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Abstract

We tackle two practical problems in robotic scene un-
derstanding. First, the computational requirements of cur-
rent semantic segmentation algorithms are prohibitive for
typical robots. Second, the viewpoints of ground robots are
quite different from the typical human viewpoints of training
datasets which may lead to misclassified objects from robot
viewpoints. We present a system for sharing and reusing 3D
semantic information between multiple agents with different
viewpoints. We first co-localize all agents in the same coor-
dinate system. Next, we create a 3D dense semantic model
of the space from human viewpoints close to real time. Fi-
nally, by re-rendering the model’s semantic labels (and/or
depth maps) from the ground robots’ own estimated view-
points and sharing them over the network, we can give 3D
semantic understanding to simpler agents. We evaluate the
reconstruction quality and show how tiny robots can reuse
knowledge about the space collected by more capable peers.

1. Introduction

Autonomous vehicles and robots are becoming ubiqui-
tous in industrial applications and they can be expected to
appear in our future homes and cities too. In order to im-
prove their navigation capabilities and to collaborate with
humans, robots need to well understand their spatial envi-
ronment, a feature often referred to as spatial artificial in-
telligence (AI). Spatial AI can be divided into four distinct
but interdependent layers: spatial perception, pose track-
ing, geometry understanding, and semantic understanding,
which all can benefit from prior models of the world. Se-
mantic 3D reconstruction focuses on capturing the shape
and appearance of the physical space with both scene geom-
etry and semantic classes. It has been a very active research
area in the recent decade, because an accurate 3D map of the
environment is a necessary component in industrial collabo-
ration tasks, augmented reality, home robotics, autonomous
driving, to name only a few application domains.

(a) Human perspective (b) Robot perspective

Figure 1: The accuracy of semantic segmentation drops
when applied on image perspectives different from the ones
in the typical human-view training sets. Segmentation mod-
els have difficulties recognizing objects from the bottom
view of ground robots. Instead, we provide our robots with
synthetic semantic labels rendered remotely from an exist-
ing or live reconstructed model of the space.

Of particular interest are methods that enable robots to
map a previously unknown environment using their own
sensors. The geometric reconstructions can be created
sparsely with LiDAR sensors or densely with RGB or
RGBD cameras. The semantic class labels are usually es-
timated from 2D RBG(D) images which are then back-
projected onto the reconstructed geometry. Two significant
practical problems in robotic semantic 3D reconstruction
are the computational constraints of robotic platforms and
the different view perspectives of the common robots. Hu-
mans see objects from the top while ground robots see ev-
erything from the bottom. It is a common challenge in im-
age segmentation that the available training datasets (e.g.,
[37, 24, 5, 14, 15]) are annotated from human perspectives,
and models generalize poorly to different perspectives. We
illustrate in Figure 1 that the segmentation accuracy drops
significantly with the change of perspective.

In this paper, we propose a system for multiple cam-
era agents to share 3D metric-semantic information among
each other. We first co-localize agents in the 3D space, then
create a 3D metric-semantic map of the scene in close to real
time. Finally, we generate synthetic semantic and/or depth
images and deliver them to resource-constrained agents that
would otherwise not be able to reach all levels of spatial AI
on their own.
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More specifically, we adapt an existing semantic recon-
struction pipeline [32] to multiple agents, extend it with
more precise localization and mapping, multiple seman-
tic segmentation approaches, arbitrary number of classes,
a map manager, and a new rendering component. One can
run the reconstruction on resourceful agents, on a dedicated
PC, or even on a cloud service, preferably using human
viewpoint inputs that are ideal for existing semantic seg-
mentation methods. One can store the accumulated metric-
semantic knowledge about the space on a map manager in-
stance. By re-rendering images of the reconstructed seman-
tic model from the viewpoints of agents, we can provide the
less capable agents with synthesized scene labels. We show
in a number of synthetic and real experiments that our sys-
tem can accurately reconstruct a 3D semantic model of a
space and that smaller agents can effectively gain semantic
information from the reconstructed model and can also de-
tect changes in the environment. We release the source code
of the reconstruction pipeline1 for the research community.

2. Related Work

We are interested in a modular system which allows us
to easily replace components and to combine existing so-
lutions with our own contributions. We review the related
literature corresponding to our modules of spatial AI.

2.1. Pose tracking

Assuming suitable sensors and basic spatial perception,
the next layer of spatial AI is pose tracking. The goal here
is to track the movement of robots robustly and accurately
in a wide variety of different scenarios. In most cases, one
needs to make compromises to find the most suitable track-
ing sensor and tracking method. In outdoor applications and
changing weather conditions, the optimal choice is usually
LiDAR-based sensor fusion, while for indoor environments
(as in our case) visual SLAM and visual-inertial SLAM ap-
proaches based on sparse feature maps are preferred. The
most popular approach for indoor sparse visual SLAM are
the ORB-SLAM methods [22, 21, 3] being able to maintain
real-time performance and robust tracking.

Another important design choice is the scale of the scene
we aim to track the robot movement, for example BAD-
SLAM [35] is able to jointly track the pose and also recon-
struct the scene with high fidelity, but does not scale well
to larger building-size environments. BundleFusion [6] is
also a popular approach to track an RGBD sensor, but as
it jointly reconstructs a dense model of the scene, it is not
compatible with our modular architecture design and is also
hardly able to optimize scenes of larger scale.

1https://github.com/RozDavid/semantic mapping

2.2. 3D Reconstruction

In 3D reconstruction, one can distinguish real-time re-
construction methods and offline optimization methods. Of-
fline 3D reconstruction methods are optimizing for a large
unordered set of stereo images of the same scene, and
minimizing the back-projection error by finding match-
ing features among different view perspectives such as the
works [1, 34] or multiple commercial products like Pix4D,
AliceVision or RealityCapture. We are instead focusing
on real-time reconstruction and sharing over the network,
so that we are not dependent on prior reconstruction but
can immediately share partially reconstructed areas with all
agents within the space.

Real-time 3D reconstruction algorithms represent and
store the model as either sparse point clouds, or in case of
dense models either as surfels [35, 40] or as a structured grid
of truncated signed distance field (TSDF) volume. To over-
come the biggest challenge of the memory representation
of large TSDF volumes, there exist many octree-like solu-
tions such as the work of Reichl et al. [30] who store voxels
in a binary grid or the work of Funk et al. [7] who repre-
sent the free space in a logarithmic grid instead to be di-
rectly used in path planning applications. Another solution
for more efficient free-space representation is called voxel-
hashing introduced in [28]. This representation is also used
in the Voxblox [29] algorithm. The Kimera [32] method
also utilizes Voxblox and is designed to maintain good per-
formance with bounded computational power and highly ef-
ficient memory allocation.

There is also an emerging trend to represent a scene
by neural network weights in so called neural radiance
fields [18, 16] learnt from posed monocular RGB or RGBD
images [2], but today these methods are too slow to build
and even slower to render. Additionally, there are promis-
ing recent works [23, 39] that project CNN feature maps
from posed monocular images from 2D to 3D to reconstruct
a consistent sparse TSDF map close to real time, but as for
other learning-based approaches, generalization to arbitrary
scenes is still a challenge.

2.3. Semantic Segmentation

There are two families of approaches that segment the
surrounding 3D geometry semantically either using com-
plete 3D reconstructions as inputs [11] or projecting labels
from 2D image segmentation [19] onto the 3D model.

While taking 3D geometry as input for inferring the se-
mantics of objects in the space is certainly beneficial, and
with learning common object shapes it is possible to in-
fer even occluded regions or even to complete partial re-
constructions, the biggest problem in these kind of meth-
ods is the lack of training sets with diverse sets of objects.
Most benchmarks consist of the same few object classes and
could easily overfit for certain types of objects shapes.
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The other family of approaches extract labels from 2D
views and project pixel-level predictions onto the 3D model
such as in SemanticFusion [17] and also Kimera [32]. An-
notated 2D image datasets of large scale are already avail-
able such as ImageNet [14] or CoCo [15] and it significantly
easier to create new datasets for custom classes for new ap-
plications. This is the reason why we chose a 2D to 3D seg-
mentation approach and project the labels onto the recon-
structed mesh. Furthermore, in this case we can keep the
reconstruction module and semantic segmentation module
independent. With the 2D-to-3D approach, we are able to
use off-the-shelf semantic segmentation networks [10, 36]
that are easier to train for specific environments and where
2D segmentation datasets are widely available.

2.4. Semantic Label Transfer

Further related work include image recognition [8] and
AR rendering [13] with edge cloud support. There is a nat-
ural tradeoff between accuracy and latency in systems that
balance between device-based recognition (lower accuracy,
little delay) and edge service-based recognition (high accu-
racy, large delay). However, none of these works address
pixel-wise and 3D segmentation and the problem of low
viewpoints.

While 2D-3D semantic information transfer is widely
used, there exists only few works on pixel-level annota-
tion of input images through 3D-2D semantic label trans-
fer. The work of Xie et al. [41] uses a semi-supervised
method where the authors first coarsely annotate a struc-
ture from motion (SfM) reconstruction of outdoor scenes
and project labels onto camera images. Similarly, the Scan-
Net [5] dataset annotation images were created with human-
annotated reconstructed scenes and back-projection of the
information onto known camera poses. A similar tool by
Nguyen et al. [27] was proposed to help 3D annotation in
a self-supervised way, by a prior graph-based segmentation
network post-pocessed by human annotators. As the virtual
camera poses for the rendered semantic images cannot be
precisely aligned with the real camera images, the authors
use a Canny edge-detection based alignment to finalize the
projection of the labels.

While these ideas are similar to ours in theory of 3D-
to-2D semantic information transfer, our work is different
because the robots are able to access semantic information
without the need for on-board segmentation and even with-
out the need for mounting specific visual sensors. Instead,
our agents rely on another, more capable peer that performs
3D semantic reconstruction simultaneously.

3. Method
We propose a system that allows not only fast metric-

semantic reconstruction of the scene, but also sharing infor-
mation between multiple camera agents.

As the 3D reconstruction research advances quickly and
the state of the art for various components in spatial AI
is exceeded frequently, it is beneficial to focus on modu-
lar architectures instead of end-to-end solutions. By using
a modular pipeline architecture, one could easily replace
and improve certain components depending on the direct
use case, conditions of the environment, and the available
sensor setup. Additionally, when the architecture is modu-
lar and communication-oriented, we are able to outsource
certain components to remote computers in the network or
even to cloud services.

Our modular architecture was inspired by and is based
on the Kimera [32] pipeline, which we modified and ex-
tended in many components for more robustness and more
versatile usage. The proposed modules of the reconstruc-
tion pipeline can be seen in Figure 2. We implemented all
modules within the Robot Operating System (ROS) frame-
work that supports different programming languages, and
communication between processes (called nodes in ROS) is
managed by a network orchestrator. With ROS, it is possi-
ble to combine measurements from multiple robots into the
same system, and reconstruct the scene in real time from
various sources. Depending on hardware constraints, it is
a design choice which modules we execute onboard and
which are outsourced, in our case to a desktop PC.

A map manager component (on the PC) helps to bring
multiple cameras into the same global coordinate system,
and can share sparse maps and dense point clouds between
participating agents. While the agents estimate their own
pose from own (monocular, stereo, or RBGD) camera in-
put and share it on the network, a map renderer component
can synthesize semantic labels (or even depth maps) of the
model from the agents’ viewpoints. In the following, we
introduce all modules in more detail and our own contribu-
tions for a robust and device/sensor-invariant setup.

3.1. Pose Tracking

In the original Kimera [32] work, the visual-inertial
odometry (VIO) module utilizes inertial measurements that
help to track the pose in structure-less areas. However, there
is still significant pose drift which hinders the creation of
accurate 3D models and ultimately results in false render-
ings for other peers in our system. Therefore, we replaced
Kimera-VIO with a modified version of the state-of-the-art,
vision-only UcoSLAM [20] method, which is a reimple-
mentation of ORB-SLAM2 [21] extended with of ArUco
[31] landmarks and several other improvements for better
runtime performance. The main improvements include the
way the algorithm tracks frame-to-frame the detected ORB
features before projecting them back to the 3D space and
a very efficient implementation of ORB feature matching
during relocalization.

We extended UcoSLAM with a ROS wrapper and modi-
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Figure 2: Our proposed reconstruction pipeline follows a modular design where individual components are easily swappable
with newer ones for improvements and experimentation. Some components can be outsourced from less powerful agents.

fied it to be able to share the sparse SLAM maps with other
agents for co-localization in the same physical space. To
allow agents to localize in a SLAM map created by a dif-
ferent sensor setup (RGB, RGBD, stereo) and camera type
(RealSense, Zed, Kinect), we feed input images into the
SLAM framework with unified camera parameters both for
the mapping phase and later for localization in the same co-
ordinate system. By having unified camera parameters for
all agents, it is possible to map the world with any of our
cameras and to localize a different one later.

3.2. Semantic Segmentation

We can take any 2D semantic segmentation method that
predicts pixel-wise semantic class labels for the input RGB
or RGBD frame and register the segmentation masks on the
input depth channel of our depth sensor. One should keep
in mind two important aspects when choosing the segmen-
tation method: computational complexity and segmentation
accuracy. In our implementation, we tested for both aspects
and integrated two state-of-the-art works for the different
use cases. For fast inference and on-board calculation, we
include the ESANet [36] model that takes aligned pairs
of depth and color images as inputs. For higher accuracy
but computationally more expensive segmentation, we out-
source the task to remote a computer running MaskRCNN
model with ResNet101 Feature Pyramid Network back-
bone. Both models were trained on the SUNRGBD [37]
which contains annotated indoor scenes and hence suitable
for our robotic reconstruction use case.

3.3. 3D Reconstruction

In the reconstruction module, we first generate a textured
or semantically labelled point cloud per frame by projecting
depth values of the image with known camera model and
known pose to the 3D space. We integrate these per-frame
point clouds into a TSDF volume and use a slightly modi-
fied version of the Kimera-Semantics [32] module that itself
is based on the Voxblox [29] algorithm.

A common strategy to integrate new scans into TSDF is
to cast a ray from the sensor origin to every point in the
point cloud and update the surface distance along the ray.
Over the casting process, every voxel crossed by the ray is
updated with a weighting function. In the earlier Kinect-

Fusion [25] method, the weights were determined by the
angle between the ray and the sensor origin of the surface
normal at that point, or a constant weight of one was used
for millimeter-size resolutions. The difference in Voxblox,
and consequently in our work, are the more general equa-
tions for updating voxel weights that can be formulated as

  \label {eqn:weight_updates} \begin {split} d(\mathbf {x,p,s}) & = || \mathbf {p - x} || sign\big ((\mathbf p-x) \cdot (\mathbf {p - s})\big ) \\ w_{const}(\mathbf {x,p}) & = 1 \\ D_{i+1}(\mathbf {x,p}) & = \frac {W_i(\mathbf {x})D_i(\mathbf {x}) + w(\mathbf {x,p})d(\mathbf {x,p})}{W_i(\mathbf {x}) + w(\mathbf {x,p})} \\ W_{i+1}(\mathbf {x,p}) & = min(W_i(\mathbf {x}) + w(\mathbf {x,p}), W_{max}). \end {split}   

   


 


 

 

   

(1)

where the existing distance and weight values are D and
W , new values from point observations are the lowercase d
and w, where d is the distance to the surface boundary and
not the sensor-voxel distance. Given x voxel centroid posi-
tion, p is the projected point position from the depth sensor
measurement, and s is the sensor position in the scene.

The weighting model in Equation 1 is further improved
in the work of Nguyen et al. [26] proving that if z is the
depth of the camera measurement at the pixel value, the
variance of the depth noise σ of a given ray varies predom-
inantly with z2 especially for structured light sensors. Fol-
lowing this, a simplified equation for estimating the mea-
surement and behind-surface drop-off weight becomes

  \label {eq:voxblox_weights} w_{quad}(\mathbf {x, p}) = \begin {cases} \frac {1}{z^2} & -\epsilon < d \\ \frac {1}{z^2}\frac {1}{\delta - \epsilon }(d+ \delta ) & -\delta < d <-\epsilon \\ 0 & d < -\delta .\\ \end {cases} 



  




      

  

(2)

Here, after empirical tests, we chose the truncation dis-
tance δ = 4v and ϵ = v, where v is the voxel size.
During the merging phase of the measurements, a so-
called grouped raycasting approach is used, where the
points of the measurement are projected into the voxel grid
and grouped with the other points mapping to the same
voxel. For dense measurements and large voxels, this in-
creases performance without losing accuracy by calculating
a weighted mean of points first and only casting the ray over
the whole volume once. Since all measurements are taken
into account, the noise is still reduced by the mean of mul-
tiple measurements, but shown to be almost exponentially
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(a) Classroom (b) Office scene (c) Living room (d) Classroom (e) Office scene (f) Living room

Figure 3: Colored and semantic reconstruction results in three real scenes with different lighting conditions.

faster for dense RGB-D sensors and small indoor environ-
ments (depending on voxel sizes).

Until this point, our volume reconstruction is practically
the same as the Voxblox approach, but instead of color val-
ues, one can also fuse semantic class labels into the voxel
grid. We take the pixel-wise 2D semantic segmentations
of each frame (produced by the segmentation module) and
a pixel-wise semantic color that is included in the bundled
raycasting to build an observed label frequency vector that
can be propagated for all voxels along the bundled ray. Sim-
ilar to other TSDF approaches, the updates are truncated be-
hind the mesh surfaces for lower memory requirements and
increased integration speed.

A Bayesian update rule is used for every voxel to de-
termine posterior probabilities given all previous measure-
ments. Every voxel is initialized with a uniform probability
vector P ∈ Rn, with values li ∈ L, li = log(1/n). Here
n is the number of L labels in the used 2D semantic seg-
mentation network. Voxel probabilities are updated itera-
tively along a ray It at timestep t that was projected by the
registered semantic image and depth camera model. The
posterior probability is calculated by

  \label {eq:probability_update} P(l_i, \mathcal {I}_1, \dots ,k) = Z P(l_i, \mathcal {I}_1, \dots ,k-1)P(\mathcal {O_b} = l_i, \mathcal {I}_k)                     
(3)

where P (li, I1, . . . , k) is the probability for all labels and
k measurements in voxels individually, O⌊ = li is the
bundled prediction frequency vector for every measurement
and Z is the normalizing likelihood parameter for measure-
ment updates. Equation 3 was formulated as a combination
of Kimera and SemanticFusion [17] ideas, as the original
Kimera implementation was prepared for storing voxel se-
mantics, but only with ground-truth labels and fixed size.
With our modification, we can use any kind of segmenta-
tion module for segmentation masks, but still robustly re-
construct the volume with high confidence semantics.

Finally, a triangle mesh is extracted using the marching
cubes algorithm, an example colored and semantic meshes
of indoor scenes can be seen in Figure 3.

3.4. Point Cloud Filtering

In practice, the detection of low confidence or even false
measurements is essential to successfully avoid reconstruc-
tions artifacts. In our 3D semantic reconstruction pipeline,
we deal with three different error sources while integrating
individual depth maps into the TSDF volume.

The first possible source of error stems from perception,
where the pixel depth confidence calculated by stereo cor-
respondence search is low. We ignore low-confidence val-
ues, because having noisy measurements in the map in low-
textured areas results in low-quality reconstructions. Such
pixel-wise confidence maps are automatically created with
the score of a window-based stereo matching algorithm, for
example in the Zed or Kinect SDKs.

The second source of error are dynamic objects in the
assumed static scene. If we mask image areas where the
segmentation module predicts dynamic objects such as hu-
mans, cars, or other robots, we are able to produce better
reconstructions, where the artifacts of moving objects do
not appear in the final model.

The third source of error is at pose estimation, espe-
cially pose drift and false relocalization. In real scenarios
of larger areas, objects such as furniture are often moved,
and the patterns on walls, floor or ceiling might be repeti-
tive. Any of these can lead to false data associations in any
visual SLAM method. To overcome the problem of local-
ization with only sparse landmarks of the latest input im-
age, one might use the whole reconstructed model in mem-
ory and jointly optimize pose and reconstruction, such as in
the work BundleFusion [6]. Alternatively, to keep the mod-
ular approach and detach motion from the reconstruction,
we use a motion model for detecting discontinuities in the
camera trajectory. The proposed model validates the calcu-
lated pose with the smoothness of the predicted trajectory
and stops point cloud integration when false data associa-
tion could introduce artifacts in the reconstructed map. We
check for both translational and rotational discontinuities of
the camera pose. Whenever a discontinuity in the pose or
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its first derivative is detected, the reconstruction is paused
until stable relocalization happens.

3.5. Object Instance Segmentation

For many AR or robotics tasks, having only a class-level
semantic reconstruction of the scene is not enough, we need
to know the pose and extent of individual objects. Such
instance-level representation leads us to a higher level of
understanding of the scene. A similar work to our recon-
struction pipeline, Voxblox++ [9] detects instances of se-
mantic objects directly from the prediction of a 2D instance
segmentation network instead of a 2D semantic segmenta-
tion network.

We believe that extracting object instances in 3D is more
robust than in 2D, because we can easier associate points
belonging to the same instance and we can even extract
objects whose class is unknown based purely on their ge-
ometry. Our proposed solution takes the surface point
cloud of the 3D reconstruction, and clusters different ob-
jects together based on their spatial extent. We first filter
possible cluster candidates with the difference of normals
(DoN) [12] algorithm, and then extract the object instances
and corresponding point cloud clusters with Euclidean clus-
tering on the filtered cloud. Figure 4 illustrates how well
the proposed instance segmentation module can identify ob-
jects in the reconstructed scene.

Figure 4: Instance-level bounding boxes extracted from the
metric-semantic model (a scene from Habitat).

3.6. Semantic Label Transfer

When another agent localizes in the same SLAM map
in which the model was made, it is possible to render se-
mantic masks from the model to the new agent’s view. The
agents perform localization on their own, then request for
semantics with their latest pose. The semantics can be gen-
erated continuously or on demand. While not implemented,
agents could also request only bounding boxes of specific
types of objects. The maps and the models are maintained
by a simple map manager component.

To render segmentation labels remotely for arbitrary im-
age perspectives, a simple model renderer based on PyRen-
der is continuously running in the network. It can load
a (partial) semantic mesh even during reconstruction and
render masks with flat colors representing the semantic

classes. Example rendered labels are shown in Figure 5
from human perspective, while transferred labels for low-
perspective camera in Figure 9.

Note that given the camera model, one can generate se-
mantic masks for any type of camera, and in fact if an agent
is able to accurately localize itself by any other means (e.g.,
2D LiDAR), it can still receive semantic information about
its surroundings even without having its own camera. Sim-
ilarly, we can also render depth maps from the model for
agents without a depth sensor. Furthermore, our method can
not only transfer semantic information to arbitrary image
perspectives, but it also opens the way to generate pseudo-
ground truth datasets for training object recognizers that
need to deal with unusual viewpoints.

(a) Source Mesh (b) Input Depth (c) Input Color

(d) Rendered Labels (e) Rendered Depth (f) Overlayed labels

Figure 5: Top row: inputs; Bottom row: outputs of the label
rendering module. We can generate semantic labels for ar-
bitrary image perspectives and deliver them to agents when
on-board image segmentation is not possible.

4. Experiments

We first evaluate our pipeline for robustness and preci-
sion in real scenes for a variety of possible environments
qualitatively and in simulated environments quantitatively.
Our agents are portable computers (laptops, Intel NUCs)
with cameras (Intel Realsense, Microsoft Kinect, Stereolabs
Zed mini, etc.) either handheld or mounted on Hercules or
OpenBot robot bases.

Qualitative results in real scenes We demonstrated the
quality of the semantic reconstruction pipeline in Figure 3,
where three different scenes were scanned with a Kinect
for Azure camera in real-time and later used as the source
mesh for semantic label transfer. We show the quality of
the reconstruction in the function of voxel size in Figure 6,
where the trade-off between runtime performance for online
applications and preserving details for object surfaces has to
be balanced. We can see that while much more details are
preserved with smaller voxel sizes, the quality is bounded
by the sensor (in this case a Kinect for Azure) precision.
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(a) v = 20cm (b) v = 5cm (c) v = 1cm

Figure 6: Reconstruction quality depending on voxel size.

Runtime measurements We did the corresponding run-
time analysis for the computationally expensive steps of the
pipeline. The memory and computation time requirements
increase exponentially with the voxel size for integrating
new point clouds, TSDF layer size and mesh extracting with
the marching cubes algorithm. Other components such as
point cloud generation or preprocessing cloud filtering re-
main independent from resolution. We empirically found
the optimal balance between quality and performance at
2 cm voxel size, where a full integration step takes 170ms
of computation time on a laptop computer.

Quantitative results in synthetic scenes For quantita-
tive evaluation, we use the Habitat [33] simulator with the
Replica [38] dataset which contains photo-realistic repre-
sentations of real scenes. It provides the highest geomet-
ric, texture, and semantic resolution among all datasets we
know, yet still includes some noise from reconstruction er-
rors. A screenshot of the simulator output can be seen in
Figure 7. We tested our method’s geometric and semantic
accuracy, while also evaluating the robustness of the motion
model for trajectory consistency.

Figure 7: Example synthetic sensor input to our pipeline
generated by the Habitat simulator and a Replica scene.

For geometric accuracy of the reconstruction, we com-
pared the resulting mesh to the ground truth model for ev-
ery extracted surface voxel in Table 1. Here we included a
synthetic noise model [4] to evaluate our pipeline with more
realistic commodity RGBD camera models. For comparing
the reconstruction results with the ground truth model we
run a variety of parameter combinations regarding the voxel
resolution, input image resolution and simulated noise vol-
ume in both semantic- and textured-mesh modes. From
these experiments, a few are shown in Table 1, where (1)
shows the geometric accuracy with clean data and 2 cm
voxel size, (2) shows 10 cm voxel resolution with 10x Red-

Nr. Mean
[m]

Std
[m]

TSDF size
[MB] Error Heatmap

1 0.024 0.0790 197.8

2 0.0613 0.0573 8.5

3 0.1056 0.1830 641.7

4 0.2952 0.5637 698.8

Table 1: Reconstruction errors on a synthetic Habitat scene
with varying depth noise level. Green symbolizes low,
while red represents high reconstruction errors. The color
code is not the same across measurements, but within the
single reconstruction.

wood noise model [4] for simulated noise distribution, (3)
shows a reconstruction with similar noise, but 2 cm voxel
size. The smaller error for larger voxel size for such noise
distribution can be explained by the nature of the TSDF grid
representation. Finally, (4) shows reconstructed scene with-
out prior SLAM map and significant pose drift occurs dur-
ing the reconstruction process.

For evaluating the semantic accuracy of our proposed
pipeline, we compare the reconstructed meshes with the
ground truth for the closest voxel pair in Table 2. The
rendered instance segmentation image has to be changed
to class segmentation, where the classes are matched to
the same color codes as in the previous implementation of
SUNRGBD dataset with the Mask R-CNN model.

We illustrate the robustness of the localization node with
our motion filtering component in Figure 8. It is able to
localize in a rearranged room and reconstruct it again. We
also showcase the possibility to detect and highlight furni-
ture layout changes by simply comparing reconstructions of
the same scene at different times.

We can conclude that our pipeline is able to reconstruct
the scene robustly and accurately in close to real time, while
keeping a modular approach so that we can outsource cer-
tain tasks to a remote PC.
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Class Name Precision Recall F1-Score
ceiling 22.8% 98.1% 0.371
chair 95.1% 68.3% 0.758
floor 93.6% 86.4% 0.899
furniture 35.5% 74.4 % 0.481
objects 19.3% 68.7 % 0.301
picture 2.7% 17.2% 0.047
sofa 61.2% 67.2% 0.640
table 31.7% 55.0% 0.402
wall 97.0% 40.3% 0.570
window 12.2% 72.3% 0.208

Table 2: Metrics evaluating the voxel-level predicted class
labels compared to the ground truth labels.

(a) FRL apartment 1 (b) FRL apartment 3

(c) No pose filtering (d) Change detection

Figure 8: Reconstructing the apartment when only a SLAM
map and mesh from a previous furniture layout is avail-
able. (a)-(b) show previous and current furniture layouts.
(c) shows the erroneous result when our pose filtering was
off. (d) We can detect changes in the layout by comparing
reconstructions at different times.

Object instance segmentation Figure 4 visualizes the
output of our instance segmentation node, which generates
instance-level bounding boxes for the class-based represen-
tation of a semantic mesh. The input mesh for the segmen-
tation node was provided by the experiments conducted in
the Habitat simulator with added synthetic noise.

Semantic label transfer After prior reconstruction from
the human perspective, we can render semantic (and/or
depth) images for arbitrary other perspectives and camera
models. Figures 5 and 9 show transferred semantics and
depth to the view of another agent with a different cam-
era. The model was created by a Kinect for Azure RGBD
camera, and in this example we localized a Zed mini stereo
camera (the depth from stereo is not used). We see that the
overlaid semantic labels match the image content to a large
extent. For illustration, we also transferred the depth frames

(a) Label Transfer (b) Depth Transfer

(c) Label Transfer (d) Depth Transfer

Figure 9: Transferring semantics and depth from a model
(same as Figure 3 (b)) generated with an RGBD camera to
an agent localized with a stereo camera.

to the new viewpoint and we see that the objects are clearly
recognizable. Most importantly, our depth transfer would
allow depth perception even for a monocular agent.

5. Conclusions
We presented a modular pipeline for accurate semantic

3D reconstruction of indoor scenes with one or more agents.
We also proposed an instance segmentation module that ex-
tracts object bounding boxes from semantic 3D maps. We
showed how previous reconstructions of a scene can provide
semantic information for robots who are unable to run on-
board segmentation, who lack necessary sensors, or in cases
where training data from the robot’s viewpoint is not avail-
able. Our pipeline was tested in real scenes for qualitative
and in photo-realistic simulated environments for quantita-
tive evaluation. We showed that reconstruction is possible
even in real time with detailed geometry and sufficiently ac-
curate semantics.

We note that the same principles could apply to smart-
phone, smartglasses, and other agents too. The system
would enable advanced semantic clues not only for sim-
pler robots with monocular grayscale cameras, but even for
’blind’ robots that navigate in the space with LiDAR or by
other means once the coordinate systems are aligned, which
is an interesting avenue for future work.
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