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Abstract

In this paper, we focus on improving the online face live-
ness detection system to enhance the security of the down-
stream face recognition system. Most of the existing frame-
based methods are suffering from the prediction inconsis-
tency across time. To address the issue, a simple yet ef-
fective solution based on temporal consistency is proposed.
Specifically, in the training stage, to integrate the temporal
consistency constraint, a temporal self-supervision loss and
a class consistency loss are proposed in addition to the soft-
max cross-entropy loss. In the deployment stage, a training-
free non-parametric uncertainty estimation module is de-
veloped to smooth the predictions adaptively. Beyond the
common evaluation approach, a video segment-based eval-
uation is proposed to accommodate more practical scenar-
ios. Extensive experiments demonstrated that our solution
is more robust against several presentation attacks in vari-
ous scenarios, and significantly outperformed the state-of-
the-art on multiple public datasets by at least 40% in terms
of ACER.

1. Introduction

In this paper, we focus on online face liveness detection
for common real-world use cases such as face authoriza-
tion. Unlike offline video analysis [27], which can observe
an entire video to make a final prediction, online processing
requires low-latency prediction for each incoming frame.
In this setting, the most common approach is to predict the
liveness probability per frame [17, 18]. However, as de-
picted in Fig. 1a, such a frame-based model has larger pre-
diction variance within a short period (the standard devia-
tion of predictions is 0.2). By further analyzing the false
positives and false negatives, we noticed that it tends to
make unstable predictions when the subject undergoes large
motion or illumination changes. Therefore, we hypothesize
that one common underlying issue for the frame-based live-
ness detection systems is temporal inconsistency.

To address this issue, a simple yet effective Face anti-
spoofing system using Temporal Consistency (FasTCo) is
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Figure 1: Depiction of (a) temporal inconsistency of the
predictions on one video clip from a fame-based baseline
model (gray curve) and the predictions with uncertainty es-
timations from our model - FasTCo (the blue curve repre-
sents prediction probability and the shade represents con-
fidence levels, the face is blurred to hide identity); (b)
model comparison of previous methods and two variations
of FasTCo using ACER (%) on SiW with protocol one and
FLOPs (G). Bottom left is the best (Best view in color).

proposed with temporal-aware model training and adaptive
model predictions. Specifically, in the training stage, be-
yond the softmax cross-entropy loss for multi-class classifi-
cation, to enforce consistency of video sequences in the em-
bedding space, two additional loss functions are proposed
to improve the training, aiming to minimize the intra-class
embedding distances for video sequences and presentation
attacks, respectively. In the deployment stage, based on
temporal consistency, a training-free uncertainty estimation
module is developed to adaptively update the liveness prob-
ability, which results in much more consistent predictions.
For instance, as depicted in Fig. 1a, the liveness probabil-
ities predicted by FasTCo on the same video clip have a
much lower variation (standard deviation is 0.04) compared
with the baseline model. This approach can be considered
as a special way to select informative past frames in the on-
line setting. Additionally, it is a generic approach that can
deploy a more lightweight backbone (FasTCo-MN) and still
achieve better performance than state-of-the-arts, as shown
in Fig. 1b. Such lightweight model provides great potential
for low-latency applications, especially on edge deployment
environment such as mobile phone or [oT devices.

To evaluate the online models, besides the commonly
used frame-based evaluation, a video segment evaluation
approach is introduced to provide metrics for different ap-
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plication scenarios. Extensive experiments including the
ablation studies were conducted, and have demonstrated
that our method significantly outperforms the state-of-the-
art on several publicly available datasets with at least 33%
fewer FLOPs. On the SiW [17] dataset, FasTCo obtained
an ACER of 3 x 1076, almost 0.1% of state-of-the-art un-
der the protocol one, while achieving at least 50% relative
improvement using other protocols. Meanwhile, the pro-
posed solution exceeds the state-of-the-arts by 40%+ on
OULU-NPU [4], SiW-M [18], and cross-domain datasets.
In summary, our method is more robust against multiple
factors in practical use cases such as unseen presentation
attacks, illumination change, and acquisition devices.

With the temporal consistency, the following benefits can
be expected: (i) Simple thresholding: because the predic-
tion of the model is unstable in adjacent continuous frames,
it is difficult to determine an appropriate threshold for live-
ness classification. The system would either have less se-
curity if the threshold is too low (APCER 1) or bad user
experience from false rejects when the threshold is too high
(BPCER 7). However, with temporal consistency, the sys-
tem outputs a more consistent prediction, leading to a much
easier balance of APCER and BPCER in real applications.
(i1) Uncertainty estimation: with the proposed uncertainty
module, in addition to the liveness score, the system outputs
the uncertainty estimation, which can be used to filter out
frames with highly uncertain predictions. This greatly en-
hances the robustness of the system. In summary, the con-
tributions of this paper are: (i) Temporal inconsistency was
identified as a common issue of the current face liveness de-
tection systems; (ii) A simple yet effective solution, includ-
ing two additional losses and a training-free uncertainty es-
timation module, was proposed to significantly improve the
model performance without extra complexity and latency;
(iii) In addition to the common frame-based evaluation ap-
proach, a video segment-based evaluation was proposed to
measure both the latency and accuracy of the model for dif-
ferent application scenarios.

2. Related Work

The common presentation attacks [9] to face recognition
systems include using print photos, video replay, and 3D
masks. The recent face liveness detection methods to iden-
tify these attacks can be classified into two major streams
in general: (i) Static approaches: Some image clues from
color space and frequency domain [3, 14] were used to de-
tect artifacts. In addition, some human-crafted features such
as LBP [3] and the features learned by CNN [1, 19, 33, 22]
were extracted to train a binary classifier. Domain gener-
alization and meta-learning techniques [29, 21, 23] have
also been used to learn generalized feature representations
[16, 15,22, 26, 13] from multiple domains to improve the
generalization of the model. Liu ez al. [ 18] developed a deep

Figure 2: Overview of (a) the training stage: in addition to
the multi-class classification loss L., we propose a temporal
self-supervision (L;) loss on the features extracted from the
same video sequence and a class consistency loss (L) to
enforce the intra-class distances; (b) the deployment stage:
a training-free uncertainty module U is proposed to estimate
the uncertainty based on the temporal consistency to smooth
the liveness probabilities in the online setting.

tree-structured learning process to learn homogeneous fea-
tures of presentation attacks in the upper nodes of the tree
and distinct features to classify each specific attacks in the
leaf nodes. However, such static methods do not consider
the relationship across the temporal dimension, and thus
lacking the temporal consistency in predictions. (ii) Dy-
namic methods: The motion of the face, either part or as
a whole, was used to predict the liveness. Multiple fea-
tures extracted from video frames were aggregated and the
predictions were fused by Siddiqui et al. [25] to generate
a liveness score. Similar to the common approach in ac-
tion recognition [27, 24, 28, 10], both spatial and temporal
information [30, 31] of a video clip have been explored to
make the final decision based on a CNN-LSTM network
[8]. Nevertheless, it is hard to learn the temporal informa-
tion by jointly learning CNN and LSTM networks. In this
work, we improved the model training by introducing new
loss functions and inference consistency with an uncertainty
estimation module.

3. Temporal Inconsistency

Compared with the sequential models [31], the frame-
based model is easier to implement and can be directly used
to process online untrimmed videos. To find the root cause
of why the model fails in some cases, the ResNet-50, a com-
monly used network structure serving as the baseline in the
literature [31, 33], was used to train a frame-based online
liveness detection model with a softmax loss on SiW [17]
dataset. The evaluation was performed following the proto-
col one of the dataset. The videos were ranked according to
the number of predictions errors. After analyzing the errors,
there are two observations: (i) Time-wise, one common pat-
tern across the false positive and false negative samples is
the prediction inconsistency. The predictions are not stable
and there are many spikes in the estimated probabilities. By
analyzing the frames corresponding to the false predictions,

825



we made a hypothesis that such sudden prediction change
was due to the movement of the subject or the environment
changes such as reflection. (ii) Prediction-wise, the prob-
ability outputs are either extremely high for false positives
or low for false negatives at some time stamps, indicating
that the model is over-confident of its predictions on out-
liers. Based on these observations, to improve the baseline
model, we need to answer the following questions: (i) How
to use temporal information to improve the training of a sin-
gle network model? (ii) How to use temporal consistency to
increase the robustness of the model inference? Therefore,
this paper will focus on solving the temporal inconsistency
issue from both training and inference stages.

4. Online Face Liveness Detection System

We first define two key properties for the online face
liveness detection system, and then propose two strategies
to improve the robustness of the model based on temporal
consistency.

4.1. Formulation

Mathematically, a live video can be represented as a se-
quence of frames V = {lo,..., I1,..., I}, where t is the
current time stamp and 7' is the total number of frames. To
ensure the input sequence of faces belongs to the same iden-
tity, a face tracker [2] can be deployed instead of a naive
face detector to provide the temporal-spatial information for
a sequence of face bounding boxes b;.

Input: The input of the system is a cropped face from the
video frame I; using its bounding box b; from tracking.
From now on, we will use I; to represent the face region
frame for simplicity.

Output: The output of the system is a liveness probability
pt, where a binary decision y (live or attack) can be deter-
mined with a threshold.

Model: Usually, a face liveness detection model ®(-) con-
sists of a feature extractor ¢(-) and a classifier C(-). The
liveness logit ¢; can be obtained by forwarding the current
face frame I; to the network denoted as ¢x = C(¢p(1;)) =
C(z¢), where x; is the feature representations of the frame
I;. The liveness probability p; can be generated by apply-
ing a normalization activation function such as softmax or
sigmoid to the logit ¢;. As an additional constraint due to
the online setting, when making a prediction on the frame
I, the model ®(-) can only use the information from [Iy, I;]
but is forbidden to access [I;+1, IT] (Fig. 2b).

4.2. Temporal Consistency Properties

By deploying the face tracker, the temporal consistency
comes with the following two properties:

Property 1 (Identity Consistency) There is only one sub-
Jject identity in the input stream.

Property 2 (Prediction Consistency) The model should
have consistent predictions on the frames within the same
video tracklet.

4.3. Improving Consistency

Applying the properties of temporal consistency, the fol-

lowing loss functions are used to train the network in an
end-to-end manner (Fig. 2a) and a uncertainty module is
proposed to keep prediction consistency in the deployment
stage (Fig. 2b):
Classification Supervision: Unlike the previous methods
[17, 14, 31, 18] that trained a binary classifier, the labels
of video types (e.g., print, video replay) can be used as the
supervision to train a multi-class classifier using a softmax
cross-entropy loss:

1 m
L.=—=Y"1 , 1
m; 0g py, Q)

where m is the batch size. The benefits of converting a
binary classification problem into a multi-class classifica-
tion setting are in three-folds: (i) The discriminative fea-
tures to distinguish different types of presentation attacks
can be learned; (ii) The embedding space of liveness class
can be squeezed into a more compact space than using a bi-
nary classification, which helps decrease the false positive
rate; (iii) Fine-grained analysis can be conducted when the
model makes mistakes.

Temporal Consistency Self-Supervision: To keep tempo-
ral consistency across multiple frames (e.g., frames within
the same video tracklet), a self-supervision loss is proposed
to regularize the intra-video consistency in the embedding
space, denoted as:

1 m
Li=—% max|lz; — x5, @)
=0

— i,JEV

where x; and x; are the feature representations of two
frames from the same video clip v within the batch.

Class Consistency Loss: Similar to the temporal con-
sistency self-supervision, the embedding learned from the
same class but from different videos should be as close as
possible. Therefore, a class consistency loss function can
be defined as follows:

1 m
L6=E2maxyij||xi—mj||g, 3)
=0

where y;; is equal to 1 when x; and x; belong to the same
class within the batch, otherwise y;; is 0. In the end, the
final loss can be formulated as:

L=Lc+ BLy +vLe. “4)
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4.3.1 Filtering with Uncertainty Estimation

During the deployment stage, to keep the prediction consis-
tent within the same tracklet, a simple yet effective solution
is proposed to estimate the model uncertainty and smooth
the model predictions adaptively.

Due to the online setting, the uncertainty module can
only observe the historical logit outputs {qo, ..., q:} from
the model. Based on the temporal consistency, we can as-
sume that: (i) The random variable of the liveness score ¢
at the time step ¢ follows a Gaussian distribution N (fi, 62),
where /i; and 4, denote the moving average and standard
deviation of m; (ii) The single logit observation ¢; follows
another Gaussian distribution A/ (s, 62). According to the
Bayesian rule, the posterior can be written:

p(7r0, ceey TE—13 Qt|77t) 'p(Wt)
(70, -+ T15Gt)

B 7Tt71)7

p(ﬂ't|7707-~-a77t—1§Qt) =

=« 'p(Qt|7Tt) 'p(ﬂt|7T0, .-
)

where « is a normalization constant. Based on the assump-
tions of temporal consistency, the Equ. (5) can be derived
into the following equation:

(7 — ﬂt)2 _ (m — Qt)2 (me — ﬂt*1)2 6
N S (6
257& t 2§t71

Therefore, the best estimate of the current liveness ji; and
its uncertainty J; can be derived as:

0P+ 0P 67 4 82
RS TN T R
.
e,
@)

Since fi;—1 can be considered as the best measurement of
the current state, we can compute 67 = (g; — jiy_1)%. To
adapt the probability with the uncertainty estimation, the
current moving average fi; is used as the updated probabil-
ity and the &, as the estimated uncertainty. In the end, an
activation function such as sigmoid can be applied to nor-
malize the liveness estimation.

In practice, we can only keep recent liveness predictions
to compute the moving average /i, and the standard devi-
ation St,l as a relaxation. Then, the whole inference pro-
cess in the deployment stage is depicted in Alg. 1. Interest-
ingly, if we assume that = 62 | /(62 4+ §2_,) is a constant
value and discard the uncertainty, the Eq. (7) would degrade
to the Exponential Moving Average (EMA) [0], which is a
common technique used in the finance domain.

Algorithm 1: Training-Free Uncertainty Module

Input : Current video stream [;, window size w
Output: Calibrated probability /i, and estimated
uncertainty d;
1 Obtain current liveness logit ¢;;
2 Compute fi;—1 and 5t-1 with a window size w;
52402, °
4 Compute fi; = 0g; + (1 — )i,y and 0; = 0 - 62;

3 Compute the weight § =

S. Experiments
5.1. Experiments Settings

Datasets: Several public datasets were used to benchmark
the proposed method: (i) SiW [17] dataset consists of 165
subjects with 4,620 videos in total to evaluate the robust-
ness of the model with various poses, data sources, and un-
known attacks. (ii) OULU-NLP [4] dataset contains 4, 950
real and attack videos, recorded using six different phone
cameras. (iii) SiW-M [ 18] dataset consists of 493 subjects
with up to 13 types of spoofing attacks. The protocols in
this dataset were designed for open scenario evaluation. It
adopts a leave-one-out setting, using twelve “attack” videos
as the training set and the remaining one as the testing set.
Baselines: Several baselines were implemented: (i) R50:
This model was trained using the ResNet-50 network [11]
to extract the features of each frame. It served as a base-
line of the frame-based face liveness detection system.
(i) R50-LSTM: This model was trained using LSTM to
learn the temporal information with the features generated
by R50. (iii) STASN [31]: This model explored both spatial
and temporal information to make a final prediction. The
original paper only reported ACER, so we implemented our
own version (denoted as STASN*), which obtained slightly
better performance than the original work.

Model Variants: FasTCo was developed on R50 net-
work by default. Another lightweight extension using Mo-
bileNetv2 [20] backbone with a growth rate of 0.5 was also
developed, denoted by FasTCo-MN, to show the potential
of low-power deployment like edge devices.

Evaluation Metrics: In addition to some widely used met-
rics (e.g., APCER, BPCER, ACER, and ROC) suggested by
ISO [12] and Zhang et al. [33] that measures on the frame
level, we proposed to report the evaluation metrics based
on the video segment level. The videos were divided by
the sequence of video segment with length K, and each
video segment is treated independently, where the previ-
ous mentioned metrics (e.g., ACER and ROC) can be ap-
plied. For 30 FPS video, we suggest the maximum latency
K of less than 30 (1 second) to have a good user experi-
ence. Such evaluation approach have the following advan-
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Table 1: Comparison of different model implementations.

Table 3: Different pre-trained weights as initializations.

Method ‘ Spatial Temporal Uncertainty ‘ ACER (%)
R50 v 0.2849
R50-SMA v v 0.0927
R50-LSTM v v 0.0794
FasTCo-NA v v 0.0632
FasTCo-EMA v v 0.0028
FasTCo v v v 0.0003

Table 2: Ablation study on the hyper-parameters of losses.

Hp | Binary | Multi-class
1) - 0 1 0 1 1 1 5
v - 0 0 05701 05 1.0 0.1

ACER (%) | 33 |25 21 17]13 08 25 17

tages: (i) Compare to frame-based evaluation, it provides
two-dimensional metrics, which fitt better to the practical
scenario that cares more about the performance with a spe-
cific latency (video segment length); (ii) It allows the use of
temporal information to some extent, which could provide a
fair comparison with video segment-based models (e.g., 3D
Convolutions) in the future.

For all the experiments, to fairly compare with the previ-
ous methods and the baseline models, we strictly followed
the evaluation protocols provided in each dataset. In the
cross-domain experiments, in addition to the frame-based
metrics, we also compared the model performance with
state-of-the-art on the video-segment level.

5.2. Ablation Study

Module: The SiW dataset with protocol one was used to
evaluate the effectiveness of various components in the pro-
posed framework. To fully evaluate the components, dif-
ferent model implementations were configured as follows:
(1) R50-SMA: a simple moving average with a window size
of five was used to smooth the R50’s predictions; (ii) FasT-
Co-NA: a R50 model trained with the proposed temporal
consistency loss functions; (iii) FasTCo-EMA: an EMA
with a smoothing factor of 0.1 and a window size of five was
used to smooth the predictions of the model FasTCo-NA.
Table 1 presents the experimental comparisons on the
baselines and proposed modules: (i) Comparing R50 with
R50-SMA, a simple moving average can help smooth the
predictions and reduce the ACER by 3 times; (ii) Com-
paring R50 with R50-LSTM, the temporal information en-
coded in LSTM does improve the accuracy by 4 times;
(iii) Comparing FasTCo-NA with R50 and R50-LSTM,
it can be observed that, rather than using more complex
LSTM, the temporal consistency introduced by the pro-
posed loss functions further increases the accuracy of the
model; (iv) The uncertainty module does help to improve
the robustness of the predictions. Even compared with the

Datasets APCER (%) BPCER (%) ACER (%)
NA 2.49 3.13 2.81
VGGFace-2 0.76 0.64 0.70
ImageNet 0.30 0.26 0.28

Table 4: Runtime comparison with the recent methods.

Metrics STASN [31] DTN [18] FasTCo FasTCo-MN
FLOPs (G) 8 6 4 0.08
Size (M) 208 - 90 2.8
Time (ms) 11.8 - 3.8 0.9

EMA, it still achieved much better performance. If compar-
ing the full model with the R50 model, FasTCo improved
ACER by 1000 times approximately.

Weights of the Losses: OULU-NPU dataset with the proto-
col one was used to evaluate the hyper-parameters to weight
the different loss functions. The results are summarized in
the Table 2: (i) Compared with the binary classification,
the multi-class training (5 = 0,y = 0) reduced the error
rate from 3.3% to 2.5%. (ii) To compare the two proposed
loss functions, ACER would decrease to 2.1 if the temporal
consistency loss Ly (8 = 1, = 0) was applied. By apply-
ing the class consistency loss L., the ACER would further
drop to 1.7%, showing that L. had a larger impact than L.
(iii) To balance the loss of the three losses (the weight for
multi-classification loss is 1), the final ACER could be fur-
ther reduced from 2.5 to 0.8 when 8 = 1 and v = 0.5,
demonstrating the necessity and effectiveness of both loss
functions.

Pre-trained Models: To analyze the impact of using dif-
ferent pre-trained weights as initialization of the backbone
R50 model, we tried three different settings: (i) Random ini-
tialized weights; (ii) Initialization using the pre-trained R50
weights trained on VGGFace-2 dataset. We used cropped
face images from the VGGFace-2 dataset [5] to train a R50
model for face recognition task, whose weights of the con-
volutional layers were then used to initialize and fine-tune
the new model for the face livness detection task; (iii) Ini-
tialization using the pre-trained R50 weights trained on Im-
ageNet [7]. Evaluation results on the SiW dataset are de-
picted in Table 3. Surprisingly, the model initialized from
the ImageNet dataset achieved a better performance than the
model trained from the VGGFace-2 dataset. One possible
reason is that the ImageNet dataset provides a wider distri-
bution of the features, which can better capture the clue of
presentation attacks rather than a face recognition dataset.
Though all models are based on the R50 architecture, we
believe this conclusion is generalizable to other model ar-
chitectures as well.
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Figure 3: Depiction of (a) 2D t-SNE visualization of
the representations generated by R50 (Left) and FasTCo
(Right) on the SiW dataset; and (b) one sample video live-
ness predictions across time from R50 and FasTCo models.

5.3. Comparison with the State-of-the-Arts

Runtime Complexity: Inference efficiency is very critical
to the low-latency online applications. The total number of
floating-point operations (FLOPs) of the model was used to
measure the runtime complexity. Note that “*” denotes the
estimated FLOPs based on our implementation because this
information cannot be found in the literature. The lower the
FLOPs are, the fewer operations are performed and thus the
faster of the inference speed. As summarized in Table 4, our
model has the least operations, demonstrating better run-
time efficiency (FasTCo only takes 3.8 ms to infer on a sin-
gle frame, which is approximately three times faster than
STASN [31]). If switching to a lightweight backbone, like
FasTCo-MN, FLOPs and inference time reduced dramat-
ically, showing great potential for low-latency low-power
applications.

In-the-Wild Scenario: The SiW dataset [17] was used to
evaluate the face liveness detection system in the presence
of variances of subject pose, environment illumination, and
unseen presentation attacks. The comparison with the cur-
rent state-of-the-art methods on this benchmark is summa-
rized in Table 5: (i) The baseline model (R50) initialized
with ImageNet pre-trained weights, without any additional
data, has already achieved comparable performance to the
current state-of-the-art, STASN™T, which used additional
synthetic augmented data during training. One possible rea-
son is that it is easier for the optimizer to find a better local
minimum when using this single CNN network rather than
training CNN and RNN jointly. (ii) FasTCo achieved sig-
nificantly better performance on protocol one, even using
the lightweight backbone. One possible explanation is as
follows: the subjects in the training set are frontal faces
only, leading to slight overfitting to frontal faces for the
trained model. However, the subjects in the test videos have
more pose changes. Due to the temporal consistency in-
troduced in our uncertainty module, the large variation on
the predictions due to the pose change was extremely sup-
pressed, which results in predictions of higher confidence.
(iii) FasTCo outperformed the state-of-the-art methods by
at least 65% using the last two protocols. Even in proto-
col three for the open-set scenario, our method achieved
better performance, demonstrating the effectiveness of the
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Figure 4: 2D t-SNE Visualization of the representations of
FasTCo in the open-set liveness detection scenario (Best
view in color and zoom in).

proposed model for liveness detection in the wild. To vi-
sually understand the learned model, the feature represen-
tations generated by our baseline R50 and FasTCo on the
testing set are plotted in Fig. 3a. Compared with the base-
line model, the representations of each class produced by
our method are more compactly clustered and clearly sepa-
rated, which could possibly explain the better classification
performance. As a qualitative comparison on the prediction
scores with the baseline depicted in Fig. 3b, our proposed
loss functions improved the temporal consistency compared
with the baseline while the uncertainty estimation module
can further improve the prediction quality during inference.

Mobile Scenario: The comparison with the state-of-the-art
on the OULU-NPU dataset [4] is depicted in Table 6. Sim-
ilarly, our single network method outperformed the state-
of-the-art on this benchmark on three out of four proto-
cols. Note that STASN™T consisted of multiple networks
(R50+LSTM for extracting temporal information and R50
for local spatial information). Besides it was trained with
additional synthetic data, while FasTCo only used the pro-
vided training set. However, it obtained comparable per-
formance using protocol one and two and achieved at least
40% improvement using protocol three and four, indicating
more robustness to acquisition device changes, unseen illu-
mination conditions, and unseen presentation attacks.

Open-world Scenario: The SiW-M dataset [ 18] was used
to evaluate the performance of the model when it encoun-
ters unseen presentation attacks in the open-world scenario.
Two state-of-the-art methods [17, 18] were reported on this
dataset. Due to the lack of validation set to choose a thresh-
old in this zero-shot scenario, a high threshold of 0.99
was set to reduce the false positive alarms. The compari-
son with the recent methods, depicted in Table 7, demon-
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Table 5: Comparisons on the SiW dataset with three protocols (Pr.). The best results are marked in gray.

Pr. | Metrics (%) | TD-SF-CS [33] STASN*[31] STASNT [31] | R50 R50-LSTM | FasTCo  FasTCo-MN
APCER 1.27 0.72 - 0.30 0.13 0.06 x 1072 0.70 x 10~2

1 | BPCER 0.33 0.89 - 0.26 0.02 0.00 x 1072 0.15 x 1072
ACER 0.80 0.81 0.30 0.28 0.08 0.03 x 1072 0.43 x 1072
APCER 0.08+0.17  0.29+0.16 - 0.08+0.05 0.03+0.02 | 0.02£0.02 0.02 4 0.02

2 | BPCER 025+022  0.27+0.14 - 0.07+0.03 0.03+0.03 | 0.00£0.00 0.01+0.01
ACER 017+0.16  0.28+0.15  0.15£0.05 | 0.03+0.03 0.03+0.03 | 0.01 £0.01 0.01 +0.02
APCER 6.27+4.36  11.05+3.30 - 9.18+4.32 445+051 | 273£091 336+ 1.94

3 | BPCER 6.43+4.42  7.74+£3.08 - 8.4140.94 3.614+0.67 | 128021  5.00 +0.36
ACER 6.35+4.39  939+319  585+0.85 |880£2.62 4.03+£008 | 200+056 4.18+1.15

Table 6: Comparison on the OULU-NPU dataset with four protocols (Pr.). The best performance is marked in gray.

Pr. | Method | APCER (%) BPCER (%) ACER (%) Pr. | Method | APCER (%) BPCER (%) ACER (%)
Auxiliary [17] 1.6 1.6 1.6 Auxiliary [17] 27+13 3.1 +£1.7 29+15
De-Spoofing [14] 1.2 1.7 1.5 De-Spoofing [14] 40+1.8 38+1.2 36+15
STASN* [31] 12 0.8 1.0 STASN* [31] 14+14 36+46 25422
CDCN++ [32] 0.4 0.0 0.2 3 | CDCN++ [32] 1.7+ 1.5 20+1.2 1.8 £ 0.7
R50 2.3 4.7 3.5 R50 34430 0.7+ 1.0 20+19
R50-LSTM 3.3 0.8 2.1 R50-LSTM 47+ 14 26+£42  37+27
FasTCo 0.8 0.8 0.8 FasTCo 1.2+1.3 1.0+ 1.0 1.1 +£0.8
Auxiliary [17] 2.7 2.7 2.7 Augxiliary [17] 93+56 104+60 95460
De-Spoofing [14] 42 44 43 De-Spoofing [14] 5.1+6.3 6.1 +5.1 5.6+5.7
STASN™ [31] 14 0.8 1.1 STASN™ [31] 09418 42453 26428

2 | CDCN++ [32] 1.8 0.8 1.3 4 | CDCN++ [32] 42+34 5.8+49 50+29
R50 2.0 1.1 1.6 R50 51+39 41+24 4.6 +£2.1
R50-LSTM 34 1.3 23 R50-LSTM 89+76  46+37 67+36
FasTCo 1.0 1.3 1.1 FasTCo 1.0 £ 2.0 20+ 4.1 1.5+12

-i mannequin head, impersonation, and partial paper or pa-
/ ’ e \ per cut attacks. (ii) Compared with DTN [18], FasTCo
b obtained a worse result on predicting video replay attacks
_ ok and achieved comparable performance on detecting print at-
= L tacks. (iii) Compared with DTN [18], a significant improve-
\ \ ment was achieved by FasTCo in detecting various masks,
makeup (especially obfuscation attack), and partial occlu-
sion attacks. It reveals that our uncertainty estimation mod-
Siw-Live ule using temporal consistency also works well on detecting

SiW-Print most of the unseen presentation attacks.

) SiW-Replay
x OULU-Live . .

\ \ OULU-Print1 To visually understand the performance in seen and un-
OULU-Print2 seen attack scenarios, we separated out the video with sili-

OULU-Replayl
OULU-Replay2

N
£ - i 'i' ‘
Figure 5: 2D t-SNE visualization of the feature represen-
tations generated from SiW and OULU-NPU datasets by
FasTCo trained on SiW dataset only.

strated that our method outperformed the previous meth-
ods by at least 40% in terms of APCER, ACER, and EER.
Diving deep into the details of the unseen attack scenarios,
the following observations can be summarized: (i) In gen-
eral, our method performed well on detecting paper mask,

cone attacks, a hard case to 2D face liveness detection sys-
tem, as the unseen presentation attacks. Then, a randomly
selected 80% of the other videos were selected as the train-
ing set and the rest was used as the seen attacks. We re-
trained the model and depicted the representations gener-
ated from the testing set in Fig. 4: (i) Most samples belong
to the same attack types are clustered, even for the unseen
silicone mask attack samples. It demonstrates the general-
ization of our model to this unseen attacks. (ii) There is a
small overlap between silicone mask samples and live sam-
ples, which explains why this attack is more difficult to de-
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Table 7: Comparison on SiW-M dataset with open-set evaluation protocols. The best overall performance is marked in gray.

Method Metrics (%) Replay  Print Mask Attacks Makeup Attacks Partial Attacks Average
Half Sili. Trans. Paper Manne. Obf. Imp. Cos. F Eye P Glass P. Paper
APCER 23.7 73 277 182 978 8.3 16.2 100.0 18.0 163 918 72.2 0.4 38.3+37.4
Auxiliary [17] BPCER 10.1 65 109 11.6 6.2 7.8 9.3 11.6 93 7.1 6.2 8.8 10.3 89+20
ACER 16..8 69 193 149 521 8.0 12.8 558 137 11.7  49.0 40.5 53 23.6 £ 18.5
EER 14.0 43 11,6 124 246 7.8 10.0 723 101 94 21.4 18.6 4.0 17.0 £ 17.7
APCER 1.0 00 07 245 586 0.5 3.8 732 132 124 170 17.0 0.2 17.1 +£23.2
DTN [15] BPCER 18.6 11.9 293 128 134 8.5 23.0 1.5 96 160 215 22.6 16.8 16.6 6.2
ACER 9.8 6.0 150 187 36.0 45 7.7 48.1 114 142 193 19.8 8.5 16.8 £ 11.1
EER 10.0 2.1 144 18,6 265 5.7 9.6 502 10.1 132 198 20.5 8.8 16.1 £12.2
APCER 1.7 00 28 99 3.4 0.0 0.0 229 0.0 10.1 409 12.0 0.0 8.0+ 12.0
FasTCo BPCER 20.6 120 102 94 20.7 9.2 14.6 108 8.1 9.9 8.5 9.5 14.8 122 +43
ACER 11.2 60 65 97 12.1 4.6 73 168 40 100 247 10.7 7.4 10.1 £ 5.6
EER 7.1 56 77 98 14.8 0.0 2.3 14.0 1.0 10.0 149 10.3 1.8 76+53

Table 8: Comparison with the state-of-the-art methods in a cross-domain setting (Best results are marked in gray).

Method | APCER (%) BPCER (%) ACER (%) | EER (%) | FNR(%) @FFR=

\ \ 1E-5 1E-4 1E-3 1E-2 1E-1
Auxiliary [17] 26.82 14.17 20.50 17.07 98.07 9691 9470 7926 3445
STASN* [31] 13.24 5.47 9.35 5.42 67.13 6246 5222 20.67 3.13
R50 8.32 4.48 6.40 4.28 8438 8193 7715 15.60 1.64
FasTCo | 514 2.44 379 | 257 | 4969 4625 4468 1294 0.10

tect. (iii) The features from obfuscation are more scattered,
indicating that the network suffers from learning a unique
representation for this attack.

Cross-domain Scenario: To verify the generalization of
the model, the following experiment was designed: Be-
cause both the SiW and OULU-NPU datasets contain the
print and video attacks yet there is a large domain gap be-
tween these two, the SiW dataset was selected as the train-
ing set and the OULU-NPU dataset was used as the test-
ing set. The state-of-the-art models such as Auxiliary [17]
and STASN [31] and R50 model were selected as the base-
lines in this experiment. The model of Auxiliary gener-
ously provided by the authors was directly used to test its
performance. Table 8 shows that FasTCo achieved signifi-
cantly better performance (40%-+ in ACER) compared with
all baselines across all metrics. The video-segment level
evaluation was performed and the results are depicted in
Table 9. FasTCo consistently outperformed all baselines
across different video segment lengths. Considering both
model performance and latency, the video segment length
between 5 to 15 were highly recommended in practice. Fig-
ure 5 depicts the t-SNE visualization of feature representa-
tions extracted from two different domains. (i) The model
correctly learned the liveness features directly from videos
since the features from two different domains were highly
clustered. (ii) The feature representations from SiW-Print
were isolated to the other features while the features from
SiW-Replay were cluttered with the attack features from the
OULU-NPU dataset, which indicates that the clue to distin-

Table 9: Comparison with the state-of-the-art in a cross-
domain setting using the proposed segment level evaluation
(Best results are marked in gray).

video segment length K =

Method Metrics (%)

1 3 5 10 15 30
. ACER 935 9.11 8.87 8.74 9.17 8.91
STASN*[S1] pNR@FPR=IE2 2067 2086 1950 1753 1877 1808
R50 ACER 6.40 6.08 5.98 5.87 561 5.61
FNR@FPR=IE-2 1560 1670 1665 1560 1621 1415

— ACER 3.96 3.92 3.87 3.77 370 3.69
astto FNR@FPR=1E-2 9.72 8.94 8.55 8.60 828 7.86

guish the presentation attacks from the OULU-NPU dataset
was mostly learned from Replay attacks in the SiW dataset.
In summary, FasTCo has better generalization for cross-
domain applications than current state-of-the-arts, and the
actual performance will be even better if the target domain
has higher overlap with the source domain.

6. Conclusion

In this paper, the temporal inconsistency was identified
as a common underlying issue that undermines the model
performance in the face liveness detection task. To ad-
dress this issue, in addition to the classification loss, tem-
poral consistency and class consistency losses were pro-
posed for training the model. Moreover, a training-free un-
certainty estimation module was developed to update the
prediction adaptively in a smooth manner. Extensive exper-
iments have demonstrated that, by applying two proposed
strategies based on temporal consistency, the model outper-
formed the current state-of-the-art by a significant margin.
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