in the
task t, Σt

n is the covariance matrix of the class n in task t
and λ is a weigthing factor defined as follows:

λtk =
|St

k|
|St

k|+ 1
, (6)

where |St
k| is the number of elements in the support set of

the task t corresponding to class k. For a theoretical expla-
nation of the superiority of Mahalanobis distance to other
metrics, we refer the reader to [2].

4.3. Loss function

To ensure that the transformation function ψx pulls
the embeddings of same-class instances closer and drives
different-class instances farther, we use a contrastive loss
function. To achieve this, the transformation function is
applied to instances of each of the N classes present in
the given episode/task, giving a transformed embedding ψ′x
and the mean class centers {cn}Nn=1. We then calculate the
similarity of individual embedding to the class center cor-
responding to the individual. Apart from this we also use a
standard cross-entropy loss function to calcualte the loss us-
ing the final prediction. Hence, the complete loss function
is as follows:

L(ŷq,yq) = l(ŷq, yq)

+ λ× l(softmax(sim(φx, cn)), yq),
(7)

where sim is the similarity function calculated using the
class-covariance-based distance metric, l is the standard
cross entropy loss function and λ is the weighting factor.

4.4. Implementation Details

The proposed model has been implemented using Py-
Torch [24]. We use stochastic gradient descent with Nes-
terov acceleration with an initial learning rate of 0.0002,
weight decay of 5e-4, momentum of 0.9, and a learning rate
scheduler with step size of 40 and gamma of 0.5 to optimize
the model. We resize all the images to 84×84×3 before us-
ing the feature extractor. The value of λ is set to 0.1.

Table 1. Various classes in our newly proposed Plants in Wild
dataset

Healthy Diseased
Celery Corn Leaf Blight
Chinese Cabbage Chinese Cabbage Fusarium
Cotton Corn Rust Leaf
Grapevine Grapevine Esca
Potato Potato Early Blight
Red Cabbage Cucumber Tetranychus
Tomato Tomato Fruit Virus
Watermelon Cucumber Thrips
Zucchini Grapevine Powdery Mildew
Bell Pepper Bell Pepper Leaf Spot

5. Experiments

In this section, we provide an overview of the datasets
used, describe the experimental setup and provide quantita-
tive results.

5.1. Datasets

We test our proposed architecture on two different chal-
lenging datasets and also provide baselines for the new
dataset that we propose. We next describe the two exter-
nal datasets that we use.

Plant and Pest (PP) [21] dataset contains 6000 images
of both pests and plants. We use this dataset to test the
mixed-domain and cross-domain performance of our pro-
posed architecture. The dataset contains 20 classes, 10 each
for plants and pests. During experimentation, the dataset is
split into two: meta-train set and meta-test set. The labels
of both sets do not overlap and the distribution of the sets
may also differ. In mixed domain settings, both meta-train
and meta-test sets contain instances of plants and pests. We
show an example of this in Fig 2. On the other hand, there
are two cross-domain settings. In the cross-domain 1 set-
ting, the meta-train set contains examples of pests and the
meta-test set is made up of plant instances. For example,
Fig 4 can make up the meta-train set and the meta-test set
contains images from Fig 3. Finally, the cross-domain 2
setting, refers to the meta-train set containing plants and the
meta-test set containing pest instances. In this setting, the
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Figure 5. Examples of healthy and diseased tomato leaves from PlantVillage dataset [13].

Figure 6. A few examples of real world images from our Plants in Wild (PiW) dataset containing both healthy and diseased plants.

images in Fig 3 make up the meta-train set, whereas in-
stances in Fig 4 constitute the meta-test set. While being
challenging, the cross-domain setting is vital owing to its
practical implications.

PlantVillage [13] is a public dataset containing 38
classes of healthy and diseased leaves of different crops.
The dataset consists of 61,486 images. We split the dataset
into 3 different and mutually exclusive meta-training and
meta-testing sets, in the same manner followed in [1]. In
split 1, the meta-test set consists of 10 different classes of
Tomato (1 healthy, and 9 diseased) as shown in Fig 5, and
the meta-training set consists of the rest of the 28 classes.
In split 2, the meta-test set consists of 4 classes of Apple
(3 diseased, 1 healthy): apple scab, black rot, cedar apple
rust, and healthy; 4 classes of Grape (3 diseased, 1 healthy):
black rot, esca, leaf blight, and healthy; 2 classes of Cherry

(1 diseased, 1 healthy): powdery mildew, and healthy; and
the meta-train consists of rest of the 28 classes. Similarly,
in split 3, the meta-test set consists of 4 classes of Corn (1
healthy, 3 diseased), 4 classes of Grape (1 healthy, 3 dis-
eased), and 2 classes of peach (1 healthy, 1 diseased).

Plants in Wild (PiW): In addition to these two datasets,
we curated another dataset to validate our model’s perfor-
mance across domains and under real-life settings. The im-
ages of leaves in the Plantvillage and PP dataset are in a
laboratory setting such that each image contains only one
leaf in a contrasting background. However, in a real-life
setting, the images are less likely to be taken in a con-
trolled setting and will be of varying backgrounds, light-
ing conditions, and angles. We used the publicly available
images available on the internet (for instance, the Eden Li-
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Table 2. Average accuracy achieved on different setting of N and M on mixed domain on PP dataset [21].

K = 1 K = 5 K = 10

Ntrain, Ntest Li et al. [21] Ours Li et al. [21] Ours Li et al. [21] Ours

3, 3 0.811 0.841 0.870 0.900 0.904 0.929
3, 5 0.677 0.723 0.794 0.839 0.821 0.873
5, 3 0.790 0.828 0.864 0.912 0.889 0.924
5, 5 0.676 0.739 0.780 0.837 0.825 0.872

Table 3. Average accuracy achieved on different settings of N and M on cross-domain 1 on PP dataset [21].

M = 1 M = 5 M = 10

Ntrain, Ntest Li et al. [21] Ours Li et al. [21] Ours Li et al. [21] Ours

3, 3 0.697 0.792 0.849 0.937 0.865 0.955
3, 5 0.614 0.705 0.774 0.894 0.812 0.930
5, 3 0.721 0.759 0.814 0.923 0.871 0.936
5, 5 0.531 0.677 0.760 0.884 0.810 0.902

Table 4. Average accuracy achieved on different setting of N and M on cross-domain 2 on PP dataset [21]

M = 1 M = 5 M = 10

Ntrain, Ntest Li et al. [21] Ours Li et al. [21] Ours Li et al. [21] Ours

3, 3 0.441 0.518 0.526 0.660 0.548 0.716
3, 5 0.290 0.381 0.380 0.547 0.427 0.594
5, 3 0.425 0.520 0.531 0.665 0.558 0.708
5, 5 0.292 0.385 0.374 0.545 0.439 0.603

brary website1) to collect images of diseased and healthy
plants. All the images were taken using smartphone cam-
eras in different fields and farms. We preprocessed all the
images by resizing and center-cropping the images. Fig 6
shows some of the classes from our dataset. Comparing our
dataset with the existing datasets, shown in Figures 3 and
5, highlights the differences between the datasets - lab con-
trolled and real-life images.

We collected 20 categories of plants: 10 of which are
healthy and 10 classes correspond to diseased plants. The
dataset consists of 1980 images, which were taken by users
using different smartphone cameras. Table 1 shows all the
available classes in the dataset. We evaluate the model us-
ing three different splits of the dataset. In split 1, the meta-
train set consists of Bell pepper healthy, Bell pepper leaf
spot, Celery healthy, Chinese cabbage healthy, Chinese cab-
bage fusarium, Corn leaf blight, Corn rust leaf, Cucumber
tetranychus, Cucumber thrips, and Red cabbage healthy.
The meta-test set consists of the rest of the 10 classes. In
split 2, the meta-test and meta-train sets are reversed. In
split 3, the meta-train set consists of all the healthy plant
leaf images, while the meta-test set consists of all the dis-
eased plant leaf images.

1https://edenlibrary.ai/home

5.2. Results

We evaluate the performance of our proposed model on
the PP dataset [21] and the PlantVillage dataset [13] to es-
tablish the superiority of our model compared to existing
best-performing methods on these datasets. We then use
our model and provide baselines for our newly proposed
dataset. To evaluate the model, we generate 600 support-
and-query sets from the meta-test set. To report the final
accuracy, we use the average accuracy on all the 600 sets.

Plant and Pest (PP): On the PP dataset [13], we per-
form 36 sets of experiments, under three different settings:
2 cross-domain and mixed-domain following [21]. Please
refer to the 5.1 for the details on different settings. For
each of the domains we evaluate with different values of
M and N. We also vary the value of N during the meta-train
and meta-test phase, which we represent using Nmeta train

and Nmeta test. For example, a value of 3, 5 corresponding
to Nmeta train and Nmeta test respectively means that the
number of support classes in each episode is 3 during meta-
training and 5 during the model evaluation (or the meta-
testing) phase. We also experiment with 3 different values
of M (1, 3, and 5). We observe significant performance
gains across all the settings. Specifically, we observe around
3 to 6% gains in performance on the mixed-domain setting,
approximately 7 to 11% improvement on cross-domain 1,
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Table 5. Average accuracy achieved on different settings on PlantVillage dataset [13]

Split 1 Split 2 Split 3

Method used 5 way 1 shot 5 way 5 shot 5 way 1 shot 5 way 5 shot 5 way 1 shot 5 way 5 shot

Argueso et al. [1] 0.34 0.531 0.464 0.769 0.552 0.693
Ours - Cross Dataset 0.38 0.54 0.573 0.772 0.716 0.861
Ours 0.466 0.635 0.709 0.87 0.754 0.885

and about 12 to 14 % improvement on cross-domain 2 set-
ting. We observe that gains on cross-domain settings are
much higher compared to the mixed domain setting. This
shows that our architecture is much better at extracting dis-
criminative features even on unseen domains. We also ob-
serve that the accuracy improvements when using a higher
number of support classes during meta-testing are greater
i.e. when using a value of 5 for Nmeta test compared to 3.
Specifically, the average improvement across all the settings
with a Nmeta test value of 5 is 9% while it is equal to 5%
when Nmeta test is set to 3. This is due to the fact that, with
lower values ofNmeta test even a random classifier can cor-
rectly predict the outcome with high probability (given just
3 three classes, a random classifier is correct 33% of the
time). Increasing the value demands robust architectures
for accurate predictions. In summary, we see the trend of
the increasing performance gap with increasing difficulty of
the task throughout our experiments: performance improve-
ments on cross-domain settings are more pronounced com-
pared to single-domain and the accuracy gap widens when
we increase the number of support classes in meta-test set.

PlantVillage: On the PlantVillage dataset [13], we per-
form experiments under 6 different settings. We use three
different splits (please refer to the Section 5.1 for details
on splits) and use two different values of M (1, 5) while
keeping N constant. Please refer to the row correspond-
ing to Ours in Table 5 for the results. Experiments using
our model outperform the current state-of-the-art architec-
ture [1] on this dataset by 10 to 24%. Moreover, the perfor-
mance gains are much higher in 1-shot settings with a mean
improvement of 18% compared to an average improvement
of 11% in 5-shot settings. This is in line with our observa-
tions on the PP dataset [21] that the performance gains are
much higher as the tasks get tougher.

Plants in Wild (PiW): The PiW dataset, in contrast to
the previous two datasets, consists of diseased and healthy
images of plants taken in a natural setting. We perform six
experiments using three different data splits (Please refer
to the 5.1 for the details on different splits) to validate the
performance of our model in a natural setting. As shown
in Table 6, our model performs the same, if not better when
compared to its performance on plant images in a controlled
setting. These experiments show the effectiveness of our
model even with real-life images taken with smartphone
cameras.

Cross Dataset Performance: To further establish the

superiority of our model in adapting to unseen domains, we
only use the images of pests from the PP dataset [21] as
our meta-train set and use plant images in the PlantVillage
dataset [13] as meta-test set. We show that even under such
a stringent cross-domain / cross-dataset setting, our algo-
rithm still shows notable improvements (up to 17% gains).
We record these values in the Ours - Cross Dataset row in
Table 5.

In summary, results across multiple settings on vari-
ous datasets indicate that using Transformers for generating
episode-specific rich instance embeddings (ψx) provide for
a useful calculation of episode and class specific covariance
matrix (Qt

n) in few-shot settings.

Table 6. Average accuracy on different settings on our PiW dataset.

Splits N,M Ours

Split 1
5 way 1 shot
5 way 5 shot

0.768
0.905

Split 2
5 way 1 shot
5 way 5 shot

0.714
0.846

Split 3
5 way 1 shot
5 way 5 shot

0.767
0.933

6. Conclusion
In this paper, we address the problem of few-shot learn-

ing in agriculture. Most of the current works in the field
use instance embeddings that are not tailored to the task at
hand. Using a Transformer based architecture [31, 35], we
enrich the embeddings of the images by considering all the
images in the support set of the given episode. We further
incorporate a class-covariance-based deterministic metric -
Mahalanobis distance [8, 2] to calculate the similarity of
the query vector with the candidates of the support set. We
show that our architecture significantly improves the per-
formances on two different datasets (alongside one cross-
dataset experiment) under multiple settings.

We also provide a new dataset (Plants in Wild) mimick-
ing the real-world scenarios. Our newly compiled dataset
consists of plants that are both healthy and diseased. Using
our model which has been shown to outperform several ex-
isting FSL architectures on agriculture datasets, we provide
strong baselines on our new dataset. We hope that our new
dataset along with our new models opens up new research
directions in the field of agriculture.
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