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Abstract

Geometrical analysis of a shape through skeletonization
has some of very important high- and low-level application
which includes tracking, manipulation, retrieval, represen-
tation, registration, recognition, and compression. The task
of skeletonization is defined as the generation of the me-
dial axis of the shape while preserving its original topol-
ogy and geometry. While the earlier approaches are mainly
based on extracting the skeleton and then pruning the un-
wanted branches, the present study proposes a novel convo-
lutional neural network based method to perform this task.
The proposed architecture is an encoder-decoder network
that leverages the benefits of the coordinated convolutional
layer and multi-level supervision to prevent the loss of in-
formation between the extracted skeleton and the ground
truth. The dense attention block is used as the backbone
block in the encoder and decoder block. This architecture
is performing better than the state of art on not only skele-
tonization of image tasks but also skeletonization from the
point cloud. This method achieved an F1 score of 0.7961
on the Pixel Skeleton dataset and a Chamfer Distance (CD)
score of 1.9561 on the Point skeleton dataset.

1. Introduction

Skeletonization is a process to reduce the object dimen-
sions to extract its medial axis or skeleton while preserving
its essential topological and geometrical information that
can be used for the complete recovery of the original ob-
ject [29]. Skeletonization has a wide range of applications
for many decades which includes object description, object
recognition, object matching, object retrieval, tracking [16],
optical character recognition [25], fingerprint recognition
[36], motion detection [20], object tracking [16], etc. Skele-
tons are also widely used in life sciences for plant morphol-
ogy [1], [26] and medical image analysis. A large number
of approaches are used to extract the skeleton. However,
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the impressive success of the convolutional neural network
is now appealing to the researcher to leverage this approach
in skeletonization as well. The robustness and generaliza-
tion capacity of the CNNs makes these model more lucra-
tive. Except this, most of the time, these approaches provide
an end-to-end solution which makes the process of skele-
tonization easier when compared to traditional approaches
which are based on applying some pruning of the branches
after extracting the skeleton or comparing the pixel values
with a threshold. The present method is a convolutional
neural network that contains an encoder-decoder structure.
The features in latent space are extracted using the dense
attention blocks in the encoder and then the pixel-wise seg-
mentation map is generated using the same dense attention
blocks in the decoder. Before routing the input into the
residual blocks, the input images are initially fed into the
coordinate convolutional layer. The weights are optimized
using an average of dice loss and cross-entropy loss. Along
with this, multilevel immediate supervisions are used for
efficient back-propagation and to make the model robust
and generalized. This model also used two different atten-
tion modules predicting more precise values of pixels in the
skeleton map. As an image prior, the distance-based medial
axis is concatenated with the decoder’s output for higher re-
call. The main contributions of the proposed approach are
as follows:

1. An end-to-end automatic deep neural network is intro-
duced for easy and effective skeletonization.

2. An image prior and multi-level supervision-based
network to eliminate all prepossessing and post-
processing steps.

3. An efficient Dense channel attention block is proposed
for robust delineation of the medial axis.

4. Attention blocks are introduced before every supervi-
sion for higher precision of the predicted pixels which
means that all the medial points are connected to form
a single medial axis.
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5. The proposed model is generalized enough to perform
on two different types of input viz. pixel image and
point image.

Our model has the ability to learn rich hierarchical and
contextual features. The state of art results on two differ-
ent types of inputs shows the effectiveness, robustness, and
generalization capacity of the proposed architecture. The
rest of the paper discusses the literature, the details of the
proposed architecture experiments, training details, results,
and conclusion.

2. Literature Review

Skeleton extraction is a widely investigated area since
the last decade. However, the most recent works are mainly
focused on the extracting skeleton from the RGB images
[31], [141, [10], [331], [23], [22], which involves segmen-
tation or detection of the objects and extract the skeleton
at the same time. Also, an extensive research is done ei-
ther on edge detection [9], [6], [35], [30] or segmentation
[35], [13] individually. These kinds of works are not fully
suitable for the present task. Some initial works are done
on the extracting skeleton from the binary mask images [4],
[31, [5], [12] which is similar to our task. However, most
of these works are focused on skeleton pruning to remove
the unwanted branches rather than skeleton extraction. In
the work done by [1 1], the authors introduced the bound-
ary noise to avoid the uninformative branch creations. [21]
used skeleton strength maps (SSM) which are calculated by
the isotropic diffusion of the Euclidean distance transfor-
mation of binary images and their gradient. After calculat-
ing the SSM, they connected all the local maxima points of
SSM with the shortest possible line to extract the skeletons.
[34] has extracted the dense skeleton map followed by graft-
ing the backbone branches. [7][19] approached the task of
skeleton extraction as an image generation model and used
the generative adversarial network to extract the skeletons.
However, the recent works, for example, [26], [17], [8], [27]
have introduced convolutional neural networks to extract
skeletons from the binary mask images. [2] and [17] used
deep convolutional neural network for skeleton extraction
from cloud images too. Inspired by the above works, the
current model also leverages the benefits of CNN to achieve
the state of art results. Similar to [26], we have also fused
the side layers into the final output layer. However, to im-
prove, the accuracy of the model, instead of taking the out-
put of convolution layers as side layers, we have introduced
CS-SE layers at the end of each up-sampling layer and have
considered the output of CS-SE layers as side layers. The
detail of our approach is discussed in section 3.

3. Details of Proposed Architecture

The detailed architecture is presented in Fig.1. In the fol-
lowing subsection, we will discuss the details of each com-
ponent of the proposed architecture.

3.1. Coordinate convolutional layer

For improving the model’s generalization capacity, extra
two channels are created for input image using coordinate
convolution layer as proposed in [24]. Coordinate convo-
lutional layer helps the network to decide on the features
related to translation equivariance which helps in improv-
ing the generalization capacity of the model.

3.2. Dense Channel attention block (DCAB)

Dense connectivity in the convolutional layers improves
the information flow throughout the network [15]. The out-
put of each layer is concatenated to all subsequent layers
along the channel axis in the network. Hence the output of
a layer i is represented by Eq.(1):

zi = f(zollza] oo flzia[l]) (1

Since the number of channels at each layer of the block
is growing at a rate of k, where k is the number of previous
layers, to make the information flow more precise, we added
channel attention to each convolutional layer in the dense
block. Detail of the Channel attention block is presented in
Fig.2(a). There is a total of 8 DCAB blocks, two for each
resolution level are used in the encoder which is concate-
nated with the output of the decoder after up-sampling the
last layer, the skip connections are used to concatenate. This
concatenated output is then treated as the input for another
DCAB block in the decoder followed by CSCA.

3.3. Attention Modules

To boost the performance of the proposed architecture,
three attention modules are used.

Channel Attention Inspired by [32, 18], to create the
channel attention, we first aggregated the spatial informa-
tion by creating two pooled feature maps using average
pooling and max pooling, thereafter two single-layer per-
ceptrons are used to create the channel attention maps. The
output feature maps are then merged, and a sigmoid activa-
tion is applied to get the final channel attention. The mathe-
matical representation is given in Eq.(2). A typical channel
attention block proposed in [32] is presented in 3(a).

D Ti
Ca=xXfy|w (on) + wi (wo(mazx(z;)))] (2)

This channel attention is used in Dense channel Atten-

tion block.
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Figure 1. Proposed Model: SkeletonNetV2: A DenseNet Channel Attention Blocks for skeleton extraction
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Figure 2. (a) Proposed dense Channel Attention block; (b) Attention Block Connection

Spatial Attention Similar to [32, 18], to apply, spatial at- ations are concatenated and then a convolutional operation
tention, the pooling operations are done along the channel is applied with 7x7 filter. Similar to channel attention, the
axis. Then these two max-pooled and average pooled oper- spatial attention is then multiplied by the input feature map.
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Eq.(3) shows the mathematical operation involve in spatial
attention. A typical spatial attention block proposed in [32]
is presented in 3(b).

S @) )

Sa=zX f conv[
Convolution Block Attention block In the proposed work,
both the channel and spatial attention are used in a sequen-
tial manner, the channel attention is created for the input
features, and then it is added back to the input. The spatial
attention is applied to the output then. Hence the combined
attention is the spatial attention on the channel attention as
shown in Eq.(4). Fig. 3(c) shows the CBAM block pro-
posed in [32]

attention = S4(Ca(x)) “4)

where, x represents the input feature map, f, and feone
represent the sigmoid activation function and 7x7 convo-
lutional operation respectively. wg and w; are the shared
single layer perceptron.

Concurrent Spatial and Channel Attention Inspired by
[26],[28] an additional attention is applied on the output of
each dense channel attention block in decoder. This recal-
ibration encourages the network to learn more meaningful
feature maps, that are relevant both spatially and channel-
wise. The key difference in both the attention is that, unlike
CBAM, the attentions are concurrent that means both the
channel and spatial attention are applied to the input fea-
tures and then the two outputs are added.

3.4. Multi-level Supervision

To train the model, multi-level supervision has been
used. Since the receptive field increases as the network get
deeper, feature maps at different layers utilize the spatial
information at different levels. Supervision at different lev-
els helps these layers to learn quickly and efficiently as the
gradient is populated in these layers also and thus helps in
updating the weights more efficiently. The output of each
level is concatenated along the channel axis followed by the
CBAM attention block before the final supervision.

4. Experimental Setup

In this section, the details of the dataset, training setup,
loss function, and metrics are provided.

4.1. Dataset

The model is trained on the Pixel SkeletonNet dataset
[7] and Point SkeletonNet dataset [7]. The Pixel Skeleton
dataset contains 1219 training and 242 validation images.
The input images of this dataset contain the pixel-wise bi-
nary mask for 89 objects. The sample images of the pixel
image are presented in Fig. 4. The ground truth images

are the skeleton of the object. Similarly, the Point Skele-
ton dataset contains 1219 training images. The input of
the dataset is the shape point cloud given in the basic point
cloud export format .pts. Sample shape point clouds and
their corresponding skeleton point clouds are shown in Fig-
ure 2. For the purpose of training, the data is augmented
using +45 and -45 degree spatial rotation. All the images
are normalized between 0 and 1.

4.2. Training Details

The model is trained using tensorflow/keras framework
for 5 outputs. Adam optimizer is used to update the weights
while training. The learning rate is initialized with 0.001
and reduced after 10 epochs to 10 percent if validation loss
does not improve. The batch size is set to 4 to be accommo-
dated in the available hardware resources. The total epochs
are set to 500. However, training is stopped early when
the network started overfitting. The dataset is trained using
Nvidia 1080 GTX GPU.

4.3. Loss Function

Similar to [26], to optimize the model weights, a com-
bined loss is used. This combined loss is the sum of the bi-
nary cross-entropy and Dice Loss as defined in Eq.(7) The
network is trained to minimize this combined loss with sig-
moid activation function. Dice Loss is defined in equation
(2) and L is cross-entropy loss defined in Eq.(5)

k
2Zi:0yi*pi+€

DiceLoss =1 — — - (®))
Zi:o Yi + Z{:o pi +€
Binary cross entropy is represented in Eq.(6)
k
BCE == [yi #logp; + (1—y;) *log(1 - p;)] (6)
i=0
Loss = DiceLoss + BCE @)

where, yi and pi are the ground truth and the predicted
skeleton images respectively. The coefficient is used to
ensure the loss function stability by avoiding the zero value
in the denominator of dice loss.

4.4. Evaluation Metrics

For pixel skeleton, the metrics used for evaluation is
given as follows

Flscore — 2 prec.is?on * recall @)
precision + recall

whereas, precision and recalls are defined as

TP

TP+ FP ©)

precision =
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Figure 3. (a) Channel Attention Module; (b) Spatial Attention Block; (c) Convolutional Block Attention Module

TP
TP+ FN
TP, FP and FN represents the true positive, false positive
and false negative respectively.
For evaluating point skeleton, Chamfer Distance (CD) is
used. Equ. (11) represents CD.

recall = (10)

1 ,
CD = @ Z MAMNp,eS, l[p1 _p2H2
P1€St

: | (an
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5. Results

The proposed model achieved the state of art results
with a very low computational complexity of the model.
The Pixel net model, which is trained with pixel-wise bi-
nary mask achieved an F1 score of 0.7961 on the validation
dataset. The results of all side layers are calculated for the
purpose of ablation. Table 1 shows the results of the abla-
tion study.

Table 2 shows the results of the proposed model on the
PixelNet dataset. The results clearly shows the significant

Output Layer F1 Score on | CD on shape

Pixel Dataset | Point Cloud
dataset

Output Layer 1 0.7098 2.0618

Output Layer 2 0.7211 2.0112

Output Layer 3 0.7466 2.0032

Output Layer 4 0.7681 1.9582

Fused Output 0.7961 1.9561

Table 1. Results of the output layers and the Fused layer on vali-
dation Dataset of Pixel and Point dataset.

improvement in the state-of-art approaches.

Table 3 shows the results of the proposed model on the
shape cloud point dataset. The results clearly shows the
significant improvement in the state-of-art approaches.

Some images from the training data along with the pre-
dicted output and ground truth are presented in Fig 5.

6. Conclusion

The present architecture leverages the DCAB, attention
module and customized loss for end to end extraction of
the medial axis from the pixel-wise binary mask and shape
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Figure 4. Sample Images for point Skeleton and Pixel Skeleton Dataset.
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Figure 5. Outputs from Point and pixel datasets compared to ground truth.
cloud point. Overall the present paper is able to handle two promising approach for future tasks of medial axis retrieval.

task with higher evaluation metrics which seems to be a
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Method F1 Score
Baseline [7] 0.6244
Jiang et. al.[17] 0.6325
Nathan and Kansal [26] 0.7480
Panichev et. al.[27] 0.7500
Dey [8] 0.7780
Ours 0.7961

Table 2. Comparison of Results on Pixel Skeleton validation data
with existing state-of-art. Higher score represents the better result

Method CD Score
Rowel [2] 2.9105
Jiang et. al. [17] 2.40
Ours 1.9561

Table 3. Comparison of Results on Point Skeleton validation data
with existing state-of-art. Lower the score, the better the results
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