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Abstract

Crane systems play a crucial role in container trans-
port logistics. This paper presents an approach for visually
tracking the position and orientation in 3D space of a con-
tainer crane spreader. An initial pose estimate is first em-
ployed to render a 3D triangle mesh model of the spreader
as a wireframe with hidden lines removed. The initial pose
is then refined so that the visible lines of the wireframe
match the straight line segments detected in an input image.
Line segment matching relies on fast, local one-dimensional
searches along a segment’s normal direction. Matched line
segments yield constraints on the spreader motion which
are processed with robust parameter estimation techniques
that safeguard against outliers stemming from mismatches.
The tracker automatically determines the visibility of seg-
ments, without making limiting assumptions regarding the
spreader’s 3D mesh model. It is also robust to parts of the
tracked spreader being out of view, occluded, shadowed or
simply undetected. Experimental results demonstrating the
tracker’s performance are additionally included.

1. Introduction
The practice of transporting raw materials and finished

products in containers of standardized dimensions has en-
abled the development of a global intermodal freight trans-
port system. This, in turn, has facilitated seamless and effi-
cient cargo movement over long distances, revolutionizing
international trade [25]. The ever-growing volume of con-
tainerized cargo demands its high-speed handling via cranes
at points where the mode of transport is switched, especially
ports [15]. However, this is at the cost of increasing the fa-
tigue and discomfort of crane operators over time, which
can ultimately jeopardise the safety of dock workers in the
vicinity of the crane [32]. According to [6], human factors
are the most common cause of accidents during loading and
unloading container operations.

*Also with the National Technical University of Athens, Greece.

Figure 1. A container hoisted by a spreader (yellow object, left)
and a spreader mesh model overlaid semi-transparently in cyan
with the pose estimated by the proposed method (right).

Containers are transferred to and from container ships
via cranes equipped with spreaders. A spreader is a me-
chanical device installed on a lifting machine that attaches
to containers via twistlocks at each of its four corners (cf.
Fig. 1). In this paper, we are concerned with the problem
of using a camera mounted on a container crane to track
the pose of its spreader. The primary motivation behind our
work is to enhance the safety of dock workers by prevent-
ing struck-by injuries induced by a container, the spreader
or a falling object. Using the estimated pose of the crane
spreader, an oriented bounding box defines a threat vol-
ume around it. The worker locations relative to the mov-
ing spreader are also continuously monitored. Determin-
ing whether safe clearance distances are maintained from
all workers amounts to estimating the distance to the threat
volume from the location of each worker. If the spreader
moves too close to a worker, posing an imminent threat to
his safety, alerts directed to both the particular worker and
the crane operator can be automatically triggered.

Apart from improving dock workers safety, spreader
tracking can provide input to anti-sway crane control sys-
tems [21, 23], thus increasing the container handling speed
while reducing the cognitive workload of the crane opera-
tor [12]. Note that while non-visual wireless technologies
for the positional tracking of containers do exist (e.g. [20]),
they only provide crude location positioning without ori-
entation information and have issues with their complexity,
coverage, accuracy, power consumption and cost.
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This paper describes a model-based, monocular tracking
technique that employs straight line segments to estimate
the 6D pose (i.e., 3D location and 3D orientation) of a crane
spreader. An overview of related approaches is provided in
Section 2. Section 3 presents some essential mathemati-
cal preliminaries. The proposed tracking algorithm is pre-
sented in Section 4 and evaluated in Section. 5. The paper
concludes in Section 6.

2. Previous Work
Image edges are defined by sharp changes in intensities,

which originate from discontinuities in surface orientation,
texture, depth or illumination. Artificial, man-made objects
often give rise to straight edges, known as straight line seg-
ments. Line segments can be accurately localized in images
at a reasonable computational cost. Furthermore, they are
moderately robust against noise, occlusions and illumina-
tion or viewpoint changes and are often defined for even
poorly textured objects, for which techniques such as [28]
that are based on local patch detectors and descriptors [39]
do not perform satisfactorily. Therefore, in certain settings
such as structured environments with weak texture, edges
and line segments are the preferred types of visual features.

Lowe [31, 30], for example, tracks an object by extract-
ing line segments from its image contours and fitting them
to a known object model. The RAPiD tracker proposed by
Harris [16] operates in the reverse direction by first project-
ing the model using an approximate pose and then match-
ing it with image edges. RAPiD relies on the assumption
that the difference between the actual pose and its predicted
estimate is small. Therefore, data association can be effi-
ciently established using 1D local search for an image edge
along the direction that is perpendicular to a predicted edge.
To keep the computational complexity low, perpendicular
matching is limited to a sparse set of predetermined control
points. Linearization about the current pose estimate allows
each pair of orthogonally matched points to yield a linear
constraint on the six parameters defining the incremental
change in object pose.

RAPiD was historically the first 3D tracker to success-
fully run at high frame rates on general purpose hardware.
Due to its efficiency, its paradigm of using a local search
around a prior pose has been retained in subsequent track-
ers. Despite its effectiveness, however, the basic RAPiD
algorithm lacks robustness to mismatches and occlusions
and requires that control points and their visibility are pro-
vided externally. Several authors have proposed improve-
ments to the basic RAPiD algorithm. Armstrong and Zis-
serman [3], for example, address robustness by grouping
control points using geometric primitives such as lines and
conics. RANSAC was also used to identify and discard in-
correct edge matches. Drummond and Cipolla [11] use a
Lie group formalism to represent the linearized relationship

between image motion and pose parameters. They define
control points on object lines, the visibility of which is de-
termined at runtime with binary space partition trees. Ro-
bustness is also attained by employing an M-estimator com-
puted with iteratively reweighted least squares (IRLS) [4] to
estimate the pose parameters. Comport et al. [10] treat pose
computation as the dual problem of 2D visual servoing and
track points normal to the projections of object lines. M-
estimation with IRLS is again used to ensure robustness.

Common in the works of [3, 11, 10] is their assumption
of simplified object models, whose modeled edges must all
give rise to visible image edges that are sampled for defin-
ing the control points. Thus, models suitable for tracking
must retain only the most prominent edges and should be
primarily comprised of line segments. Such requirements
are typically not met by CAD models represented by finely
tessellated polygonal 3D meshes, clearly limiting the flex-
ibility of the aforementioned tracking algorithms. To alle-
viate this, more recent approaches leverage the computing
capacity of modern GPUs in order to dynamically identify
the edges of a model that are visible from a particular view-
point. For example, Reinke et al. [35] propose a technique
for hidden line removal which relies on rendering a CAD
model to automatically extract visible edges that are used
for tracking. Additionally, they recommend a random dis-
tance sampling strategy for defining the control points on
visible edges. Likewise, Petit et al. [34] rely on rendering
an object model to determine edge visibility but avoid any
model line processing by extracting edges from disconti-
nuities of the rendered depth image. Lourakis and Zabu-
lis [29] also match depth and intensity edges and develop
a model-based tracker that can employ an arbitrary object
model. Compared to [29], in this work we substitute depth
edges with wireframe line segments, employ simpler depth
rendering and utilize a recent robust estimation formulation.
Wang et al. [41] use the consistency of edge directions to
validate the estimated pose.

A shortcoming of purely edge-based methods is that un-
related edges might locally appear very similar, thus give
rise to erroneous edge correspondences that can cause track-
ing to fail. To deal with this lack of distinctiveness, cer-
tain works suggest to maintain multiple pose hypotheses,
e.g. [22, 24, 38, 9]. For instance, [9] performs tracking
in a particle filtering framework, using chamfer match-
ing to form pose hypotheses and initialize particles that
are subsequently evolved with standard edge-based track-
ing. To further increase robustness and reduce drift, it has
also been proposed to combine edge and point features,
e.g. [40, 36, 8]. These techniques define keyframes, i.e. ref-
erence frames that are used for anchoring with the aid of
point features.

This work puts forward a RAPiD-like tracking algo-
rithm based on straight line segments that can accommodate
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any triangle mesh model without pre-processing or man-
ual intervention for determining the control points. This
is achieved by using the object model in combination with
rasterization rendering to produce a depth image and per-
form hidden line removal. Rendering automatically handles
self-occlusions, thus permitting control points to be defined
on visible wireframe segments. The 6D pose is estimated
by maintaining a single hypothesis which is evolved from
frame to frame using robust regression techniques. Our
primary contributions to the state of the art are that we i)
develop a tracking algorithm based on partially matching
image line segments to the unoccluded segments of a wire-
frame model and ii) demonstrate the good performance of
the graduated optimization approach [43] applied to the 6D
tracking problem. The following sections describe our ap-
proach in detail.

3. Mathematical Background
Let SE(3) denote the special Euclidean group comprised

of the six-parameter family of proper rotations and transla-
tions in the 3D Cartesian space. Assume an object coor-
dinate system with its axes aligned with those of the cam-
era coordinate system and its origin at T = (Tx, Ty, Tz) in
camera coordinates. A control point P = (Px, Py, Pz) in
object coordinates is expressed as M = T + P in camera
coordinates. Let m be this point’s normalized image projec-
tion.1 Assume now that a rigid motion θ = (∆R,∆t) ∈
SE(3) rotates the object by ∆R and translates it by ∆t.
With the previous definitions, the camera coordinates of the
control point are given by

M′ = ∆RP+T+∆t. (1)

Considering that motion θ is assumed infinitesimal, ∆R
can be approximated as I + Ω with I being the 3 × 3
identity matrix and Ω ≡ [ω]×, ω = (ωx, ωy, ωz)

T the
skew-symmetric matrix representing the vector cross prod-
uct. Then, point M′ from eq. (1) can be approximated as

M′ ≈ ΩP+M+∆t. (2)

After some algebraic manipulation, the right side of eq. (2)
is expanded as

M′ ≈

 ωyPz − ωzPy +Mx +∆tx
ωzPx − ωxPz +My +∆ty
ωxPy − ωyPx +Mz +∆tz

 , (3)

or, more concisely

M′ ≈

 Nx +Mx

Ny +My

Nz +Mz

 , (4)

1A normalized image projection refers to a projection on an ideal pin-
hole camera, i.e. if M = (X,Y, Z) then m = (X

Z
, Y
Z
). In other words,

the effects of the camera intrinsics K on the projection have been removed.

where  Nx

Ny

Nz

 ≡

 ∆tx + ωyPz − ωzPy

∆ty + ωzPx − ωxPz

∆tz + ωxPy − ωyPx

 . (5)

From eq. (4), the normalized projection m′ of M′ is

m′
x =

Mx +Nx

Mz +Nz
, m′

y =
My +Ny

Mz +Nz
.

Multiplying the numerators and denominators by Mz−Nz ,
expanding and ignoring second order terms, yields

m′
x = mx +

Nx −mxNz

Mz
, m′

y = my +
Ny −myNz

Mz
.

Substituting back the expressions for N. and M., the ele-
ments of m′ can be written as

m′
x = mx + 1

Tz+Pz
(∆tx + ωyPz − ωzPy −mx(∆tz + ωxPy − ωyPx))

m′
y = my +

1
Tz+Pz

(∆ty + ωzPx − ωxPz −my(∆tz + ωxPy − ωyPx))

or, in matrix form, as

m′ = m+ λAθ, (6)

with

λ = 1
Pz

2+Tz
2+2TzPz

,

θ = (ωx, ωy, ωz,∆tx,∆ty,∆tz)
T,

and

A =
(

−TxPy−PxPy TxPx+TzPz+Px
2+Pz

2 −PyTz−PyPz Tz+Pz 0 −Tx−Px

−TyPy−Py
2−Pz

2−TzPz TyPx+PxPy PxTz+PxPz 0 Tz+Pz −Ty−Py

)
.

Equation (6) expresses the relationship between the pre-
dicted projection m of a control point and its projection m′

in the next frame. It forms the basis for tracking, as will be
explained below.

With reference to Figure 2, let n be the unit vector per-
pendicular to the edge at a control point m that moves to
point m′. Owing to the well-known aperture problem [18],
the actual location of m′ cannot be determined from local
observations. However, the component d of the displace-
ment between points m and m′ along the direction that is
perpendicular to the edge can be approximated with the pro-
jection of m′ − m on n, i.e. nT(m′ − m). Obtaining the
difference m′ −m from eq. (6), this yields

λnTAθ = d. (7)

The above formula implies that every control point provides
one constraint on the motion θ, therefore six such points suf-
fice to estimate θ. For more than six available constraints,
the incremental pose update θ can be estimated from the
least squares minimization of the sum of squared residuals:

θ̂ = min
θ

∑
i

(λini
TAiθ − di)

2, (8)

where the index i has been introduced to delineate the quan-
tities pertaining to each control point.
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Figure 2. Illustration of perpendicular edge matching. m is the
predicted projection of a control point and m′ the projection of
this control point in the next frame. The edge through m′ is ap-
proximately parallel to that through m (solid and dashed lines,
respectively). The perpendicular displacement d is determined by
a linear search along the direction of vector n⃗.

4. Tracking Algorithm
4.1. Overview

The primary idea behind RAPiD-like tracking is that
the difference between the actual pose and its estimate is
small. This premise allows linearization of the pose estima-
tion and, combined with the knowledge of the object’s 3D
model, simplifies edge matching. Specifically, edge match-
ing involves the definition of a sparse set of so-called control
points on the tracked 3D object, which are likely to project
on high-contrast image edges. By measuring the perpendic-
ular component of the displacement of these control points
projections on the image plane, the 3D motion of the un-
derlying object between two consecutive frames can be es-
timated. Pose is then updated by combining its current esti-
mate with the incremental pose change between frames.

In the original formulation of RAPiD, the control points
were manually sampled offline along the edges of a 3D ob-
ject model and in areas of rapid albedo change. In our case,
they are generated dynamically by combining information
from straight line segments detected in the image and a
rendered wireframe model. This increases significantly the
applicability and flexibility of the developed tracking tech-
nique, as it does not impose any constraints on the form of
the employed 3D model and does not presume any sort of
manual preprocessing for the definition and visibility man-
agement of the control points.

4.2. Line Segment Detection

Image line segments are detected in this work with the
LSD detector [14]. LSD adopts the line segment search
heuristic of [7] which applies region growing to partition an
image into line support regions, approximates each such re-
gion with a rectangle and validates its meaningfulness using
the number of aligned orientations. The result is a line seg-
ment detector that yields subpixel accurate results in time
that is linear in the number of image pixels. LSD is used

to compute a binary image which classifies pixels as be-
longing to a straight line segment or not. This binary im-
age along with the orientation of the detected line segments
quantized in four bins form the basis for the perpendicular
points matching that is required for tracking.

4.3. Depth Rendering

Depth rendering generates an image whose pixel values
are camera depths rather than intensities. More specifically,
provided with a triangle mesh model of an object and a cam-
era pose, every pixel in the rendered depth image contains
the depth of the nearest point on the model’s surface that
projects on the pixel in question. Depth images are created
with the aid of rasterization rendering.

Rasterization is a technique that solves the visibility
problem, i.e. determines which parts of an object are vis-
ible to the camera. The reason for some parts of the object
to be hidden is because they are occluded by other object
parts. To solve for visibility, rasterization projects mesh tri-
angles onto the image by projecting their vertices. Then,
it determines all image pixels that are covered by the pro-
jected triangle and computes the depth of each such pixel.

We carry out this computation analytically in the follow-
ing manner. Let M = (X, Y, Z) be a 3D point on the mesh
triangle and AX + BY + CZ +D = 0 be the equation of
the 3D plane corresponding to this triangle. Dividing by Z
and solving the resulting equation for Z yields the depth as

Z = − D

Ax+By + C
, (9)

where (x, y) ≡ (X/Z, Y/Z) are the (normalized) pixel co-
ordinates of the projection of M on the image.

To deal with multiple triangles projecting on a pixel, the
Z-buffering algorithm is employed [2]. Z-buffering con-
sists in comparing the depths of a certain pixel computed
with eq. (9) for all triangles projecting on it and retaining
the smallest, as this corresponds to the closest (i.e., unoc-
cluded) triangle. Z-buffering is also employed to perform
hidden line removal. Unoccluded projected triangle edges
are specially marked, excluding edges that are shared by
two triangles with parallel normals.

4.4. Object Models

As explained in Section 4.3, a 3D mesh object model
is essential for depth rendering. A suitable mesh model
of the crane spreader was designed with the aid of CAD
software, using actual physical dimensions obtained from
engineering diagrams (see Fig. 3 right). The model has
medium-level detail and consists of 724 faces and 332 ver-
tices. More detailed models were avoided as they do not no-
ticeably improve the accuracy of tracking, while incurring a
larger computational cost to be rendered and requiring more
memory to be stored.
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4.5. Line Segment Matching

Starting with two binary line segment maps and their
corresponding quantized orientation maps, line segment
matching concerns the establishment of perpendicular cor-
respondences between line segment pixels. This is achieved
by examining each segment pixel in the source (i.e., ren-
dered) segment map and moving along the normal direction
in the target (i.e., intensity) map, until either a segment pixel
is found or a maximum distance from the starting pixel has
been traced (see also Fig. 2). To declare a partial match,
the segment pixel found in the target map has to have an
orientation compatible with that of the source pixel.

The search for a perpendicular match along the seg-
ment normal has linear rather than quadratic complexity,
this being a crucial enabling factor for real-time tracking.
The search for corresponding segment pixels has to be per-
formed in both orientations, as it is not possible to know
in advance which side of the source line segment the tar-
get one has moved. In the case that matching candidates
are found for both orientations, the one closest to the source
pixel is retained. In both cases, the visited target pixels are
determined with Bresenham’s line drawing algorithm which
involves integer coordinates only. A simpler, albeit less ac-
curate line segment matching strategy consists in searching
along the line defined by the orientation corresponding to
the center of the quantized orientation bin at the source pixel
rather than its true normal orientation.

4.6. Pose Update

Given a set of perpendicularly matched points in two line
segment maps, pose update aims at utilizing them to deter-
mine an estimate of the underlying pose change giving rise
to the two segment maps and then employing it to update the
current pose estimate in an incremental fashion. The change
in pose is determined in a robust regression framework, us-
ing all available segment matches as explained in the re-
mainder or this section. It is possible, however, to limit the
number of matches used by an upper threshold, so that this
computation has more predictable execution time/storage
requirements. This can be achieved by randomly selecting
and discarding a number of matches which are in excess of
the desired maximum.

The linearization about the current pose estimate detailed
in Section 3 yields one linear constraint in the six param-
eters defining the incremental change in object pose from
each pair of orthogonally matched points. Thus, a total
of six perpendicular matches along different directions is
in theory sufficient to yield a unique solution. In practice,
many more matches are established, thus the change in ob-
ject pose can be estimated analytically from all available
constraints in a least squares fashion (cf. eq. (8)). An im-
portant practical issue when estimating pose is that various
sources of error will cause certain perpendicular distances

to be erroneous, therefore giving rise to outlying constraints
with large residuals r(θ; λi,ni,Ai, di) = λini

TAiθ − di.
Due to its lack of robustness to outliers, linear least

squares is inadequate for estimating the pose update. In-
stead, the computation should be carried out using ro-
bust parameter estimation techniques [44, 33], which
allow problematic measurements to be identified and
discarded/down-weighted without corrupting the pose es-
timate. A very popular approach for achieving robustness
in regression problems is to employ M-estimators. The in-
sight driving them is to reduce the influence of outliers by
replacing the squared residuals with a function ρ(), i.e.

θ̂ = min
θ

∑
i

ρ(λini
TAiθ − di). (10)

The function ρ() (also referred to as cost function or kernel)
is symmetric and positive-definite with a unique minimum
at zero. It is also chosen to be increasing less steeply than
quadratically, thus down-weighting excessively large resid-
uals. Instead of directly solving the problem of eq. (10),
M-estimation is often dealt with computationally using the
iteratively reweighted least squares (IRLS) algorithm. IRLS
is an iterative technique for solving a generalized linear
problem. It uses an initial parameter estimate to calculate
the residuals and then uses the latter to define weights on
the constraints. These weights are then used to re-estimate
the parameters in a weighted least squares fashion, a new
residual vector is calculated from them and used to define
a new vector of weights and the process repeats until con-
vergence. By alternating between estimating the parameters
and the weights, IRLS can successfully solve eq. (10). Nev-
ertheless, M-estimators have the tendency of getting stuck
at poor local minima, hence require good initialization.

Apart from M-estimators, other popular choices for
robust regression are the Least Median of Squares
(LMedS) estimator [37] and Random Sample Consensus
(RANSAC) [13] and its variants. They all lack closed form
solutions and therefore must resort to stochastic techniques
for yielding a robust estimate. Despite differing in the de-
tails of how they score a candidate solution, they repetitively
sample random sets of constraints. Each sampled set is used
to compute an estimate of the parameters with least squares
and then this estimate is used to assess the quality of the fit
on all constraints. The best scoring estimate is retained and
used to identify the outliers. The final estimate is obtained
via least squares fitting on all inliers.

A common practical problem faced by all the aforemen-
tioned robust estimation techniques is that for them to be
successfully applied, certain key parameters (and in the case
of M-estimators, cost functions) must be carefully selected.
For instance, M-estimators require the scale of the residuals
to be defined and similarly RANSAC requires that the stan-
dard deviation of inlying residuals is externally provided.

2583



Figure 3. A single-lift crane spreader (left) and its 3D mesh model
(right). Note that the three moving gather guides (aka flippers) at
each end beam of the spreader have not been modeled.

Choosing appropriate parameter values is known as param-
eter tuning [1, 43] and has a profound effect on the perfor-
mance of robust estimation techniques.

In this work, robust parameter estimation is achieved
with the graduated non-convexity (GNC) approach of [43].
This is a general-purpose approach for robust estimation
that leverages the Black-Rangarajan duality [5] between
robust estimation and outlier processes, using graduated
optimization in conjunction with non-minimal solvers to
compute robust solutions. More specifically, a graduated
method optimizes a sequence of surrogate functions, which
starts from a convex approximation of the desired cost func-
tion, and gradually becomes non-convex as it converges to
the desired cost. According to the Black-Rangarajan du-
ality, the surrogate function is equivalent to the sum of
two terms, i.e. a weighted least squares and a function of
the weights called the outlier process. Thus, the surrogate
function is iteratively optimized by alternating between a
variable update and a weight update step, without the need
for an initial estimate. The variable update step solves the
weighted least squares problem using non-minimal solvers,
whereas the weight update step updates the outlier process
in closed form.

Our tracker employs the adaptation of the GNC approach
of [43] to the truncated least squares (TLS) cost given by

ρ(r) =

{
r2 if r2 ≤ c2,
c2 otherwise

(11)

In the above equation, c is a truncation constant that is set
to 5e-03 in our implementation. The combination of GNC
with eq. (11) gives rise to GNC-TLS which starts with a
convex surrogate that is adjusted until the original cost is re-
covered. The non-minimal solver required at each variable
update step is simply the weighted least squares extension
of eq. (8).

5. Experiments

This section provides representative experimental results
for the performance of a purely CPU C implementation of

the developed tracker. The input data used in these ex-
periments consist of image sequences that depict a crane
spreader during normal loading / unloading operations. The
sequences were acquired with a GigE camera installed next
to the operator’s cabin of a mobile quay crane at a height
of approximately 20 meters, offering a view similar to that
of the crane operator. The camera is equipped with a fairly
wide-angle lens (f=4.5 mm) and images have a resolution of
1928 ×1448 pixels. The tracked spreader measures around
12.2 m (40 ft) along its longest dimension and is suspended
with wire ropes from the crane boom at locations several (or
even tens of) meters away from the employed camera.

To collect ground truth data for measuring the per-
formance of the developed tracker, the following semi-
automatic procedure was developed. The spreader’s pose
in a certain image frame can be estimated by first de-
lineating in that image a few characteristic lines whose
preimages in the spreader’s mesh model are easily identifi-
able. Then, a preliminary estimate of the spreader’s pose is
computed from these lines with a perspective-n-line (PnL)
solver [42] embedded in RANSAC [13] for filtering out the
outliers. Finally, the preliminary estimate is refined using
the Levenberg-Marquardt (L-M) non-linear least squares al-
gorithm [26] to minimize the reprojection error between ac-
tual image line segments and their locations predicted with
the pose estimate [19].

To obtain the spreader’s pose for an entire video se-
quence, the aforementioned PnL-based approach was used
with the first frame to compute a pose for bootstrapping the
tracker. Then, the pose was tracked until the model of the
spreader superimposed on images with the estimated pose
began to visually deviate from its true image (cf. Fig. 1).
At the underlying frame, the pose was estimated interac-
tively with PnL and L-M, the tracker was re-initialized with
it and the process was repeated as many times as necessary
for the remaining frames. In this manner, the pose was esti-
mated interactively at certain intermediate keyframes (typ-
ically up to a handful for each sequence) and then propa-
gated by frame-to-frame tracking between them. For video
segments where the spreader is attached to a container, the
tracker used a combined spreader + container 3D model so
as to also include in tracking the contour segments of the
container. This results in more accurate tracking since the
combined “object” being tracked has a larger apparent size
and gives rise to additional line segments.

To quantify the difference between the true and an esti-
mated pose, we used the average distance for distinguish-
able (ADD) objects, proposed in [17]. This is an error met-
ric that represents the average distance between correspond-
ing mesh model vertices transformed by the ground truth
and the estimated pose. In other words, it amounts to the
average misalignment between the model’s vertices in the
true and estimated pose. In mathematical terms, for the true
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Figure 4. Per frame pose tracking alignment errors for 4 sequences.

pose {Rg, tg}, an estimate {Re, te} and N mesh model
vertices xi, the alignment error is defined as

E =
1

N

∑N

i=1
∥(Rgxi + tg)− (Rexi + te)∥, (12)

where vertical bars denote the vector norm.
Figure 4 illustrates the tracking alignment errors ob-

tained using eq. (12) to compare the poses estimated with
the proposed tracker for four sequences against the respec-
tive ground truths. It is clear from the graphs that the error
is always less than 2.5 m and around 0.5 m on average. The
spreader’s pose can be transformed to a ground coordinate
system by georeferencing the employed camera [27].

Having applied the proposed tracker to several image se-
quences, we have empirically verified that it generally per-
forms satisfactorily. We observed that tracking is primarily
challenged by large changes in the appearance and appar-
ent size of the spreader. Another issue relates to rapid mo-
tions and crane vibrations as well as dropped image frames
due to high network or host CPU latencies which can create
jumps in an image sequence that hinder the establishment
of matches. Tracking performance is less susceptible to
predicaments such as low resolution, illumination changes,
shadows, overexposure and partial occlusions. Running
time depends on the size of images and the apparent size
of the tracked spreader in them and is between 3 to 8 fps.

A final issue regards discrepancies between the spreader
model and the real world. For instance, in order to handle
unevenly loaded containers, the pyramid-shaped tower as-
sembly on top of the spreader allows the operator to slide
it for adjusting the gravity lifting point by up to 1.2 me-
ters in both directions. Such an adjustment, however, repre-
sents an additional degree of freedom that is not accounted
for by the tracker, and manifests itself as a misalignment of
the tower assembly with respect to the rest of the spreader
body. Another discrepancy relates to the two pairs of tele-
scopic beams at the ends of the spreader. Depending on the
load being lifted, these beams might deform due to bending
stress, hence no longer give rise to perfectly straight im-
age edges. Clearly, such discrepancies are more eminent at
shorter camera–spreader distances.

6. Conclusion
Accurate localization of a moving container crane

spreader can facilitate the improvement of dock workers
safety and the control of the crane, ultimately contributing
to the reduction of the cognitive load for the crane operator.
This work has suggested an approach for close-range 6D
tracking that relies on image line segments. A model-based
tracker has been presented which does not call for any pre-
processing of the 3D spreader model and makes no assump-
tions about its nature. The tracker can cope with common
tracking deficiencies, such as parts of the tracked object be-
ing out of view, occluded or completely undetected. The
tracking accuracy has been evaluated with the aid of im-
age sequences with approximate ground truth poses and has
been shown to be adequate for its intended use.
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