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Abstract

6DoF object pose estimation depends on positional ac-
curacy, implementation complexity and processing speed.
This study presents a method to estimate 6DoF object poses
for multi-instance object detection that requires less time
and is accurate. The proposed method uses a deep neu-
ral network, which outputs 4 types of feature maps: the
error object mask, semantic object masks, center vector
maps (CVM) and 6D coordinate maps. These feature maps
are combined in post processing to detect and estimate
multi-object 2D-3D correspondences in parallel for PnP
RANSAC estimation. The experiments show that the method
can process input RGB images containing 7 different object
categories/ instances at a speed of 25 frames per second
with competitive accuracy, compared with current state-of-
the-art methods, which focus only on some specific condi-
tions.

1. Introduction

Many studies [8, 14, 9, 10, 27, 15, 1, 18, 19, 25, 17, 4,
13, 24, 11] involve 6DoF object pose estimation using a sin-
gle RGB image. Most seek to achieve greater accuracy in
recognition/estimation, but do not consider practical issues,
such as speed and memory requirement. Common appli-
cation scenarios involve single and several, objects. Some
objects are duplicated (with different poses) but some are
different and can be occluded. The inference time for pose
estimation for all objects in a scenario is also important.

This study uses more features to give a more realistic es-
timation system. The proposed method would be very accu-
rate and simultaneously estimates the poses of all instance

Figure 1. The proposed InstancePose uses a single RGB image
composed from LINEMOD rendered objects [7] with PASCAL-
VOC [5] background. The top-right and bottom-left image repre-
sent the 6D coordinate maps: one is the 3D coordinate map from
the front-view and the other is the 3D coordinate map from the
rear-view of the objects toward the camera. The bottom-right im-
age shows all estimated 6DoF object poses.

objects in a single RGB image, even if they belong to dif-
ferent categories (see the example in Fig. 1). The proposed
method uses a bottom-up approach [4] to firstly detect all
object features and identify the object categories and loca-
tions later. This type of approach allows the system to run
fast at the expense of detection accuracy.

The proposed system uses one of the deep neural net-
work architectures of the Res2Net [6] family as the back-
bone and outputs four types of feature maps: the error ob-
ject mask, the semantic object masks, the CVM, and the 6D
coordinate maps (see Fig.1). These are used to derive the
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poses of all instance objects. The error object mask is used
to refine the predicted semantic object masks. This feature’s
ground truth is generated and trained based on the quality of
the predicted 6D coordinate maps.

When the predicted object masks in different categories
are refined, CVM is used to distinguish masks in the
same category. This local mask discrimination is achieved
using an instance center-voting procedure that is called
Non-Maximum Preservation (NMP). In contrast to Non-
Maximum Suppression (NMS) [21], NMP generates the
voting hypotheses by preserving the non-maximum ele-
ments that are used to determine the locally dominant de-
tections. Therefore, none of the objects in the image are
missed.

Using this detection by NMP, the 2D-3D correspon-
dences for each instance object are constructed and then
PnP RANSAC [12] is used to estimate the 6DoF object
poses. This study uses the 6D coordinate maps, which are
derived from two concatenated 3D coordinate maps that
are captured from two opposite viewpoints. Executing PnP
RANSAC with 6D coordinate maps is more robust than the
use of traditional 3D coordinate maps alone because they
would provide more abundant information and more con-
straints for the PnP solver.

A review of related work is detailed in Section 2. In Sec-
tion 3, the methodology is described and the experimental
results and ablation study are detailed in Section 4. Finally,
a conclusion is drawn in Section 5.

The main contributions of this research are as follows.

• A fast bottom-up approach is proposed that estimates
the 6DoF poses for multiple instance objects in the
same or different object categories in a single RGB im-
age.

• A convolutional neural network with a compact archi-
tecture is used and this performs well for multiple in-
stance objects in a single RGB image.

• Novel output feature maps, such as a Center Vector
Map (CVM) and 6D coordinate maps, identify the
dominant detections and restrict the PnP solver, re-
spectively.

• Non-Maximum Preservation (NMP) is used, which is a
new, robust, fast, and feasible post-processing system
that preserves non-maximum elements to distinguish
2D-3D correspondences in parallel between different
instance objects for a PnP RANSAC estimation.

2. Related Work and Analysis
In the field of 6DoF object pose estimation, most studies

concentrate on correctness or accuracy, and only a few con-
sider practical issues for real situations. In reality, systems

that are specially designed to achieve high performance can
be difficult to upgrade and are not applicable to real situa-
tions because of the speed and hardware requirement. After
adding and stacking several stages to fulfill a condition of
multiple object pose estimation, some systems [8, 14, 19]
become slow or the network structures become more com-
plex and performance decreases significantly. The proposed
method addresses these disadvantages. The related works
can be classified into several categories.
Simple but insufficient: The pioneer framework predicts
target outputs directly. Some proposed methods [1, 26, 14]
predict the object pose (3-translation and 3-rotation or 4-
quaternion vectors). These methods involve initially crop-
ping the regions of interest (ROIs) and then these are sent
for inference of pose parameters. These pipelines are simple
and straightforward to implement, but they lack information
about the detected objects. To increase the quality of the
pose estimation, [26, 14] predicted more feature maps: cen-
ter distances and 3D location fields are used to guide train-
ing. These additional features are still not sufficient because
training with a loss function that is related only to the direct
rotation and translation vector is very limited.
Efficient but restricted: An object detection scheme [22]
uses an end-to-end network and real-time detection [23, 10].
This functions well but performance is limited by the out-
put feature that is used. Two studies, [9, 19] predict the
unit-vector fields to estimate the pose. This gives a good
prediction but the post processing that is used to recover
back the key points requires much time for each single ob-
ject. To allow multi-object pose estimation, the system must
be re-designed.
Complete but complex: For practical use, some studies
[15, 4, 8] proposed complete systems to estimate multiple
object poses. Their systems are complicated to implement
because they involve multiple stages of training and tan-
gled network features. One study [4] uses a bottom-up
approach to estimate multiple human joints and these are
later grouped and connected as multiple skeletons. To ex-
tend this process with more object categories, more features
were added and predicted. Another study [8] predicts many
network layers, in order to determine which fragment coor-
dinate map belongs to which object instance. This increase
the complexity of post processing and the inference time.

In conclusion, direct pose estimation does not give accu-
rate results. The unit-vector field gives robustness because it
involves voting but does not reliably estimate multiple ob-
ject poses. However, a 3D coordinate map [15] can fulfil
this requirement.

3. InstancePose
Fig. 2 shows that the proposed convolutional neural

network uses the Res2Net50 [6] architecture as the back-
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Figure 2. An overview of the training and testing network architecture for InstancePose: (a) the input is an RGB image (480×640×3), (b)
the proposed CNN uses Res2Net50 [6] as the backbone and (c) the network output has 4 types of feature maps.

bone. It uses a single RGB image as input and outputs 4
types of feature maps: the error object mask, semantic ob-
ject masks, center vector maps (CVM) and 6D coordinate
maps. These features are combined to generate the instance
2D-3D correspondences using non-maximum preservation
(NMP) and the 6DoF object poses are then etimated using
PnP RANSAC.

3.1. Neural Network Design

For the backbone of Res2Net50, some parts are modi-
fied. The average pooling and fully connected layers are re-
placed by a 2D convolution layer with a kernel size of 3×3
and stride 1 with an output depth of 512, batch normaliza-
tion and ReLU activation. As it passes through the encoder,
six intermediate feature maps are used as the skip connec-
tions. These have different dimensions and depths of chan-
nels. In the decoder, the last two skip connections with the
lowest dimensions are combined to produce a new feature
map, which has a depth channel of 512, before up-sampling
and concatenation. This is a special case that involves de-
convolution and the following 4 skip connections with dif-
ferent dimension perform the concatenation and deconvolu-
tion in a similar way, as shown in Fig. 2. Finally, the out-
put feature maps have dimensions of H×W×(1+C+1+2+6),
where H and W are the height and width of the input, re-
spectively, and C is the number of object classes.

3.2. Output Feature Maps

There are 4 output feature maps, as shown in Fig. 3,
and each is trained using supervised ground truths that are
calculated from the corresponding 3D object models, ex-
cept for the error object mask. At the test/inference stage,
the initially predicted CVM and 6D coordinate maps of the
multiple instance objects are refined (see Section 3.3) by re-
ferring to the predicted error object mask and the semantic
object mask. The function for total loss is:

ltotal = αlerror + βlmask + γlCVM + λl6D, (1)

where α, β, γ, and λ are the loss weights which are used to
balance all sub-loss functions.

3.2.1 Error Object Mask

The ground truth for the error object mask is not generated
directly from the 3D object models. This feature shows the
pixel-wise confidence in the quality of the predicted 6D co-
ordinate maps. In contrast to other score metrics, less con-
fidence is better. In Fig. 3(b), the confidence score for the
background is high (yellow background) and the confidence
score for the predicted object masks is really low, except
for the object, “holepuncher” (in the red dashed rectangle),
which is occluded by ”can” and ”duck”. This error object
mask, which is denoted as ep (at a pixel p), is evaluated
using the error in the 6D coordinate maps:

ep = Avg
i=1∼6

(eip), e
i
p =

{
1 , if |êip| > θe

|êip| , otherwise
, (2)

where êip = ĉip−cip is the 6D coordinate error, ĉip and cip are
the predicted i-th channel of the 6D coordinate map and its
ground truth for the p-th pixel, respectively, θe is the error
threshold and Avg(.) is an operator getting average along all
6 channels in the 6D coordinate map. If the error between
the ground truth and the prediction is greater than a thresh-
old, Eq. 2 gives a value of 1; otherwise, the error is retained
and assigned as the confidence score. Therefore, the aver-
age error loss is defined by dividing the sum of errors byM ,
which is the set of pixels in the image:

lerror =
1

|M |
∑
p∈M
‖êp − ep‖22, (3)

3.2.2 Semantic Object Masks

To predict the semantic segmentation (each detected object
is assigned with a distinct label value, as shown in Fig.
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Figure 3. Output feature maps: (a) A single RGB image that is rendered from LINEMOD objects with a cluttered background, (b) the
error object mask, (c) the semantic object masks (pixel labels are assigned according to Occlusion LINEMOD), (d) Center vector maps
visualized with three color components — the third of which is set to be 1, and (e) and (f) 3D coordinate maps for the front and rear view,
respectively

3(c)), the focal loss [16] is used instead of the cross-entropy
loss because it balances the object classes better for small
objects. Using focal loss in training allows more objects to
be detected for multiple object segmentation, which helps a
lot since the training system tries to focus only on feature
maps, such as the CVM and 6D coordinate maps, if the
cross entropy loss is used.

lmask =
1

|M |
∑
p∈M
−αc(1− ŷp)γc log(ŷp), if yp = 1, (4)

where αc and γc are the hyper-parameters, and ŷp and yp
are the predicted semantic object masks and their ground
truth at p-th pixel, respectively.

3.2.3 Center Vector Maps

After semantic segmentation, only labels/ masks in each ob-
ject category can be identified, but the number of objects in
the same category is unknown. Center vector maps (CVM)
address this problem by calculating the distances between
all pixels and their corresponding object centers. This fea-
ture has only two components (horizontal and vertical), as
shown in Fig. 3(d). The third component of the color space
is 1. This feature is to allows pixels in each object category
to vote for the object centers to which they belong. This
is used to determine which pixels go with which objects.
There are two ways to generate the ground truth for train-
ing: using the direct vectors between all object pixels and
their corresponding centers and the vectors that are normal-
ized to the width and height of the image. The experiments
for this study use a direct vector technique because it can
be trained more easily and gives more accurate predictions.
The CVM loss function is written as Eq. 5:

lCVM =
1

|M |
∑
p∈M

|v̂p − vp|
2s

, (5)

where v̂p and vp are the predicted CVM and its ground truth
at p-th pixel, and s is a scale factor. Dividing by 2 means
that the CVM map has two components.

3.2.4 6D Coordinate Maps

The 6D coordinate map is extended from the original 3D
coordinate map [15, 18] by capturing another 3D coordi-
nate map in an opposite viewpoint relative to a symmetrical
plane. Fig. 4(a) shows the top view of the object CAD
model, as well as the two viewpoints (i.e., front and rear)
which are opposite and symmetrical to a plane constituted
by the two main eigenvectors of the object’s points clouds
distribution. This study uses both the front- and rear-view
features for training to impose more constraints on PnP
transform solving. The experiments show that 3D coordi-
nate maps give good performance but there are problems
with predictions along the depth direction. For training us-
ing only 3D coordinate maps, using the ground truth to de-
termine the object poses is 76% effective, which is much
lower than the ideal performance. However, if the predicted
erroneous depths are corrected by 1cm and all the other pre-
dicted parameter values are left the same, the accuracy with
which a 3D transformation is evaluated is increased to 94%.

This initial verification shows that the depth is a key el-
ement so other 3D coordinate maps from the object’s rear
view in the depth direction are used to restrict the 3D trans-
formation. The result for 6D coordinate maps is 98% with-
out any corrections. This shows that a rear-view indeed
improves the performance, similar to the conventional case
that multi-view RGB input provides more information than
a single RGB input. The same is true for the 6D coordinate
maps, which are a multi-view depth input.

In order to generate the 6D coordinate map ground truth
for training, a hidden point removal tool [28] is used to cap-
ture the point clouds in the front and rear views and these
3D coordinates are projected onto the same image plane and
used as the color attributes for the pixels on which they are
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Figure 4. 6D coordinate map: (a) The CAD model for the object
”cat”, viewed from the top, is observed from two points of view:
the front and the rear view, (b) two groups of point clouds are
captured from the front and rear view using hidden point removal
and (c) the two groups of point clouds are projected onto the same
image plane with the 3D coordinate color.

projected. Fig. 3(e)&(f) show the masked 3D coordinate
map for the front and rear view, respectively. This process
is shown in Fig. 4. To train a 6D coordinate feature, a
smooth-L1 loss function is used, as shown in Eq. 6:

mp = Sum
i=1∼6

(mi
p), m

i
p =


1

2σ
êip

2
, if |êip| < σ

|êip| −
σ

2
, otherwise

, (6)

where êip = ĉip − cip is the 6D coordinate error, ĉip and cip
are the predicted i-th channel of the 6D coordinate maps
and their ground truth at the p-th pixel and i-th channel, σ
is a threshold and Sum(.) is the summation operator along
all 6 channels in the 6D coordinate map. Therefore, the
6D coordinate loss is defined as Eq. 7, where division by
2 refers to the fact that two 3D coordinate maps must be
optimized.

l6D =
1

|M |
∑
p∈M

mp

2
, (7)

3.3. Non-Maximum Preservation

As long as all of the feature maps are predicted by the
network, they are combined to determine the instance 2D-
3D correspondences. Firstly, the error object mask and the
semantic object masks are merged to create a refined object
mask by binarizing the error mask with a threshold φe and
then applying pixel-wise multiplication. This refined object
mask filters out faulty pixels, which cause large errors in the
6D coordinate maps.

Secondly, the NMP which is similar to the traditional
non-maximum suppression (NMS) technique [21] is ap-
plied. First of all, CVM is initially used and combined with

Figure 5. The flowchart for non-maximum preservation.

the refined object masks to generate the voting hypothe-
ses for all instance objects. These voting hypotheses con-
tain 3 data (coordinates of the object center and its label)
and have less number than the pixels in the object masks.
From these voting hypotheses, the dominant detections are
then derived. This is an instance-center-voting procedure
that determines the dominant detections without the use
of the predicted confidences as the initial detections. The
non-maximum elements or voting hypotheses which sup-
port those dominant detections are preserved to construct
the 2D-3D correspondences for each instance object. This
voting process occurs in a highly dimensional matrix and is
executed in parallel so the system defines the 2D-3D corre-
spondences quickly and without running in loops. The final
step of NMP is to sample the supporting voting hypothe-
ses randomly using an amount that is related to the size of
the object masks. Sampling of the 2D-3D correspondences
also accelerates the process, without a significant decrease
in performance (see later experiments). The entire NMP al-
gorithm is summarized in the flowchart in Fig. 5 and further
detail about NMP is included in the supplementary material

3.4. 6DoF Pose Estimation

When the 2D-3D correspondences for each instance ob-
ject are randomly selected, PnP RANSAC is used to esti-
mate the 6DoF poses. This process is performed individu-
ally for each object but it is much quicker than NMP. Since
there will be a pair of 3D coordinates (from the front and
rear views) corresponding to each 2D object pixel, random-
ization of one of these (front-view or rear-view correspon-
dence) is conducted for generating PnP candidates. The ex-
periments for this study show that randomizing the PnP can-
didates gives better results than concatenation.

4. Experiment and Analysis
4.1. Experimental Details

All experiments used a platform of Core i9 CPU with
GeForce RTX 2080 Ti GPU in Ubuntu 18.04 environment.
The maximum processing speed for this method with an
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Metrics 2DPro ADD(S)

Methods
PoseCNN S-Driven PVNet S-Stage

Ours
PoseCNN S-Driven Pix2Pose PVNet S-Stage

Ours
[26] [10] [19] [9] [26] [10] [18] [19] [9]

ape 34.60 59.10 69.14 70.30 62.67 9.60 12.10 22.00 15.81 19.20 22.52
can 15.10 59.80 86.09 85.20 80.36 45.20 39.90 44.70 63.50 65.10 60.56
cat 10.40 46.90 65.12 67.20 54.98 0.90 8.20 22.70 16.68 18.90 21.20

driller 7.40 59.00 61.44 71.80 83.03 41.40 45.20 44.70 65.65 69.00 71.99
duck 31.80 42.60 73.06 63.60 67.35 19.60 17.20 15.00 25.24 25.30 27.52

eggbox 1.90 11.90 8.43 12.70 0.34 22.00 22.10 25.20 50.17 52.00 41.44
glue 13.80 16.50 55.37 56.50 58.99 38.50 35.80 32.40 49.62 51.40 56.20

hpuncher 23.10 63.60 69.84 71.00 77.24 22.10 36.00 49.50 39.67 45.60 46.28
Average 17.20 44.90 61.06 62.30 60.62 24.90 27.00 32.00 40.77 43.30 43.46

Table 1. The 2D projection error “2DPro” and the average 3D distance error “ADD(S)”, compared with other state-of-the-art methods for
the Occlusion LINEMOD dataset.

input image of 480×640 pixels and 7 different object cat-
egories is about 25 FPS (frames per second), which is an
average of 40ms per frame. Data loading requires 3ms, the
network inference requires 25ms and the remainder of the
time is required for post processing for all of the instance
objects.

The proposed system is trained using the Adam opti-
mizer with 140 epochs and a batch size of 6. The learning
rate is initially 0.001 and is reduced by half automatically
every 20 epochs. The error threshold for the computation
of error object mask is θe = 0.1 (Eq. 2) and for the training
of semantic segmentation, the hyper-parameters are αc = 1
and γc = 2 (Eq. 4) for all object categories. The scale factor
that is used in the CVM is s = 50 (Eq. 5) and for the 6D loss
function, σ = 0.1 (Eq. 6). The loss weights α, β, γ , and λ
(Eq. 1) are [1, 1, 1, 1]. The binarization threshold for the
error object mask (Section 3.3) is φe = 0.4.

4.2. Datasets

The datasets that are used for training come from the
Normal LINEMOD dataset [7] and the rendered dataset
[19]. The Normal LINEMOD dataset contains 15,783 im-
ages from 13 benchmark objects in lighting conditions that
are cluttered, texture-less and poor: each object category
accounts for about 1,200 images. Only 8 object categories
are used for training and testing and these are also included
in Occlusion LINEMOD [2]. Only 15% of the total images
for each object in the Normal LINEMOD dataset were used
for training, and the remaining 85% were used for testing.
The Occlusion LINEMOD was used for testing only [23].

The testing dataset contains 1,214 images that are
heavily occluded form all objects. The original Normal
LINEMOD dataset cannot be used directly because other
surrounding objects are not annotated so the target objects
are cropped and placed arbitrarily, but occluding each other,
in a cluttered background [5]. For the rendered dataset,
CAD are used models to generate synthetic data with differ-
ent backgrounds from PASCAL-VOC dataset [5]. There are

more than 20,000 training images: half from the real syn-
thetic dataset (real objects in a cluttered background) and
half from the rendered synthetic dataset (rendered objects in
clutter background). During training, the data is augmented
by cropping, shifting, rotating, coloring and resizing, in or-
der to avoid overfitting.

4.3. Evaluation Metrics

There are three evaluation metrics: the 2D projected er-
ror “2DPro” [3], the average distance error “ADD(S)” [26]
and the 5-centimeter 5-degree “5CMD” [20]. 2DPro mea-
sures the average pixel error between the projections of all
point clouds that are transformed using the estimated and
the target 6DoF poses. If the average error is less than 5
pixels, the estimated object pose is correct; otherwise, it is
pruned. ADD(S) measures the average 3D error between
the prior two sets of transformed point clouds, without pro-
jection. The correctness in terms of ADD(S) is determined
by counting the samples with errors that are less than 10%
of the target object’s diameter. For 5CMD, if the estimated
transformation error is less than 5 centimeters for the trans-
lation and less than 5 degrees for the rotation, the prediction
is correct; otherwise, it is discarded.

4.4. Results for Occlusion LINEMOD

The results in Table 1 show that the correctness score
does not outperform all of the state-of-the-art methods.
However, in terms of the processing speed, the results in
Table 3 show it to be the best method. Table 1 shows that
for in 2DPro metric, there is a really low score for ”eggbox”
because this object is symmetrical in shape and occluded
by other objects. To allow evaluation for symmetrical ob-
jects, the ADD(S) metric searches for the smallest error be-
tween the transformed point clouds for the estimation and
the ground truth. Ambiguity or confusion are features of
2DPro that reduce performance, since the appearances in
2D images might be similar even the poses in training and
testing are totally different. However, for the object ”glue”,
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Metrics 5CMD 2CMD 5CMD 10CMD

Methods
DeepIM PVNet

Ours
[13] [19]

ape 51.80 39.40 3.68 29.79 66.78
can 35.80 68.60 23.94 69.01 92.54
cat 12.80 20.90 1.60 15.88 42.82

driller 45.20 63.90 29.82 73.56 94.32
duck 22.50 15.60 3.01 21.15 57.96

eggbox 17.80 0.60 0.00 0.08 0.77
glue 42.70 19.80 3.46 32.51 67.93

hpuncher 18.80 47.70 11.55 56.32 90.29
Average 30.93 34.56 9.63 37.29 64.18

Table 2. The performance in terms of “5CMD” and other simi-
lar metrics, compared with other state-of-the-art methods for the
Occlusion LINEMOD dataset.

Metrics Time consumption (ms)
Methods [10] [18] [19] [9] Ours

Data loading - - 10.90 - 2.48
Net. inference 30.00 76.00 3.30 14.00 25.59

Post-processing 20.00 25.00 25.90 8.00 11.44
Total time 50.00 101.00 40.01 22.00 39.51

Object number 5 1 1 1 7

Table 3. Performance in terms of average time required, which
includes the time for data loading, network inference and post-
processing, using the LINEMOD dataset.

which is only locally symmetrical, the performance is ac-
ceptable. This shows that the proposed 6D coordinates fea-
ture partially eliminates ambiguity. Some examples of pre-
dictions of the output feature maps and 6DoF object poses
using the proposed method are included in the supplemen-
tary material.

Table 2 shows the performance for the proposed method
in terms of the 5CMD metric, compared with two state-
of-the-art methods. The performance for different criteria,
such as 2 centimeters 2 degrees (2CMD), and 10 centime-
ters 10 degrees (10CMD), are also shown.

In Table 3, there are three time curricula: the time of data
loading, the network inference and post-processing. The
proposed method requires the least time, with an average
of only 39ms for 7 objects in different categories. Most of
the other methods use less than 7 objects and require more
time.

4.5. Results for Synthetic LINEMOD

Table 4 shows the performance for testing the synthetic
LINEMOD datasets, which contain 3 different types of col-
lections that are generated from real images in the Normal
LINEMOD dataset and rendered images using LINEMOD
CAD models. The real test images contain 8 objects only
and 85% of the Normal LINEMOD, which are not used for
training. These are cropped and pasted arbitrarily on clut-

Figure 6. The speed plot for the proposed system (frame rate)
with respect to the number of duplicated objects in two synthetic
datasets.

tered backgrounds [5] with heavy occlusion. Objects in the
same category with different poses are also used, in order
to verify that the proposed system can estimate the instance
object poses in less time.

4,000 testing images are generated by randomly plac-
ing a maximum of three objects in the same category in
each RGB image. There are 13 objects with different poses.
This dataset is named, RealDup. The same process is used
for the rendered images with rendered objects and differ-
ent lighting conditions, and this is named, RenderDup. The
last test dataset does not include the duplicated objects, but
which has all object categories, is called, RenderSyn. The
number of detected objects is counted with reference to the
ground truth. This is named the detected objects “DO” met-
ric (measured as a percentage with respect to the number of
all ground truth objects).

The results in Table 4 show that the proposed system
does not detect all of the objects because small objects are
heavily occluded. Some objects, such as ”driller”, are de-
tected more than 100% because the semantic segmentation
is faulty. However, the system still performs well in terms
of speed, even if objects in the same category are dupli-
cated when the results for ”RenderDup” and ”RenderSyn”
are compared. For this synthetic dataset experiment, Ren-
derDup and RenderSyn are more general than RealDup so
the performance is degraded for rendered datasets.

Fig. 6 shows the frame rate for the proposed system with
respect to the number of duplicate objects. The datasets for
this experiment contain 200 images with 15 objects for each
frame and are randomly generated using duplicate objects
from 2 to 10. The plot shows that the frame rate slightly
decreases from about 23 FPS to 19 FPS as the number of
duplicated objects increases.

4.6. Ablation Study

In order to obtain the best performance for the proposed
method, some parameters must be tuned and strategies are
added. These strategies are simple but they save time and
stabilize the system. Table 5 shows the results for the abla-
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Datasets RealDup RenderDup RenderSyn
Metrics 2DPro ADD(S) 5CMD DO 2DPro ADD(S) 5CMD DO 2DPro ADD(S) 5CMD DO

ape 91.88 42.30 73.36 95.70 87.17 45.57 68.11 95.76 86.07 43.47 68.17 95.34
can 95.61 83.28 91.74 99.07 89.26 77.12 83.98 98.93 89.96 77.42 84.51 98.62
cat 93.04 65.33 80.62 96.83 86.73 61.08 72.23 96.69 86.59 61.53 72.70 96.14

driller 95.16 91.36 92.33 100.27 90.47 87.60 86.84 101.11 90.89 87.06 87.09 99.35
duck 92.18 52.98 79.36 96.92 87.06 53.31 74.03 96.34 87.62 51.31 72.95 96.72

eggbox 94.41 93.54 88.97 97.50 88.35 89.66 81.65 97.07 89.64 90.79 82.82 97.03
glue 93.02 86.19 77.19 96.79 86.39 82.59 70.85 96.09 85.53 82.73 70.31 95.48

hpuncher 93.36 72.00 86.74 97.69 89.12 67.24 81.90 98.35 89.31 67.24 82.51 97.74
Average 93.58 73.37 83.79 97.60 88.07 70.52 77.45 97.54 88.20 70.19 77.63 97.05

FPS 23.16 23.03 23.65

Table 4. Performance for “2DPro”, “ADD(S), “5CMD”, “DO” and “FPS” for the synthetic datasets: RealDup, RenderDup, and RenderSyn.
These are generated using the Normal LINEMOD dataset and rendered objects with heavy occlusion and cluttered backgrounds.

Metrics 2DPro ADD(S) 5CMD FPS DO
RR 60.62 43.46 37.29 25.31 89.94
FF 60.58 43.46 37.29 18.90 89.94
FR 60.60 43.28 37.20 22.12 89.94
RF 60.62 43.32 37.36 22.37 89.94

3DF 54.15 34.78 32.30 22.47 89.94
3DR 52.95 35.37 27.27 22.27 89.94

3DFGT 99.64 82.80 97.78 22.42 100
3DRGT 99.71 76.91 99.11 22.38 100
6DGT 99.99 98.33 99.95 17.89 100

Table 5. The ablation study for randomized 2D-3D correspon-
dences and PnP candidates for the Occlusion LINEMOD dataset,
and performance for the 3D/6D coordinates map ground truths.

tion study for the proposed method for randomly generated
voting hypotheses and PnP candidates.

In constructing 2D-3D correspondences for each in-
stance object, many candidates are derived using the pre-
dicted CVM and 6D coordinates map. These are either
fully or partially/randomly used. The disadvantage of fully
using these candidates is that much time is required. Par-
tial/random usage can reduce performance because impor-
tant information is lost. Solving the PnP involves a similar
issued because the 6D coordinates can be fully used or ran-
domly selected from the front-view 3D or the rear-view 3D
coordinates.

There are 4 combinations to generate the voting hy-
potheses and PnP candidates: random-random (RR), full-
full (FF), full-random (FR) and random-full (RF). These
are shown in Table 5. The performance for other varia-
tions, such as the front-view 3D coordinates map (3DF)
or the rear-view 3D coordinates map (3DR), is also shown.
The final study recovers and uses the ground truths for the
3D coordinates maps from the front and rear-view (3DFGT
and 3DRGT) and 6D coordinate maps (6DGT). The perfor-
mance for these is also shown.

The results in Table 5 show that RR outperforms the oth-

ers. 3DF and 3DR are given poorer results than 6D coordi-
nate maps in terms of all evaluation metrics. A comparison
of 6DGT with 3DFGT and 3DRGT also shows that 6DoF
pose estimation using 6D coordinates map is more accurate.
The ADD(S) scores for 3DFGT and 3DRGT are very differ-
ent because there is a blank projection (or, hole) when gen-
erating the ground truth for the 3D coordinates map using
the rear-view. The average DO is about 90%, which reduces
performance. More details are given in the supplementary
material.

5. Conclusion

This study proposes a novel methodology to estimate
multiple instance 6DoF object poses. The system is fast
enough for practical use. The proposed output feature
maps give good performance but the prediction for se-
mantic segmentation and 6D coordinates map requires
development. The results in Table 5 show that about 10%
of the total instance objects in the Occlusion LINEMOD
dataset are lost because they are small or heavily occluded.
To generate the 3D coordinates map from the rear view,
hidden point removal is used, but some small concavity
parts that are visible in the front view may be invisible
or have no information in the rear view. These are the
principal problems to be addressed in future studies. The
experiments should also use more challenging objects, such
as texture-less and fast moving objects.
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