
A Dual-stream Framework for 3D Mask Face Presentation Attack Detection

Shen Chen1*, Taiping Yao1*, Keyue Zhang1, Yang Chen1, Ke Sun1,2

Shouhong Ding1†, Jilin Li1, Feiyue Huang1, Rongrong Ji2

1 YouTu Lab, Tencent 2 Media Analytics and Computing Lab, Xiamen University
{kobeschen, taipingyao, zkyezhang, wizyangchen, ericshding, jerolinli, garyhuang}@tencent.com

skjack@stu.xmu.edu.cn, rrji@xmu.edu.cn

Abstract

Face presentation attack detection (PAD) plays a vital
role in face recognition systems. Many previous face anti-
spoofing methods mainly focus on the 2D face representa-
tion attacks, which however, suffer from great performance
degradation when facing high-fidelity 3D mask attacks. To
address this issue, we propose a novel dual-stream frame-
work consisting of the vanilla convolution stream and the
central difference convolution stream. These two streams
complement each other and learn more comprehensive fea-
tures for 3D mask attacks detection. Moreover, we extend
3D PAD to a multi-classification task that contains real
face, plaster attack and transparent attack, and utilize vari-
ous data augmentations and label smoothing techniques to
improve the generalizability on unseen attacks. The pro-
posed method achieved the second place in the Chalearn
3D High-Fidelity Mask Face Presentation Attack Detection
Challenge@ICCV2021 with a score of 3.15 (ACER).

1. Introduction

Face recognition technologies [41, 11, 17] have been
widely used in personal verification and identification due
to their convenience and remarkable accuracy. Despite the
recent noticeable advances, the security of face recogni-
tion systems (FRS) is still vulnerable to presentation attacks
(PA) [63, 25, 29]. An impostor can fool the FRS simply by
presenting a face artifact, which is also known as a presen-
tation attack instrument [45].

Based on the way of generating face artifacts, face pre-
sentation attacks can be divided into 2D attacks (e.g., print
attacks [63] or video replay [9]) and 3D attacks (e.g., by
wearing a mask [35]). Existing research on FRS has paid
more attention to 2D attacks due to its simplicity, efficiency,
and low cost. However, as material science and 3D printing
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• We propose a novel Contrastive Context-aware Learn-
ing (CCL) framework to efficiently leverage rich and
fine-grained context between live and mask faces for
discriminative feature representation.

• Extensive experiments conducted on the HiFiMask
and three other public 3D mask datasets demonstrate
the challenges of HiFiMask and the effectiveness of
the proposed method.

2. Related Work
2.1. 3D Mask Datasets

Recently, several 3D mask face PAD datasets have
been released. As listed in Tab. 1, 3DMAD [39] is
the first publicly available 3D mask dataset, which con-
sists of 255 videos from 17 subjects, and the masks
are made of paper and hard resin. Subsequent datasets
3DFS-DB [11], HKBU-MARs V2 [31], and BRSU
Skin/Face/Spoof (briefly named BRSU) [42] improve pre-
vious drawbacks in terms of acquisition devices, mask
types, and lighting environment. The recent CASIA-SURF
3DMask [47] has a large number of videos under various
lighting conditions using various recording sensors. Still, it
has a limited number of subjects and mask types. Besides
common RGB modality, several multi-modal mask datasets
such as MLFP [1], ERPA [3], and WMCA [14] extend the
study from visible light to near-infrared and thermal spec-
trums.

Overall, there are three main limitations of existing 3D
mask datasets: 1) a limited number of samples, resulting in
potential overfitting; 2) lack of clear attribute information
(e.g., skin tone and lighting) for evaluating the impact of
external factors; and 3) the masks are not realistic enough
in terms of color texture and structure, and they are recorded
under stable lighting conditions.

2.2. Face PAD Approaches based on 3D Mask

Compared with 2D presentation attacks, 3D mask at-
tacks are more realistic to live faces in terms of depth shape
and color texture. There are few works to exploit fine-
grained features for discrimination. Jia et al. [22] designed
a two-stream network based on factorized bilinear coding of
multiple color channels, targeting learning subtle, detailed
cues. Yu et al. [47] searched the well-suited central dif-
ference architectures with intrinsic feature representation.
George et al. [14] proposed a multi-channel CNN, which
aggregated the features among RGB, depth, infrared, and
thermal modalities for robust mask PAD.

On the temporal side, several rPPG-based methods [28,
32, 33, 29, 34] are proposed according to the evidence that
periodic rPPG pulse cues could be recovered from the live
faces but noisy for the mask attacks. Li et al. [28] was the
first to leverage the facial rPPG signals’ frequency statistics

iPhone11

E

Normal

White

iPhoneX

H+S

Dim

Green

MI10

W+G

Bright

Three-color

S20

H

Side

Shadow

P40

W

Back

Sunshine

Vivo

B

Top

Motion

Li
ve

R
es
in

Tr
an
sp
ar
en
t

Pl
as
te
r

Ye
llo
w

W
hi
te

Bl
ac
k

Figure 2. Samples from the HiFiMask dataset. The first row shows
6 kinds of imaging sensors. The second row shows 6 kinds of ap-
pendages, among which E, H, S, W, G, and B are the abbreviations
of Empty, Hat, Sunglasses, Wig, Glasses, and messy Background,
respectively. The third row shows 6 kinds of illuminations, and the
fourth row represents 6 deployment scenarios.

for mask attacks detection. Liu et al. [32, 33, 34] combined
both local rPPG signals and global background noises to
learn consistent rPPG features for 3D mask PAD.

As for metric learning-based PAD approaches, con-
trastive loss [16] and triplet loss [27, 43] are utilized to
widen the distance between the live faces and PAs. Re-
cently, contrastive learning [17, 6, 15, 7] achieved outstand-
ing performance in self-supervised generic object classifi-
cation. In [23], supervised contrastive learning is proposed
for boosting performance upon using basic cross-entropy
loss. Despite with similar design philosophy, the proposed
CCL is different from [23] in both data pair generation and
dropout regularization steps.

The approaches as mentioned above might be unreliable
under the following situations: 1) high-fidelity mask attack
with realistic appearance; 2) dynamic light flashing to dis-
turb rPPG recovery; 3) metric learning-based constraints
obtain unsatisfactory performance in PAD tasks; and 4)
existing self-supervised or supervised contrastive learning
approaches are not suitable for fine-grained binary classi-
fication task like 3D mask PAD. To tackle these issues,
we propose a contrastive context-aware learning frame-
work to explicitly mine the discriminative features among
bonafide/mask appearance and complex scenarios.

3. HiFiMask Dataset
Given the shortcomings of the current mask datasets,

we carefully designed and collected a High-Fidelity Mask
dataset (briefly named HiFiMask), which provides 5 main
advantages over previous existing datasets. Advantage 1:
To the best of our knowledge, HiFiMask is currently the
largest 3D face mask PAD dataset, which contains 54, 600
videos captured from 75 subjects of three skin tones, in-
cluding 25 subjects in yellow, white, and black, respec-
tively. Advantage 2: HiFiMask provides 3 high-fidelity

Figure 1. The samples from the HiFiMask dataset [26].

technology advance, creating face-like 3D structures or ma-
terials has become easier and more affordable. Compared
with traditional 2D attacks, 3D face masks are more realistic
in terms of color, texture, and geometry structure, making
them more challenging to be detected. In Figure 1, we show
some samples from the recently released large-scale High-
Fidelity Mask dataset [26], including resin, transparent, and
plaster 3D attacks.

The vulnerability of current FRS to realistic face presen-
tation attacks has facilitated a series of studies [54, 55, 57]
on 3D face presentation attack detection (PAD). Early meth-
ods tried to explore the difference between real face skin
and 3D fake face materials based on the reflectance prop-
erties [46], texture analysis [29] or shape descriptors [52].
They have achieved considerable performance on several
coarse 3D face masks datasets [28, 33, 16], but are not ro-
bust to the high-fidelity mask attacks [26]. Some recent
studies [3, 43, 27] utilized deep features for 3D PAD and
achieved promising detection performance. However, these
methods suffer from performance degradation in the face of
unseen 3D attacks. In this paper, inspired by the lightweight
network ResNet9 [10], we develop an efficient dual-stream
framework that includes a vanilla convolution branch and
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a central difference convolution (CDC) [59] branch. CDC
has been proven in previous work [59] to effectively capture
the intrinsic detailed patterns. Combined with the vanilla
convolution, it can further promote the distinction between
real skin and high-fidelity 3D masks. Unlike most methods
that treat PAD as a binary classification task, we extend it to
a multi-classification task, i.e., distinguishing between real
face and each material type of attack. Through multi-class
learning, our method learns the nature of attacks and has
a stronger discriminative ability. We also utilize extensive
data augmentations and label smoothing technique [47] dur-
ing training to further improve generalizability on unseen
attacks. As a result, our method achieves a score of 3.15
(ACER) in the Chalearn 3D High-Fidelity Mask Face Pre-
sentation Attack Detection Challenge@ICCV20211, which
is ranked second place over all teams.

In summary, our main contribution is three-fold:
• We propose a novel dual-stream framework that com-

bines vanilla convolutional stream and central difference
convolutional stream, which can complement each other to
detect high-fidelity 3D mask attacks.

• We address the 3D face presentation attacks detection
task via multi-class learning and use extensive data augmen-
tations and label smoothing techniques to improve the gen-
eralizability on unseen attacks.

• Our method achieved the second place in the Chalearn
3D High-Fidelity Mask Face Presentation Attack Detection
Challenge@ICCV2021 with a score of 3.15 (ACER).

2. Related work
In recent decades, PAD technologies [56, 58, 57, 61, 31]

developed rapidly, which could be categorized into two
stages. Initially, some researchers utilized traditional hand-
crafted features, such as LBP [5], SIFT [37], HOG [22], to
extract the related information from the facial images, then
trained a classifier to distinguish the fake and real faces.
However, such methods didn’t work very well because of
the limited representation abilities. To solve this limitation,
deep learning was introduced into PAD. The work in [14]
trained CNNs to learn a binary classifier, which was eas-
ily overfitting on specfic attacks. Some auxiliary informa-
tion [60, 51, 62, 7] was introduced to regularize the feature
spaces, such as depth map, reflection map, rPPG signals.
Besides, some works [40, 39, 8, 30] adopted domain gen-
eralization or meta-learning further to improve the general-
ization.

However, the performance of the above methods may de-
grade encountering the 3D attacks, since they mainly fo-
cus on 2D attacks and detection of 3D fake faces is more
challenging than detecting fake faces with 2D planar sur-
faces. To specifically defend such 3D attacks, earlier stud-

1https://competitions.codalab.org/competitions/30910

ies [19, 53, 46] extracted the reflectance difference between
real face skin and mask material. Texture-based meth-
ods explore the texture pattern difference of real faces and
masks with the help of texture feature descriptors, such as
the widely used LBP [35, 13] and Haralick features [2].
Shape-based 3D mask PAD methods use shape descrip-
tors [23, 49, 18] or 3D reconstruction [52] to extract dis-
criminative features from faces and 3D masks. Different
from reflectance-based or texture-based detection methods,
these schemes only require standard color images with-
out the need for special sensors. However, their detection
performances rely on the quality of 3D mask attacks, and
may not be robust to super realistic 3D face presentation
attacks. Instead of extracting hand-crafted features, deep-
feature based methods automatically extract features from
face images. Two deep representation approaches were in-
vestigated in [34] for spoofing detection in different bio-
metric modalities. Image quality cues (Shearlet) and motion
cues (dense optical flow) were fused in [15] using a hierar-
chical neural network for mask spoofing detection. A net-
work based on transfer learning using a pre-trained VGG-
16 model architecture is presented in [32] to recognize the
photo, video, and 3D mask attacks. Based on the observa-
tion of the importance of dynamic facial texture informa-
tion, a deep convolutional neural network-based approach
was developed in [43, 44].

Despite these advances in 3D face anti-spoofing, there
are limitations in each category of detection methods. For
example, the main limitation of reflectance-based methods
is the requirement of special and expensive devices to ac-
quire multispectral images at varying wavelengths. Al-
though the texture and shape-based methods are easy-to-
implement, their robustness to different mask spoofing at-
tacks needs further investigation. Deep-feature based ap-
proaches are generally sensitive to dataset sizes and lack
transparency. In addition, most of them still suffer from
performance degradation when applied to databases with
more realistic face spoofing attacks. Differently, in this pa-
per, we combine vanilla convolution and central difference
convolution to construct a more robust representation and
use techniques such as multi-class learning the improve the
generalizability on unseen attacks.

3. Method
In this section, we first present the data preprocess-

ing for the HIFIMask dataset used in Chalearn 3D High-
Fidelity Mask Face Presentation Attack Detection Chal-
lenge@ICCV2021 [26], including four strategies: face de-
tection, noise removal, black edge removal and data aug-
mentations. Then we introduce a dual-stream network that
combines a vanilla convolution branch and a central dif-
ferential convolution branch. Next, we describe the loss
function used in our method, namely multi-class loss, multi-
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Figure 2. Three typical bad images in the HIFIMask dataset.

head loss and label smoothing. Finally, we introduce post-
processing to minimize the distribution gap between vali-
dation and test sets, called logits temperature scaling. The
entire framework of our method is illustrated in Figure 4.

3.1. Data Preprocessing

Although the HIFIMask dataset has provided face crops
detected by Dlib [20], there are still some problems with
these images. Figure 2 summarizes three typical bad images
in the HIFIMask dataset, i.e., small face, noise images and
black edge. In this work, we propose several strategies to
solve the above problems by using a high-precision face de-
tector, noise removal and black edge removal, respectively.
Face Detection. Dual Shot Face Detector (DSFD) [24] is a
one-stage efficient face detector that achieves state-of-the-
art on several benchmarks. To this end, we use DSFD to
detect faces in the HIFIMask dataset and enlarge the face
box by 1.5 times to include more face information.
Noise Removal. We calculate the face confidences for the
HIFIMask dataset via DSFD, where we observe that some
images have small face confidence, even close to 0. There-
fore, we remove all the images with face confidence less
than 0.9 in the train set to avoid the interference caused by
noises.
Black Edge Removal. We design a simple but effective
black edge removal algorithm to delete the black edge re-
gion of the image. In particular, we first convert the input
image x to a gray map xgray, then find all pixels with value
0 to obtain a binary map xbinary. Subsequently, we scan
xbinary from four directions to find the black edge. During
the scanning process, if the average pixel value of a row (or
column) is larger than a predefined threshold t1 (set as 0.9
in our work), the row (or column) is considered as a black
border, otherwise, the scanning will stop; if the number of
black borders is less than a predefined threshold t2 (set to
5 in our work), we treat it as a normal image. When the
scanning process is finished, we obtain a box [a1, a2, b1, b2]
to remove the black edge of the image.
Data Augmentations. During training, we use extensive

origin random rotate cutout color jitter

gaussian noise motion blur grid shuffle random brightness

Figure 3. The examples of augmented images.

data augmentations, as follows: random rotate, cutout [12],
color jitter, gaussian noise, motion blur, grid shuffle, ran-
dom brightness contrast, etc. All the above augmentations
are implemented through the albumentations [6] library.
Figure 3 presents some examples of augmented faces, and
most of them are visually difficult to recognize and closer
to real-world scenarios.

3.2. Network Architecture

In this paper, we use the lightweight network
ResNet9 [10] as the backbone and combine vanilla con-
volution and central difference convolution (CDC) [59] to
develop a dual-stream network that can better discover the
intrinsic patterns in high-fidelity 3D mask attacks.
ResNet9. As stated in [10], ResNet9 is a lightweight
network which has only nine layers, and uses a smooth
CELU [4] instead of ReLU [1] as the activation function for
better optimization. In addition, the pooling layer is placed
behind the convolution operation, which can effectively re-
duce the inference time.
Vanilla Convolution. As 2D spatial convolution is the ba-
sic operation in CNN for vision tasks, here we denote it as
vanilla convolution and review it shortly first. There are two
main steps in the 2D convolution: 1) sampling local recep-
tive field region R over the input feature map x; 2) aggrega-
tion of sampled values via weighted summation. Hence, the
output feature map f can be formulated as:

f (p0) =
∑
pn∈R

w (pn) · x (p0 + pn) (1)

where p0 denotes current location on both input and out-
put feature maps while pn enumerates the locations in R.
For instance, the local receptive field region for convolu-
tion operation with 3 × 3 kernel and dilation 1 is R =
(−1,−1), (−1, 0), · · · , (0, 1), (1, 1)}.
Central Difference Convolution. As stated in previous
work [59], the intensity-level semantic information and
gradient-level detailed message are both crucial for distin-
guishing the living and spoofing faces. The central differ-
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Figure 4. The framework of our proposed method. We use the lightweight network ResNet9 [10] as the backbone, and combine vanilla
convolution and central difference convolution (CDC) [59] to develop a dual-stream network that can better discover the intrinsic patterns
in high-fidelity 3D mask attacks.

ence convolution (CDC) [59] enhances the representation
and generalization capacity of the network. Similarly, cen-
tral difference convolution also consists of two steps, i.e.,
sampling and aggregation. The sampling step is similar to
that in vanilla convolution while the aggregation step is dif-
ferent, central difference convolution prefers to aggregate
the center-oriented gradient of sampled values. Eq. 1 be-
comes:

f (p0) =
∑
pn∈R

w (pn) · (x (p0 + pn)− x (p0)) . (2)

When pn = (0, 0), the gradient value always equals to zero
with respect to the central location p0 itself.
Dual-stream Network. Based on the above-mentioned
vanilla convolution and CDC, we develop a novel dual-
stream network, in which both branches use ResNet9 as
the backbone, except that one branch uses vanilla convo-
lution and the other branch uses CDC. we concatenate the
extracted features extracted from both branches for classifi-
cation. Furthermore, we inserted an auxiliary classifier be-
hind each branch to enhance the learning of intensity-level
information and gradient-level information.

3.3. Loss Function

Real-world 3D face presentation attacks vary in terms of
materials and generation. Instead of binary classification,
we utilize multi-class loss with multi-head loss, which is
adjusted via label smoothing for better generalizability.
Label Smoothing. To address the overfitting problem on
known attacks, we used the widely used label smooth-
ing [47] regularization in the loss function with a smoothing
parameter of 0.1. This technique significantly improves the
generalizability in the phase-2 of the competition.
Multi-class Loss. Different from previous work that treats
3D PAD as a binary classification task, we extend it to

a multi-classification task, i.e., distinguishing between the
real face and each type of attack. Since the train set of HIFI-
Mask dataset contains only two types of attacks, i.e., plas-
ter and transparent attacks, we decide to adopt three-class
learning, which is formulated as follows:

L = −
C∑
i=1

pi log (yi) + (1− pi) log (1− yi) , (3)

where C is the number of classes, and yi ∈ {0, 1}C denotes
the one-hot encoding of ground-truth label. We set the label
of real face, resin attack, and transparent attack to 0, 1, 2, re-
spectively. During testing, we use the predicted probability
p0 of the real face as the final prediction result.
Multi-head Loss. Since our framework predicts three dif-
ferent values based on features from CNN branch, CDC
branch, and concatenated branch separately, so three losses
LCNN , LCDC , and Lconcat are calculated following Eq. 3.
Then the overall loss function for the whole training process
is formulated as:

Lall = Lconcat + λ1LCNN + λ2LCDC , (4)

where λ1 and λ2 are the weights for balanceing the loss.

3.4. Logits Temperature Scaling

To minimize the distribution gap between validation and
test sets, we use the logits temperature scaling technique as
the post-processing step to calibrate the output distribution.
In specific, we add all logits from each attack type to form
one uniformed attack logits value. Then we divide the real
logits by a factor of 3.6 and the attack logits by a factor of
5.0 before the softmax operation. As shown in Figure 5,
temperature scaling softens the distribution on the test set
and makes it more even-distributed, which results in better
generalization.
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Figure 5. The test set real score distribution curve. Left: Origi-
nal. Right: After logits temperature scaling.

4. Experiments
In this section, we describe the dataset setup, evaluation

metrics, and implementation details. And we analyze in de-
tail the performance of our method on the validation set and
test set of the HIFIMask dataset [59].

4.1. HIFIMask Dataset

The High-Fidelity Mask dataset, namely CASIA-SURF
HiFiMask (briefly HiFiMask), is currently the largest 3D
face mask PAD dataset, which contains 54600 videos cap-
tured from 75 subjects of three skin tones. This dataset pro-
vides 3 high-fidelity masks with the same identity, which
are made of transparent, plaster and resin materials, respec-
tively. Besides, six complex scenes and different lighting
directions are considered to simulate the real-world scenar-
ios. Based on the HIFIMask dataset, the Chalearn 3D High-
Fidelity Mask Face Presentation Attack Detection Chal-
lenge@ICCV2021 was launched. In this challenge, the HI-
FIMask dataset is separated into train set, validation set,
and test set, which have 33767, 4645, and 173620 images,
respectively. These images are sampled at an equal inter-
val from the corresponding video, and the complex back-
grounds are removed from the original images except face
areas through Dlib. It is worth noting that the train set and
validation set contain the same type of 3D attacks, while the
test set includes the challenging unseen attacks. Therefore,
generalizability is crucial in practical applications.

In the experiments, we use the HIFIMask dataset to train
and evaluate models. For the train set, we remove the noisy
images with low face confidence and the black edge of im-
age. For the validation and test sets, we only use the high-
precision DSFD for face cropping but do not remove the
noise and black edge. The above strategy ensures the diver-
sity of train set while improving the accuracy of test set.

4.2. Evaluation Metrics
Following the HIFIMask dataset, we selected the At-

tack Presentation Classification Error Rate (APCER), Bona
Fide Presentation Classification Error Rate (BPCER), and
Average Classification Error Rate (ACER) as the evalu-
ation metric. APCER and BPCER are used to measure

Table 1. Performance on the phase-2 of Chalearn 3D High-Fidelity
Mask Face Presentation Attack Detection Challenge.

Team APCER BPCER ACER Rank
VisionLabs 3.777 2.330 3.053 1

Ours 1.858 4.452 3.155 2
CLFM 3.708 2.722 3.215 3

oldiron666 4.944 2.653 3.798 4
Reconova Lab 2.126 6.367 4.247 5

Table 2. Ablation Study on the validation set of HIFIMask dataset.

Model APCER BPCER ACER
CNN Branch 0.604 1.482 1.043
CDC Branch 0.885 1.019 0.952

Concatenate Branch 0.833 0.885 0.859

the error rate of fake or live samples, respectively. The
ACER on the test set is determined by the Equal Error
Rate (EER) thresholds on validation sets and calculated via
ACER = (APCER + BPCER)/2. Additionally, Area
Under Curve (AUC) is adopted as an evaluation criterion
because the ACER is sensitive to the threshold which does
not clearly indicate which classifier performs better. Specif-
ically, APCER and BPCER are formulated as below:

APCER =
FN

TP + FN
, BPCER =

FP

FP + TN
, (5)

where TP and TN refer to the number of correctly classified
attacks or real samples respectively; On the contrary, FP
and FN refers to the number of incorrectly classified real or
attack samples respectively.

4.3. Implementation Details

We implement our method via open-source framework
PyTorch [36], and train the network on 4 NVIDIA V100
GPUs. The whole training procedure takes around 5 hours
and the inference takes 4 seconds per 1000 images. We
use wandb [38] to automatically search the hyperparameters
and set the batch size to 36, dropout rate to 0.2, and learning
rate to 0.00067. We resize the input image to 224 × 224
and train the network using Adam optimizer [21] with total
epochs 80. The learning rate was reduced to 0.2 times of
original when the validation metric did not improve for 10
consecutive epochs. The λ1 and λ1 are set to 0.5 in Eq. 4.

4.4. Results

Results on Test Sets. We compare the performance of our
method and the solutions of other teams on the validation
set and test set in the Chalearn 3D High-Fidelity Mask Face
Presentation Attack Detection Challenge. In phase-1, from
the leaderboard on the competition website2, we can see
that most of the methods achieve high performance on the

2https://competitions.codalab.org/competitions/30910#results
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Figure 6. Visualization of attention maps for different face types,
including real face, transparent, plaster and resin attacks.

validation set due to the fact that the attacks on the valida-
tion set and the train set are homologous. In phase-2, as
shown in Table 1, since the test set contains unseen attack,
e.g., plaster attack, the performance of all methods is sig-
nificantly degraded. For example, the ACER of the Top-3
methods deteriorates by 2.676 on average; And in the chal-
lenging test set, our method achieves APCER, BPCER and
ACER by 1.858, 4.452 and 3.155, respectively, ranking sec-
ond place in this competition. Moreover, our APCER is the
best. Although VisionLabs team achieves the best perfor-
mance with ACER 3.05, five EfficientNet-b0s [48] are re-
quired in their method to fuse features from different local
regions. In contrast, our method includes only two ResNet9
networks, which requires less inference time and facilitates
practical applications.
Results on Validation Sets. We evaluate the effectiveness
of each branch in our proposed approach through experi-
ments on the HIFIMask validation set, as shown in Table 2.
From the table we can see that: (1) three branches all per-
form well in the validation set because of the high similarity
between the training set and validation set; (2) the concate-
nate branch outperforms the other two branches, illustrating
the effectiveness of the dual-stream framework.

4.5. Visualization

Attention Map. As illustrate in Figure 6, we extract the fi-
nal feature maps of our model and use GradCAM [42] to vi-
sualize the attention maps of different attack types, includ-
ing transparent, plaster and resin attacks. From the figure,
we can observe that our model focuses on different areas
for each attack type. As we can see, in the first and sec-

Figure 7. Visualization of feature distributions from binary-
classification method and multi-classification method by t-
SNE [50].

ond column of the transparent attacks, the nose regions in
the attention map have the highest values since these attacks
always present strong reflections in the nose area, which is
different from live faces. For the plaster and resin attacks,
although the texture of these attacks is visually close to real
skin, it is still difficult to vividly imitate real human eyes.
Thus, the regions of the eyes are an effective classification
feature, and our model mainly focuses on these areas in the
attention map. Besides, a colored hook exists in the ear re-
gion for most attacks. It can be seen from the attention map
that our method can also make full use of this tiny region
for discrimination. It is worth noting that the train set we
used does not contain the plaster attack. Nevertheless, our
method is still able to capture generalized features such as
colored hooks and edges.
Feature Distribution. The distribution of features for the
traditional binary-classification method and our proposed
multi-classification method is shown in Figure 7 via t-
SNE [50]. It is clear that the features from the multi-
classification approach (Figure 7(b)) present more well-
clustered behavior than that from the binary-classification
approach (Figure 7(a)), which demonstrates the discrimi-
nation ability and generalization of multi-class learning for
distinguishing the living faces from high-fidelity 3D mask
presentation attacks.

5. Conclusion
In this paper, we propose a lightweight dual-stream net-

work that combines the vanilla convolutional branch and
the central difference convolutional branch for high-fidelity
3D face presentation attack detection. Corresponding multi-
class loss and multi-head loss are introduced to facilitate the
learning of the dual-stream network. Furthermore, we intro-
duce label smoothing and logits temperature scaling tech-
niques to improve the performance on unseen attacks. Ex-
perimental results show that the proposed method achieves
promising performance and achieves the second place in the
Chalearn 3D High-Fidelity Mask Face Presentation Attack
Detection Challenge.
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