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Abstract

Skeletonization is a process focused on providing a com-
pact and simple representation of an object by extracting the
skeleton pixels from the given shape in a binary image. This
method has been widely applied in various image process-
ing and computer vision applications. In addition to tra-
ditional approaches which are not robust and provide low
accuracy results, many efforts have been made for creating
deep learning based methods to overcome these disadvan-
tages. However, skeletonization is still a new topic in the
deep learning world. In this paper, we propose our solu-
tion for the Pixel SkelNetOn challenge in the third edition
of the “Deep Learning for Geometric Computing” work-
shop at ICCV 2021, which includes (1) modification of U-
Net architecture using the attention mechanism, (2) imple-
mentation of auxiliary task learning for a more effective
training process and (3) application of several tricks for
improving the skeletonization model’s performance. Our
method achieved 0.8000 on the Pixel SkelNetOn valida-
tion set and second place in the leaderboard. We also
release our code to facilitate future research at https:
//github.com/namdvt/skeletonization.

1. Introduction

Skeletonization or medial axis transform is a morpholog-
ical processing function that decreases the foreground re-
gions in an image to obtain the simple skeleton lines, which
spread along the medial axis of the object. This representa-
tion is widely used in digital image processing and com-
puter vision, especially in pattern recognition and image
analysis, such as image retrieval, matching, compression,
vectorization and optical character recognition (OCR).

Traditionally, the skeleton of an image can be extracted
using the morphological thinning method that erodes the
pixels from the object’s boundary repeatedly. In addition,
other methods compute the skeleton by obtaining the dis-
tance to the closest boundary from each point using the
distance transform. These classical methods usually pro-
vide low accuracy prediction and sensitive to noise. Re-

cently, with the emergence of convolutional neural net-
works (CNN), some deep learning based skeletonization
approaches have been proposed [6, 8, 9], which extract
the skeleton of object by solving a segmentation or pixel-
wise binary classification problem. Even though CNN ap-
proaches provide impressive success in classification and
segmentation tasks compared to traditional methods, creat-
ing a deep learning model for extracting robust and accurate
skeletons from object shapes still remains a challenge.

In this paper, we propose our solution for the Pixel Skel-
NetOn challenge [1] in the Deep Learning for Geometric
Computing - ICCV 2021 Workshop and Challenge, which
includes:

(1) The modification on the encoder and decoder com-
ponents of the original U-Net architecture [10] using the
attention mechanism to improve the feature representation
and reconstruction capabilities, respectively.

(2) Auxiliary task learning in different image resolutions
for boosting the training efficiency and the accuracy of out-
put results.

(3) Bags of tricks for increasing the performance of the
deep learning based skeletonization model.

2. Related Works

Due to the various applications of skeletonization, many
computational approaches have been proposed for object’s
skeleton extraction. For example, Zhang et al. [14] pro-
pose a fast parallel thinning algorithm, which iteratively re-
moving the pixels on object borders until the object shape
is thinned down to obtain a unitary thickness skeleton. Lu
et al. [7] improve this method by considering and preserv-
ing the important structure which should not be eliminated
during the removing process. Lee et al. [4] present the 3-
D parallel thinning method using an octree data structure
to examine the 3x3x3 local neighborhood of every pixel.
However, the computational based skeletonization methods
are usually not robust to noise and generate low accuracy
results.

Recently, to overcome the limitation of traditional meth-
ods, many deep learning based approaches for skeletoniza-
tion have been proposed. For instance, the DeepSkeleton
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Figure 1: The modified U-Net architecture.

[11] is a fully convolutional network, which is designed to
extract the skeleton in different scales from multi stages,
then these multi-scale skeletons are combined to obtain the
final result. The Multi-Scale Bidirectional Fully Convolu-
tional Network (MSB-FCN) [13] employs a bidirectional
structure to capture multi-scale feature representations of
deep features of the network to learn the information from
multiple sub-regions. Liu ef al. propose the Rich Side-
output Residual Network (RSRN) [5], which fuses rich
side-outputs of VGG to utilize the information from each
feature layer. Furthermore, the results are refined hierarchi-
cally by reducing the residual between side outputs and the
ground truth.

Even though convolutional neural networks achieve im-
pressive results in various computer vision problem, it re-
mains problematic to create a high performance skele-
tonization model. In this paper, we present our solution for
the Pixel SkelNetOn 2021 challenge, which is able to pro-
vide accurate skeletons from object shapes and a high score
on the leaderboard.

3. Proposed Method

In this section, we introduce our modification of U-Net
architecture using the attention mechanism in section 3.1.
We then provide our loss function and data augmentation
methods used to train the model in section 3.2 and section
3.3, respectively. Finally, we present some post-processing
tricks for improving the model’s performance in section 3.4.

3.1. Network Architecture

Since the skeleton extraction process can be considered
as solving a segmentation problem, we start from the U-Net
architecture [10] as the baseline, which achieves high per-
formance on various segmentation tasks. Then, we apply
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Figure 2: The multi-head attention.

improvements on the U-Net’s encoder and decoder compo-
nents using the attention mechanism to enhance the effec-
tiveness of the original architecture, as illustrated in Figure
1.

Encoder. The encoder component of the original U-Net
consists of 3x3 convolutions, followed by ReL.U activation
functions and max pooling layers for the downsampling.
This component is responsible to capture the context of the
input image by encoding it into the multi-level feature rep-
resentations. However, as our experiment, the original U-
Net encoder is not suitable for providing high quality fea-
ture representations for different object shapes in the skele-
tonization task, resulting in a moderate predicted skeleton
and a low prediction score.

To this end, motivated by [3], we improve the feature
representation of the original U-Net encoder by adopting
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the multi-head attention to learn diverse features from ob-
ject shapes. Specifically, the input feature map is fed into
multiple 3x3 convolution layers, which is expected to learn
distinct encoded features of the object. Then, the decision
branch which consists of a 1x1 convolution layer and a soft-
max layer is responsible to decide the contribution of each
head’s feature to the final feature representation, as illus-
trated in Figure 2.

Decoder. In the original U-Net architecture, the decoder
consists of upsampling and concatenation layers followed
by multiple 3x3 convolution layers, which is responsible for
reconstructing the skeleton image using the features learnt
by the encoder. For improving the decoder capabilities, the
attention mechanism is also adopted for refining the feature
map. Specifically, the Convolutional Block Attention Mod-
ule (CBAM) [12] was added before 3x3 convolution layers
in the decoder component. This modification increases the
representation power by focus on important and suppressing
unnecessary information from encoded features, as shown
in Figure 3.

3.2. Loss Function

Weighted focal loss. To address the problem of unbal-
anced class in the Pixel SkelNetOn dataset, we adopt the
weighted focal loss function as

Lfocal = O‘p’ylog(p) + (1 - Oé)(l - p)’leg(l - p)a (1)

where « is the weight for positive class, p is the probability
that the sample belongs to positive class and ~ is the focus-
ing parameter.

Dice loss. We also use the dice loss to minimize the over-
lap between predicted and target skeleton image, as

diyipite
Ziyi + Zipi +¢€’
where y; is the target label and € is a small constant to avoid

division by zero. Then, the final loss function is defined as
the combination of focal loss and dice loss, as

L= Lfocal + Ldice- (3)
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Figure 4: The illustration of the shift augmentation. (a)
Original sample with extreme points (red) and bounding
box (yellow) and (b,c) two examples of the augmentation
results.

Auxiliary task learning. Furthermore, by learning multi-
ple outputs from a single target skeleton, as shown in Figure
1, the auxiliary task learning appears to improve training
efficiency, reduce over-fitting problem and boost the per-
formance of the primary task. Specifically, feature maps
with different resolutions from each stage of the decoder
components are fed into 1x1 convolutions layers to get the
low resolution predicted skeletons. Then, the auxiliary tasks
are formulated to minimize the loss between these outputs
and the corresponding down-sampled target skeletons. This
modification provides better convergence and able to im-
prove the performance of the desired main task. Then, the
final loss function is defined as

Lﬁnal = 0.5L256 + 0.3L128 + 0.2L64 + 0.1[/327 (4)

where Lyse, Liog, Les and Lj; are the loss of primary and
auxiliary tasks of multiple image resolution of 256x256,
128x128, 64x64 and 32x32, respectively.

3.3. Data Augmentation

Following the previous works in the Pixel SkelNetOn
challenge [9, 2], we augment the data using rotation (90°,
180°, 270°) and flipping (horizontal, vertical) operations.
However, the number of samples is still limited, results in
over-fitting problem. To tackle this issue, we propose a
shifting augmentation to effectively increase the amount of
training data by moving the object into different locations
in the image. Specifically, we first find the four extreme
points (north, south, east, west) of the object contour in the
input binary image. Then the object is cropped using the
bounding box obtained from the estimated extreme points.
Finally, the object is randomly allocated in the image to cre-
ate new training data, as presented in Figure 4.

3.4. Post-Processing

We apply some post-processing techniques to further en-
hance the performance of our skeletonization model.
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Method Split-Test ~ SkelNetOn
Baseline 0.6200 0.6800
Baseline + Multi-head Attention 0.7731 0.7552
Baseline + Multi-head Attention + CBAM 0.7824 0.7725
Baseline + Multi-head Attention + CBAM + Auxiliary tasks | 0.8032 0.7891

Table 1: Performance of different methods on Split-Test and official Pixel SkelNetOn validation set.

’ Method \ Performance ‘
Threshold searching v v v
Test time augmentation v v
Ensemble v
Prediction score 0.7926 0.7971 0.8000

Table 2: Performance of different post-processing tech-
niques on official Pixel SkelNetOn validation set.

Threshold searching. After getting output from the last
sigmoid layer in the model, the predicted skeleton is ob-
tained by thresholding every pixel with the same threshold
value, normally set to 0.5. If the pixel intensity is greater
than the threshold value, it is set to 255, otherwise it is set
to 0. However, using a fixed threshold value 0.5 is not effi-
cient, since the dataset is highly unbalance. To address this
issue, we attempt to search for an optimal value of thresh-
old on the hold-out validation set, then the best threshold is
used to create output skeletons from the official SkelNetOn
validation set.

Test time augmentation. We apply test time augmenta-
tion to make the model more robust and improve the predic-
tion results. Specifically, we create multiple of augmented
sample from the input image using flip and rotate opera-
tions. After obtaining the prediction for each, we simply
average these predictions to make the final skeleton.

Ensemble. Finally, to obtain higher model generalization
performance and reduce the over-fitting problem, we en-
semble five fold models by taking the average prediction
from each model.

4. Experimental Results

The model was trained on the Pixel SkelNetOn dataset
provided by the SkelNetOn 2021 Challenge [1], which con-
tains 1,725 binary images with size 256x256 pixels. We
split the dataset to the Split-Train and Split-Test in the ra-
tio of 80:20, which considering the object type information.
Specifically, Split-Train contains 1,380 images and Split-
Test contains 345 images. We train the model using SGD
optimizer with the cosine annealing scheduler with learning

rate is 0.02 and validate the model performance using F1-
score. For the weighted focal loss function, we set o = 0.01
and v = 2 for all experiments.

4.1. Ablation Study

In this section, we summarize the results of our method
on two validation sets, the Split-Test and the official Skel-
NetOn validation set, refer as SkelNetOn in Table 1 and Ta-
ble 2.

Baseline. We used the U-Net model as the baseline and
trained using the focal loss and dice loss defined in equa-
tion 3. This method achieved 0.62 and 0.68 F1-score on the
Split-Test and SkelNetOn validation set, respectively, which
are moderate scores since the original U-Net architecture is
not suitable for the skeletonization task.

U-Net with attention mechanism. The encoder and de-
coder components of the original U-Net are modified by
adding the multi-head attention and CBAM architecture as
described in section 3.1. These improvements significantly
increase the model performance to 0.7731 and 0.7824 on
Split-Test, and 0.7552 and 0.7725 on SkelNetOn valida-
tion set. The results showed that the attention mechanism
is capable to enhance the feature representation power of
the original U-Net.

Auxiliary tasks learning. By adding the auxiliary tasks
in different stages of the decoder network, the performance
of the main task is improved by 0.0208 and 0.0166 to reach
0.8032 and 0.7891 Fl-score on Split-Test and SkelNetOn
validation set, respectively.

Post-processing. Table 2 illustrates the results of post-
processing methods on the SkelNetOn validation set.
Firstly, by using the threshold searching instead of using
threshold value 0.5, the prediction score increases from
0.7891 to 0.7926. Secondly, the TTA method helps our
model gain more 0.0045 scores. Finally, by ensembling
five-fold models, we achieve 0.8000 prediction score on the
Pixel SkelNetOn validation set.
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[ Rank [ Team name Prediction Score
1 BOE_AIoT_CTO 0.8129
2 namdvt(Ours) 0.8000
3 priyakansal 0.7961
4 sabarinathan 0.7950
5 natsubk95 0.7948

Table 3: Leaderboard of Pixel SkelNetOn challenge.

Figure 5: Visualize results obtained by proposed method.
From left to right: Input, ground truth and predicted skele-
ton.

4.2. Competition Results

In the Pixel SkelNetOn challenge, our team achieves
0.8000 in the F1 score, which yields second place on the
final leaderboard, without using any external data. Perfor-
mance of top 5 teams are shown in Table 3. We also visual-
ize some of the results for predicted skeleton. As shown in
Figure 5, our proposed method is able to obtain high quality
skeletons which close to the ground truth.

5. Conclusions

In this paper, we proposed our solution for the skele-
tonization problem, by making improvements on the orig-
inal U-Net architecture using the attention mechanism and
exploiting the auxiliary tasks. Furthermore, we also present
some tricks for improving the model performance to cre-
ate more robust and accurate results. Our method is simple
and efficient for extracting the skeleton from binary images,
and achieves a prediction score of 0.8000 on the Pixel Skel-
NetOn validation set, which is in the second place on the
leaderboard.
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