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Abstract

3D mask presentation attack detection (PAD) is a long
standing challenge in face anti-spoofing due to the high
fidelity of attack artifacts and a limited number of sam-
ples available for training and evaluation. With the recent
release of the large-scale and diverse CASIA-SURF HiFi-
Mask dataset [19], it now becomes possible to address 3D
mask PAD with deep neural networks. This paper intro-
duces a new one-shot method for 3D mask PAD that extracts
fine-grained information from appropriate parts of the hu-
man face and uses it to identify subtle differences between
real and fake samples. The proposed method achieves state-
of-the-art results of 3% ACER on the CASIA-SURF HiFi-
Mask test set.

1. Introduction
Face anti-spoofing is a must-have component for the

majority of face recognition applications. Presentation at-
tack detection (PAD) can be efficiently realized with spe-
cial cameras [18, 6, 33] given their ability to deliver useful
features for face anti-spoofing (e.g. depth cameras extract
3D structure and infrared cameras filter out the light emit-
ted by phone screens and monitors). The major drawback
of such systems is the requirement of extra sensor equip-
ment, which is rarely available in common scenarios of mo-
bile and desktop authentication. Therefore, the demand for
RGB-only based solutions is high. Moreover, many scenar-
ios of face anti-spoofing require fast and simple authenti-
cation pipelines, while video-based PAD methods are slow
and often involve human interaction [24].

PAD methods for printed and replay attacks [36, 4] have
recently shown a great progress due to the availability of
large and diverse datasets [22, 7, 20, 19]. At the same time,
3D printers became more accessible and accurate, decreas-
ing the cost of producing realistic 3D face masks. These
factors increase the importance of 3D mask PAD algorithms
since cheap high fidelity plastic or silicone 3D masks with
reproduced identity of a victim are becoming a real threat
to face biometric systems.

Figure 1. Fake and real samples from the CASIA-SURF HiFi
Mask dataset.

In this paper we propose a new method for 3D high-
fidelity face mask presentation attack detection that is capa-
ble of predicting liveness score from a single RGB image.
Our method achieved the first place in 3D High-Fidelity
Mask Face Presentation Attack Detection Challenge, based
on the CASIA-SURF HiFiMask dataset [19].

A known issue for PAD is the poor generalization to new
types of attacks and scenarios [26, 27, 32, 15]. The major-
ity of available 3D PAD datasets lack the diversity in either
number of subjects, skin tone, artifact materials or lighting
conditions, causing low performance of algorithms in un-
seen domains. The recently introduced CASIA-SURF Hi-
FiMask dataset provides the most diverse 3D mask attack
images, reducing the problem of domain shift and allowing
to move the focus on algorithmic improvements. To make
this focus even more concrete, HiFiMask authors launched
a challenge with strict conditions: no external data, no pre-
trained models and no ensembling could be used. They also
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fixed a test set protocol, where both seen and unseen 3D
mask types are present. The protocol closely follows real
life situations, where an algorithm that has been trained on
one set of attacks must cope with new types of unseen pre-
sentation attacks.

The differences between high-fidelity 3D face masks and
bona fide examples are highly subtle. A close view on a spe-
cific face region is often required to notice attack artifacts
such as abnormal skin texture or eye glitter. Standard neu-
ral networks trained on whole face images could miss such
fine-grained features due to the limited image resolution.
To tackle this problem, we propose a part-based architec-
ture that attends to multiple face regions at higher resolu-
tion. Besides the whole face image, we also consider ears,
nose, eye and mouth regions. Each face part is processed by
a different branch of a network, that learns region-specific
features. For example, strong features for ears may encode
the transition between the texture of a mask and the skin
texture of an intruder. Since face parts provide limited in-
formation about the subject and do not always contain fake
features, we use a modified binary cross entropy for each
face part with an increased weight on bona fide class. Fi-
nally, to reduce the error of inaccurate face part crops, we
extract features both from original and flipped images.

As a result, our method achieves state-of-the-art on one
of the largest and most diverse liveness dataset – CASIA-
SURF HiFiMask with 3% average classification error rate.

2. Related work
2.1. 3D Mask PAD methods

There are several publicly available 3D mask datasets
with varying number of subjects, skin tones, capture con-
ditions and mask types - 3DMAD [22], 3DFS-DB [7],
HKBU-MARs [20], BRSU [29], WMCA [9], SiW-
M [21], CASIA-SURF 3DMask [35]. The recently re-
leased CASIA-SURF HiFi Mask dataset surpasses previous
datasets in an overall diversity and contains 54000 videos
of 75 bona fide and 75 fake subjects with same identity.

3D mask PAD approaches, trained on these datasets,
focus on loss function optimizations [8, 10, 17, 31], data
sampling strategies [11], or try to utilize the difference in
context features between paired bona fide and fake im-
ages [19]. However, due to the high fidelity of 3D masks
and limited resolutions of common backbone architectures
(e.g.ResNet [13], MobileNet[14], EfficientNet [30]), those
approaches could miss the presence of strong local features
in small face regions.

2.2. Face parts

The idea of splitting face images into multiple face parts
is frequently used for face recognition [25] and is adopted
for presentation attack detection in recent works [5, 28, 34].

Figure 2. Proposed face parts: left ear, right ear, eyes, nose, mouth.

In [28] a bag of random face patches is fed to a single
backbone. In [5] the authors split the image into 9 smaller
squares and train different backbones for each branch. The
drawback of such methods is that selected face parts are ei-
ther too small and do not capture local semantic information
or are focused only on local face parts, ignoring global se-
mantics.

To tackle these issues, our proposed framework aggre-
gates information from the whole image and appropriate lo-
cal face parts, making use of both coarse and fine-gained
features.

2.3. CASIA-SURF HiFi Mask dataset

HiFiMask is currently the largest 3D RGB face dataset:
it contains 54,600 short videos captured from 75 subjects.
3 types of spoof attacks are present: transparent plastic,
highly realistic plaster and resin masks. The examples of
dataset images are shown in Fig. 1.

The structure of the HiFiMask dataset aims to reduce
common problems for deep learning methods:

• All 3D mask identities match the bona fide identities
thus preventing the models to overfit on person id.

• Each bona fide and fake sample is recorded under
different lighting conditions (white light, green light,
periodic three-color Light, outdoor sunshine, outdoor
shadow, and motion blur) and light intensity (normal
light, dim light, bright light, back light, side light and
top light). This reduces model overfitting to scene-
specific features.

• Videos are recorded on a wide range of high-resolution
devices: iPhone11, iPhoneX, MI10, P40, S20, Vivo,
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Figure 3. A. Centered face crops (top) are manually annotated with
face keypoints and keypoint locations are then averaged to obtain
average keypoint mask. B. Average keypoint mask is used to de-
fine face part regions for arbitrary face images.

HJIM, etc., which helps to develop robustness to cam-
era type. Additional details like glasses, hats and wigs
are used to make spoof attacks more plausible while
adding these attributes to bona fide examples elimi-
nates overfitting probability to these attributes.

The common problem of PAD methods is their generaliza-
tion ability to unseen attacks. To address this issue, authors
created a mixed protocol, where test set contains both seen
and unseen attacks. This protocol is used in CASIA-SURF
HiFiMask PAD challenge.

3. Proposed method

This section describes the proposed face part based
method for 3D mask presentation attack detection. We start
with the baseline model and then introduce in details the
process of face part cropping, loss modification and post
processing.

3.1. Face detector

Face centering is a common pre-processing step aiming
to reduce the spatial variability of face images. We use a
DSFD [16] face detector and center crop all training and
test images such that the face bounding box is placed at the
center of a square crop. Square crops are 1.3 times larger
than detected face bounding boxes. If the obtained crop ex-
ceeds boundaries of the original image, we fill the missing
parts with black pixels, see Fig. 3.

3.2. Baseline

We use a standard EfficientNet-B0 [30] architecture
trained with binary cross-entropy loss as a baseline method.
In our experiments we tried different architecture families
as well as deeper versions inside same family and found
that EfficientNet-B0 is better or on par with other models.

3.3. Face parts

High fidelity 3D masks are often very hard to distinguish
from genuine person images. Image features that can help
identifying fake faces are often local and require high res-
olution image information. Moreover, some features are
strictly region specific - for example, unnatural eye glitter
can only be discovered in eye region. Rubber band hold-
ing the mask can be typically found in ear regions. Though
standard neural networks could process the whole face im-
age and find these features, in some cases the features are so
small that they are being blurred out when a pre-prosessing
resizes image before passing it to the network.

To deal with this issue, we introduce face parts as illus-
trated in Fig. 2. Original image X is processed with DSFD
detector to transform it into centered face crop Xc. We
crop out semantically meaningful face parts: Xeyes, Xnose,
Xmouth, Xleftear, Xrightear and process them along with a
whole face Xface at a higher resolution rate. Each face part
is resized to 224 × 224 pixels. In order to obtain the face
parts from the image, we need a prior information about
face part locations.

We manually annotate 100 images from a training set
with face keypoints and then average obtained keypoints,
which resulted in 5 point coordinates K = {xi, yi}i=1,...,5

of an averaged keypoint mask (see Fig. 3). We annotate
eyes centers, nose and mouth corners and then use this in-
formation to define face part bounding boxes:

Xfacepart = f(Xc,K, θ),

where θ are manually defined shift and scale parameters for
each face part. For exact values of θ please refer to our
implementation on GitHub [1].

3.4. Network architecture

To use high-resolution image features, we propose an ex-
tension to the baseline method by adding extra branches that
process different face parts. The method diagram is shown
in Fig. 4. Original image X is processed with DSFD detec-
tor to transform it into a centered face crop Xc as described
in Sec. 3.1. Note that we do not re-scale face images at
this step. Face parts are then extracted from Xc using prior
information about average keypoint locations K and then
processed by a shared conv-bn-relu module. Each face part
is then further processed by a copy of EfficientNetB0 body
blocks with part-specific parameters. Left and right ears
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Figure 4. Method diagram. Centered crop is split into face parts which are further processed with different EfficientNet-B0 backbones. All
backbones share the same conv-relu-bn block in the beginning. Each face part is trained separately with BCE or BCE weighted loss. At
the same time the concatenated feature vector is trained with the BCE loss.

are fed into a common backbone with shared parameters.
We also modify the standard B0 architecture so that the last
fully connected layer returns a feature vector of length 320.

3.5. Loss function

Face parts may not always contain information about
liveness, so training with regular BCE loss could result in
a neural net confusion, reducing the accuracy of the whole
pipeline. To tackle this, we propose to use weighted loss for
face parts with a focus on bona fide class. This will reduce
a penalty for misclassifying fake class for cases when face
part does not contain any liveness related features.

Our face part architecture returns 6 descriptors of length
320: dface, deyes, dnose, dmouth, dleft ear, dright ear. Each descrip-
tor is processed with sigmoid and fed into corresponding
classification layers, resulting in liveness scores pface, peyes,
pnose, pmouth, pleft ear, pright ear. In addition to that, a descriptor
dall, obtained by concatenating face part descriptors, is also
fed into a classification layer, that returns pall score.

dall and dface parts are trained with the standard BCE loss
L. All other face parts are trained using BCE weighted loss

Lβ× = −β · y log(p)− (1− y)log(1− p), (1)

where we use β = 5 to increase the weight for bona fide
class. The final loss function is a combination of losses for

different face parts and for the whole descriptor:

Ltotal(y,p) = 5 · L(y, pall) + 5 · L(y, pface)

+L5×(y, peyes) + L5×(y, pnose) + L5×(y, pmouth)

+
1

2
· L5×(y, prightear) +

1

2
· L5×(y, pleftear)

(2)

3.6. Postprocessing

Global loss for concatenated descriptor aggregates infor-
mation from different face part descriptors while local part
specific losses push corresponding model branches. We fur-
ther aggregate global and local predictions, allowing direct
local part contribution to the final score, so that a strong sig-
nal from any of face parts will not be missed. To calculate
the aggregated score, we use a formula similar to (2):

pagg =
1

8
(2 · pall + 2 · pface + peyes + pnose + pmouth+

1

2
· prightear +

1

2
· pleftear)

(3)

Using face part locations cropped from averaged prior
information could lead to inaccurate cropping. To miti-
gate this effect, we additionally compute (3) for horizon-
tally flipped images and average predictions for the original
and flipped images.
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Method Val Test
APCER, % BPCER, % ACER, % APCER, % BPCER, % ACER, %

1 Baseline 0.40 1.02 0.71 5.57 5.12 5.34
2 Naive face parts 1.37 1.06 1.22 1.99 8.95 5.47
3 +Face part aggregation 1.09 0.88 0.98 2.70 7.24 4.97
4 +Shared conv block 0.69 1.43 1.06 7.12 2.68 4.90
5 +Weighted loss 1.05 1.53 1.29 2.44 4.94 3.69
6 +Postprocessing 0.85 1.25 1.05 3.78 2.33 3.05

Table 1. Results on CASIA-SURF HiFiMask validation and test subsets.

4. Experiments
4.1. Experimental settings

All experiments are conducted on the CASIA-SURF Hi-
FiMask dataset following the protocol 3 [19]. For perfor-
mance measurement we use Attack Presentation Classifica-
tion Error Rate (APCER), Bona fide Presentation Classifi-
cation Error Rate (BPCER), and ACER metrics. We report
results on the validation and test subsets of the dataset. We
fix the learning rate schedule, the number of training epochs
and image augmentations for all our experiments.

Implementation details. All our code is written in python
with the pytorch framework and is available on GitHub [1].
All models are trained using 4 NVIDIA 3080 Ti GPU. We
fix a random seed, however, due to multi-gpu training, re-
sults could sligtly differ between different runs.

Baseline. As a baseline method we use EfficientNet-B0
trained with BCE loss on a target task. We also tried ResNet
and MobileNet families, but EfficientNet showed the best
result with ACER=5.343 % (see Tab. 1) on the test set.
Meanwhile, on the validation set the result was 0.710 %
ACER. This difference is caused by the presence of the un-
seen fake type in the test set. Also, this shows that validation
set is not the best measure to select the best model. In the
following we report results on the more challenging test set,
and, if not mentioned explicitly, results are reported for this
set. We also build up a learning rate strategy to drop to al-
most 0 by the end of the training and always select the last
epoch as a checkpoint.

Pretraining. According to the terms of the challenge, the
use of pretrained networks on external data was prohibited,
however, we decided to evaluate the contribution of transfer
learning to see if we can use any self-supervised training
strategies. Pretraining the baseline network on ImageNet
decreased the error ACER from 5.34 % to 4.47 %, how-
ever, the usage of various self-supervised methods such as
jigsaw[23], simsiam[3], Moco[12] or simCLR[2] only in-
creased the error to 5.72 % ACER. Presumably this is due
to the fact that current self-learning methods require a large
amount of training data, orders of magnitude larger than Hi-
FiMask dataset size. Therefore, in all further experiments
we trained our network with a random initialization.

Face crop preprocessing. All images are converted into
centered crops in advance. During training, we extract face
parts and apply a set of individual augmentations (Color Jit-
ter, Blur, Random Crop, Horizontal Flip) for each face part.
All face parts are then resized to 224× 224 pixels to match
the backbone input resolution.

4.2. Ablation study

Here we report results of ablation experiments (Tab. 1 to
verify the contributions of each added feature. We examine
the effect of the following modules:

• Naive face part architecture. Compared with Fig. 4
we do not use a shared convolutional block and do not
aggregate face part scores at the end, using only pall
output. We also use the standard BCE for all parts.

• Face part aggregation. We transform final score us-
ing (3).

• Shared convolution. We make the weights of first
EfficientNet-B0 block shared between different face
part backbones.

• Weighted BCE for face parts. We substitute BCE
with the weighted BCE loss for all face parts except
the whole face branch.

• Postprocessing. We compute scores both for original
and flipped images and report averaged results.

Results on the validation set contradict results on the test
set. We believe that this is due to some portion of low-
quality images that appear in HiFiMask. DFSD Face detec-
tor did not found any face in 1% of the dataset, therefore
making any results that are close to same rate noisy. In fur-
ther experiments we mostly analyze results on the test set.
Naive face part architecture. In this experiment we tested
the proposed architecture but without shared convolution
block and scores aggregation, e.g. using only pall predic-
tions. As a result, the model achieved 5.47 % ACER which
is worse than the baseline.
Face part aggregation. We used the outputs from the
previous experiment and aggregated them using (3). For-
mula coefficients were not finetuned and were selected by
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Face Eyes Nose Ears Mouth All hflip APCER, % BPCER, % ACER, %
1 ✓ 1.89 3.70 2.80
2 ✓ 3.55 2.54 3.04
3 ✓ 6.24 3.42 4.83
4 ✓ 8.58 3.74 6.16
5 ✓ 4.23 4.67 4.45
6 ✓ 0.93 1.57 1.25
7 ✓ ✓ ✓ ✓ ✓ 1.17 1.62 1.39
8 ✓ ✓ ✓ ✓ ✓ ✓ 0.85 1.57 1.21
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.85 1.25 1.05

Table 2. Results on CASIA-SURF HiFiMask validation subset. Checkmark indicates the presence of the corresponding part/technique in
final score.

rough analysis of individual face parts performance (Table
2). Aggregated score improved the resulting ACER by 0.5
%, proving that individual face part contribution should also
be accounted.

Shared convolution. Challenge protocol bans the usage of
any pretrained models, so all our experiments were trained
from scratch. A strong pretrained baseline creates generic
and robust features at the first network layers. We have tried
to partially replicate this effect by sharing first convolution
between all backbone instances. This slightly improved the
final metric, achieving 4.9% ACER on the test set.

Weighted BCE for face parts. This experiment shows the
importance of using weighted binary cross-entropy loss for
partial face parts (eyes, nose, mouth, ears). Bona fide class
weight increase leads to less penalty for the cases when the
face part branch could not find any signs of a spoof. The
model trained with new loss achieved 3.69% ACER, which
is 1.21% better compared to the model trained with a stan-
dard loss.

Postprocessing. Using the model trained in the previous
experiment, we additionally extract scores for horizontally
flipped face images and average results for original and
flipped images. This was the final addition of our method,
which led to the score 3.05% ACER. The improvement by
0.64% with added horizontal flip augmentation is likely due
to the fact, that face parts were not always cropped perfectly.
We visually examined some examples with highest varia-
tion between original and flipped images and found that in
most cases there were an error in face part cropping.

4.3. Face parts contribution

Here we examine the contribution of selected face parts
into the final score. Table 2 shows ACER on the HiFiMask
validation set. The whole face shows 2.796% ACER, which
is the best individual result compared to other face parts.
Among partial crops, the most meaningful result is demon-
strated by eyes part, which achieved 3.044% ACER. We
visually examined eye crops and in most cases we noticed
clear visual artifacts corresponding to fake faces. However,

the dataset contains both fake and bona fide examples with
dark glasses, making eye classifier unreliable in such cases.
Aggregated scores improved results to 1.21% ACER and
the horizontal flip decreased the error further to 1.05% (see
Tab. 2).

5. Summary
In this paper we introduced a novel method for 3D mask

presentation attack detection bh combining analysis of the
whole face and semantically meaningful face parts. We pro-
posed a method that decomposes a face image into multiple
face parts and processes them at a higher resolution, which
results in better performance compared to baseline archi-
tectures. We also showed the importance of sharing first
layers between different branches, since their mutual learn-
ing leads to a more general and robust convolution filters.
Finally, we demonstrated that when using parts with par-
tially missing discriminative features, the use of weighted
loss is preferable. In our experimental validation we showed
the effect of each of above-mentioned components on the
final metric and also examined the importance of individ-
ual face parts for the PAD task. The proposed method re-
sulted in the winning submission on the recently conducted
3D High-Fidelity Mask Face Presentation Attack Detection
Challenge, reaching 3.05 % ACER.
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