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Abstract

Recent deep neural network models trained on smaller
and less diverse datasets use data augmentation to alle-
viate limitations such as overfitting, reduced robustness,
and lower generalization. Methods using 3D datasets are
among the most common to use data augmentation tech-
niques such as random point drop, scaling, translation, ro-
tations, and jittering. However, these data augmentation
techniques are fixed and are often applied to the entire ob-
ject, ignoring the object’s local geometry. Different lo-
cal neighborhoods on the object surface hold a different
amount of geometric complexity. Applying the same data
augmentation techniques at the object level is less effec-
tive in augmenting local neighborhoods with complex struc-
tures. This paper presents PatchAugment, a data augmenta-
tion framework to apply different augmentation techniques
to the local neighborhoods. Our experimental studies on
PointNet++ and DGCNN models demonstrate the effec-
tiveness of PatchAugment on the task of 3D Point Cloud
Classification. We evaluated our technique against these
models using four benchmark datasets, ModelNet40 (syn-
thetic), ModelNet10 (synthetic), SHREC’ 16 (synthetic) and
ScanObjectNN (real-world).

1. Introduction

3D Computer Vision is an active research area with
broad applications in augmented/virtual reality, robotic per-
ception, 3D shape designs, and autonomous driving vehi-
cles. Over the past few years, deep neural networks’ appli-
cation to 3D Computer Vision has evolved tremendously,
especially for 3D point cloud processing. These deep neu-
ral network models have achieved state-of-the-art results on
several computer vision tasks such as 3D Semantic Segmen-
tation, 3D Scene Understanding, 3D Shape Retrieval, and
3D Object Classification [, 2, 3, 4, 5, 6]. One important
reason behind these promising results is the availability of
3D datasets to train deep neural networks. Most 3D datasets
are available as CAD models requiring some preprocessing.

Sampling

P and/or — P, Patch &
) Augment
grouping
p . P, -
g
(a) Input Points (b) Grouped Points (c) PatchAugm .ented
Grouped Points

Figure 1: Where does PatchAugment fit in? Deep neu-
ral networks whose layers contain neighborhood query-
ing step(s) can plugin PatchAugment. After sampling of
points from the input, neighborhood points are queried and
grouped. Note: (c) has 12288 points which is equivalent
to 12 whole objects with 1024 points in each. The sample
object is a lamp from ModelNet40 dataset.

Although several 3D datasets [7, 8, 9, 10, 11, 12, 13,

, 15] as listed in Table 1 are available to train deep
learning models, the datasets are not close enough in scale
when compared to 2D Datasets (e.g. ImageNet [16]). Ta-
ble 1 also lists the official split of the datasets into train-
ing and testing sets. Existing 3D datasets are limited by
the number of samples (ranging from 500 to 50,000) and
have a small number of classes (10 to 55). Along with
these limitations existing datasets are predominantly syn-
thetic datasets [7, 10, 12, 13, 14, 15]. In recent years, a few
datasets from the real-world scenarios [8, 9, 11] have been
released. When trained on synthetic datasets and tested us-
ing more complex real-world datasets, deep learning net-
works show a significant drop in accuracy compared to the
reported results. As mentioned earlier, the limitations lead
to major drawbacks such as overfitting, lesser generalizabil-
ity, and lack of robustness while evaluating neural networks
for point cloud analysis.
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Table 1: Details of datasets for 3D object classification along with the year of publication. PCs = Point Clouds, S = Synthetic,
RW = Real-World, GCN = Graph Convolutional Networks, CNN = Convolutional Neural Networks, FDG = Faster Dynamic

Graph, SVM = Support Vector Machine, and DI = Dual Input.

Dataset ‘ Year ‘ Classes | Samples | Train Test ‘ Type ‘ Format ‘ Acc. ‘ Model
McGill Benchmark [13] | 2008 19 458 190 268 S Mesh | 83.7 SVM [17]
Syndney Urban [9] 2013 14 588 - - RwW PCs - -
ModelNet10 [10] 2015 10 4899 3991 605 S Mesh | 97.5 Grid-GCN [ 18]
ModelNet40 [10] 2015 40 12311 9843 2468 S Mesh | 94.2 CurveNet [19]
ShapeNet [7] 2015 55 51190 - - S Mesh - -
SHRECI6 [14] 2017 55 51162 | 35764 | 10265 S PCs 90.9 View-GCN [20]
ScanNet [8] 2017 17 12283 9677 2606 RW PCs 85.2 Sim2real [21]
ScanObjectNN [11] 2019 15 2902 2321 581 RW PCs 81.3 | DI-PointCNN [22]
3D-Future [12] 2020 34 9992 6699 | 3293 S Mesh | 73.7 AttWalk [23]
RobustPointSet [15] 2020 40 12308 9840 | 2468 S PCs 92.5 DGCNN [5]

When faced with the limited availability of samples in
datasets, Data Augmentation (DA) is one of the most com-
mon techniques researchers use to tackle the associated
problems. DA avoids overfitting, alleviates class imbal-
ance problems, makes deep neural networks more robust,
and achieves better generalization. DA also diversifies and
enlarges the datasets, enabling the deep learning models to
learn better from the dataset. However, existing models ap-
ply fixed data augmentations to entire objects and make this
dataset enlargement less effective. For example, for an ob-
ject with fewer or no local complex curvatures, a random
scaling of the object would have the same effect on all local
structures. However, at an object level, random fixed scal-
ing would not be enough to enlarge its complex local neigh-
borhoods in effectively capturing local geometry. Hence,
Conventional DA techniques used in training existing state-
of-the-art deep learning network models are not sufficient
for effective training.

This paper focuses on augmenting each sample’s differ-
ent local neighborhoods. We enhance the overall augmen-
tation of the sample object, thereby improving the learning
of local geometry by the deep neural network to achieve
better 3D Classification. Figure 1 illustrates the set abstrac-
tion level of a single scale grouping PointNet++ [2] model.
The number of unique points increases by several folds af-
ter applying PatchAugment. Check for the points from the
grouping layer in Figure 1(b) and the points after patch aug-
mentation in Figure 1(c). Figure 1(c) shows the visual ro-
bustness of PatchAugment.

Our PatchAugment augments the neighborhood points
as follows; first, it randomly drops a small fraction of the
queried neighborhood points. Second, it randomly scales
these neighborhood points, followed by a random perturb
rotation by small angles and a random rotation along the
up-axis direction. Then, it randomly translates each aug-
mented neighborhood group. Note that this random trans-

lation is common to all points within a patch neighborhood
but different for points belonging to different neighboring
patches/grouped points. Finally, it adds random jitter to the
points at the individual point level. Jittering makes points
to move randomly within a neighborhood space. Although
these six types of augmentations are the same as conven-
tional DA, they are not fixed and are applied to each grouped
neighborhood.
Our key contributions in this paper are:

e PatchAugment: We augment each local neighbor-
hood with random points drop, random scale, random
rotations, random translation, and random jitter.

¢ Impact of PatchAugment: We show the effectiveness
of PatchAugment on PointNet++ [2] and DGCNN [5].

e Evaluation: We evaluate our method of patch aug-
mentation using synthetic (ModelNet40 [10], Mod-
elNet10 [10], and SHREC’16 [14]) and real-world
(ScanObjectNN [ 1]) datasets.

2. Related Works

Applying data augmentation techniques to datasets (2D
and 3D) is a rich and extensive area of research.

2.1. Data Augmentation on 2D Datasets

Random transformation [24, 25] of input samples is a
well-known DA technique for 2D data. Another popular DA
technique is interpolation [26, 27, 28] of images within the
image feature space using simple transformations. Genera-
tive Adversarial Networks (GANs) based methods [29, 30]
generate augmented samples using the input data. How-
ever, the methods mentioned above produce data different
from the original data resulting in unreliable samples. Other
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interpolation-based techniques [24, 25, 31] involve pixel-
wise interpolation for images. Particularly, Smart Augmen-
tation [31] generates augmented data by merging samples
from the same class. Unlike their application on 2D images
with the regular grid structure, these methods cannot be ap-
plied to point clouds because of their unordered property
and irregular structure.

MixMatch [32] guesses low-entropy labels for data-
augmented unlabeled examples. It mixes labeled and un-
labeled data using MixUp [25]. Between-Class Learning
(BCL) [33] generates between-class images by mixing two
images belonging to different classes with a random ratio.
The primary argument in BCL is that CNN’s treat input
data as waveforms; since BCL works on sound datasets,
they infer that BCL must also work on images. AutoAug-
ment [34] generates symbolic transformation operations by
using reinforcement learning to learn DA policies from the
data. However, for large-scale problems, AutoAugment is
not computationally practical. Based on density matching,
Fast AutoAugment [35] finds effective augmentation poli-
cies via a more efficient search strategy. For augmenta-
tion, a few hyper-parameter optimization methods [35, 36]
though see best transformations, they are limited to finding
a fixed augmentation strategy for all training samples.

2.2. Data Augmentation on 3D Datasets

3D datasets or representations are four types; voxels,
multi-view camera projections, meshes, and point clouds.
While voxels suffer from insufficient resolution and mem-
ory costs, the meshes are not directly acquired from 3D
sensors. Multi-view camera projections are 2D images of
the 3D object from multiple views. Both PointNet [1] and
PointNet++ [2] use the same DA techniques of random ro-
tation about the up-axis scaling, random rotation with per-
turbations, random shifting, and random jittering of points
on the input object sample. Several state-of-the-art models
such as RS-CNN [6], DensePoint [4] followed similar DA
strategies with minor variations.

Recent, PointMixUp [37] a new model-agnostic data
augmentation method uses interpolation on 3D dataset for
point cloud augmentation. PointAugment [38] a new auto-
augmentation framework for 3D point clouds jointly opti-
mizes augmentation along with the classification network
for training. PointAugment [38] produces transformation
functions based on the properties of individual training sam-
ples and the network capability during the training process.

Patch-based DA methods for 2D have boosted perfor-
mance. Part-aware [39], first extends 2D image patch to 3D
partitions and then extend 3D partition to 3D point clouds.
Although, Part-aware [39] applies five different types of
DAs to different partitions, makes the network robust, im-
proves performance, its application is unexplored beyond
3D object detection.

2.3. Deep learning on point cloud

PointNet [1] applied data augmentation at the object
level while processing raw point sets to extract features.
However, PointNet ignores local patterns losing semantic
information. PointNet++ [2] follows steps of PointNet in
augmenting the input, but partitions point sets producing
common hierarchical structures and applies pointnet recur-
sively to learn contextual representation. The neighbor-
hood’s contextual information though exploited in case of
PointNet++, it was limited by the max-pooling operations.
PointCNN [40] along with random scaling and point shuf-
fling uses X-operator to transform the input points while
weighing and permuting the input features associated with
the points generalizing CNNs. With non-uniform sampling
PointConv [41] performs convolution on 3D pointsets and
applies inverse density scale on learned weights to over-
come the effect of non-uniform sampling. Unlike the above
works, we employ data augmentation at neighborhood lev-
els by augmenting the points captured from kNN querying
before feeding them into MLPs. These augmentations are
not fixed and differ from neighborhood to neighborhood.
Our method results in multiple combinations of the origi-
nal object instead of a single augmented object achieving
significant augmentation at the object level.

3. Method

We use PointNet++ [2] model with single scale grouping
as the baseline model. PatchAugment is straightforward and
can be plugged into models with the grouping of points at
the neighborhood level. The placement of PatchAugment
in such models can be made right after the grouping step as
depicted in Figure 1. In patch augmentation a sample object
as shown in Figure 2(a) undergoes a series of DA techniques
at patch level, i.e., random points dropout (), random scale
(.S), random rotations (both perturbed R and up-axis rota-
tions Ryg), random translation ("), and random jittering (J)
as shown in part (b) to (g) of Figure 2 respectively.

Our novel PatchAugment applies the DA techniques
mentioned above to each neighborhood obtained after
grouping points in a set abstraction level setting (particu-
larly in models that borrow the sampling and grouping steps
into their model architectures). In this paper we do not pro-
pose a new deep neural network model but introduce the
PatchAugment technique (algorithm 1) into models after
neighborhood querying to boost 3D classification accuracy.
PatchAugment is straightforward to plug it in the models
similar to PointNet++ or the models that group neighbor-
hood points in the first or subsequent layers.

Figure 2 shows application of PatchAugment technique
to queried neighborhood points obtained at the grouping
layer in a set abstraction level of PointNet++. Neighbor-
hood points can be queried by k-NN or ball querying as
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*PC — Point Cloud (b) PCwith dropped neighbors

(d) Rotated PC

() Jittered PC**

(i) Translated PC

**Paich Augmented PC

Figure 2: PatchAugment module takes (a) original grouped points as input and applies (b) random point drop, (c) random
scale, (d & e) random rotations (perturbed and up-axis), (f) random translation, and (e) random jitter augmentations to each
of the neighborhood/group differently to generate augmented grouped points. Note: The points are not queried at each step.
They are the same points queried before (a) but are augmented at each step. [Zoom to view better.]

mentioned in [2] or by ellipsoid querying as mentioned in
[42]. We denote the output of the grouping layer by Py €
R™*kX3 Here m denotes the number of farthest sampled
points from the input in the sampling layer. k represents the
number of points queried around each of the farthest sam-
pled points. Hence, there are m groups with k points in each
group. For each of the queried neighborhood group points
of m farthest sampled points, the PatchAugment technique
applies random point drop. Then, it performs random scal-
ing, rotations, translation, and jitter on the remaining group
points, augmenting the object at the neighborhood level.
The resulting patch augmented neighboring points are de-
noted by P,.

For the sake of reference, we denote the grouped point
cloud in each step of Figure 2 (a-g) by notations as de-
scribed next. Observe changes to both the object and the
patch in Figure 2. The object changes significantly due
to neighborhood augmentations, while the changes to the
patch appear very small to negligible. P, represents origi-
nal grouped points from the grouping layer. They visually
appear as just 1024 unique input points as shown in Fig-
ure 2(a). Pyq represents grouped points after points drop at
the neighborhood level as shown in Figure 2(b)(different to
points drop at the object level, visually still appear as 1024
points due to overlapping neighborhoods). P4, represents
scaled group points. The points in each neighborhood are
scaled with different small scale factors altering the posi-
tions of points slightly. Each point, due to its presence
in multiple neighborhoods, is scaled separately within that

neighborhood, resulting in smaller lumps of points around
each point as shown in Figure 2(c). Pgyqs, represents points
after perturbed rotations along all axes as shown in Fig-
ure 2(d). Pyqsre represents points after up-axis rotations
as shown in Figure 2(e). A significant change in the points’
positions is visible at the object level due to patch aug-
mentation. The rotations further move the scaled points
around their original position. Pgg,,e¢ represents trans-
lated grouped points as shown in Figure 2(f). P;d rep-
resents jittered grouped points (also, the final Patch Aug-
mented points) as shown in Figure 2(g). Both translation
and jitter displace the points randomly, resulting in a denser
point cloud with augmented neighborhoods.

We use a random drop factor of A to drop the grouped
points Py to get grouped points after dropping Pgq (Eq. 1).

Pgd:DTOp(Pg7>‘)a (1)

These points Pyq are scaled using different scale factors
S € Rm*1x1 o get Pyqs (Eq. 2).

Pgds:PngS (2)

The perturbed rotation matrix R [43](Eq. 6) is formed by
the multiplication of rotation matrices for rotation along X,
y, z axes represented by Eq. 3, Eq. 4 and Eq. 5 respectively.
The P,qs points are rotated using the rotation matrix R to
get perturbed rotated grouped points Pgqs, (Eq. 7) . Rota-
tion angles «, 3, are used for rotations along x, y, z axes
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respectively.
(10 0
R,= |0 cosa —sina 3)
0 sina

Ccosx

[ cosB 0 sing]

R,= 0 1 0 4
| —sinB 0 cosf]
[cosy —siny 0]
R.= |siny cosy O ®)
| O 0 1]
R=(R.+*Ry,*R,) (6)
Pyasr = (Rx Pyg,)" (7)

These Pyqsr points are rotated along the up-axis by an
angle 6 using up-axis rotation matrix Rg (Eq. 8) to get
Pygsro (Eq. 9). Here, R, R, Ry, R, Rg € RMX3x3,
Rotations are performed as per the right-hand rule.

cos® 0 sinb
Ro= 0 1 0 )
—sinf 0 cosf

Pgdsr@ = (RO * ng:is'r)T (©)

The Pyqsre points with m groups are translated using
T, € R™*1*1 (Eq. 10) to get Pygsrot points.

Pgdsrﬂt = Pgder + Tr7 (10)

The jitter factor J € R™*'X3 is added to Pyasrot
(Eq. 11) to get final patch augmented group points repre-
sented by P’.

P,:Pgdsr9t+J7 (1T)

4. Experiments

In this section, we discuss the use of k-NN querying
in our experiments instead of ball querying, neighborhood
augmentation parameters, the benchmark datasets used in
our experiments, and other training-testing details.

4.1. Ball query vs. k-NN query for PatchAugment

Ball query restricts querying of points within the ball
volume of radius 7, and in many cases, ball querying does
not fetch the specified £ number of points from the neigh-
borhood. In such cases, the centroid point used for querying
the neighborhood is repeated to fulfill the £ points count to
keep tensor shapes suitable for operations. However, these
repeated centroid points upon patch augmentation result in
lumps of closer points as shown in Figure 3(c) affecting the

Algorithm 1 PatchAugment

function PATCHAUGMENT(F,)

> Input: grouped points P,

> Output: augmented grouped points P_l;

> Size of Py — B, m, k, 3

> Size of Py — B, m, k', 3 PE =(1-X)xk

> batch size, FPS points, sampled points, 3D co-ordinates
S,a,B,7v,0,T,J < uniformsampler()
Pyq < Drop(Pg, A) > A constant dropout ratio
Pygs — Pga x S > X is scalar mul
R ¢ R.(7)Ry(8) Ry (a)
Pyasr + (R* szs)T > * is matmul, T is transpose
Pgdsre — (R9 * Pg:isr)T
Pgdsr@t — Pgdsr@ + Tr
Pé<_Pgdsr9t+J
return Py

end function

> T, is translation factor

geometry of the local neighborhood. Unlike the ball, k-NN
fetches k distinct neighborhood points, and patch augmen-
tation on these points results in meaningful points within
the neighborhood as shown in Figure 3(d).

4.2. Neighborhood Augmentation Parameters

To explore local neighborhood-level augmentation in
our experiments, we used A = 0.25 to drop 25% of the
randomly selected points from the grouped neighborhood
points. Small scale factor values are randomly sampled
to scale the grouped neighborhood points, i.e., S € [0.95,
1.05]. The rotation angles are in radians sampled from small
(o, B,7,0 €[-0.1,0.1]) ranges to avoid larger distortions to
neighborhood geometry. The translation factor values are
sampled randomly from the range T' € [-0.05, 0.05]. Jitter
factor values are sampled randomly from the range such that
J €[-0.01, 0.01]. The translation and jitter values are small
to keep the grouped points within the neighborhoods. Also,
from our ablation studies (shown later in Table 9) we found
smaller ranges for these parameters were effective. These
augmentation parameters are sampled randomly from the
uniform distribution within the above-defined ranges.

4.3. Datasets

In our experiments, we have employed four 3D bench-
mark datasets, i.e., ModelNet40 [10], ModelNet10 [10],
SHREC’16 [14], and ScanObjectNN [11] which we de-
note as MN40, MN10, SR16, and SONN respectively..
Among them ModelNet40 dataset [10], ModelNet10 [10],
and SHREC’16 [14] datasets are synthetic datasets and the
ScanObjectNN [11] dataset is a real-world dataset. Mod-
elNet40 dataset has 40 categories of objects comprising a
total of 12,311 shapes. The official split of ModelNet40 is
9843 and 2468 objects for training and testing respectively.
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(b) FPS points

(a) Input point cloud

(c) PatchAugment (Ball-Query) (d) PatchAugment (kNN-Query)

Figure 3: Difference between Ball-query-based Patch Augmentation and k-NN query-based Patch Augmentation. (a) Input
point cloud (stairs), (b) Farthest Point Sampled (FPS) Points, (c) ball-queried and patch augmented points (lumps of points
occur due to repetition of centroid point when ball-query falls short of the required number of points within the ball volume)
and (d) k-NN queried, and patch augmented points (no lumps because k-NN always returns k points from the neighborhood).

We have retained this official split as in the training and test-
ing of the PointNet++ model. ModelNet10 dataset has 10
categories (a subset of ModelNet40) of objects comprising
a total of 4,899 shapes. The official split of the benchmark
ModelNet10 dataset is 3991 objects for training and 908
objects for testing.

ScanObjectNN is a more complex dataset consisting of
2902 real-world objects spread across 15 classes. ScanOb-
jectNN has 700 unique scenes developed from two pop-
ular scene object datasets i.e., SceneNN [44] and Scan-
Net [8] with 100 and 1513 objects respectively. From the
several variants of ScanObjectNN dataset we have consid-
ered the six prominently used variants for our experiments
i.e., OBJLONLY, OBJ_BG, PB_T25, PB_T25_R, PB_T50_R
and PB_TS50_RS. These variants represent different levels
of difficulty due to background points and perturbations
introduced into them. OBJ_ONLY variant is similar to
the ModelNet40 dataset that is extracted from CAD mod-
els. OBJ_BG variant contains background elements and/or
parts of objects from the object neighborhood. The re-
maining four variants prefixed with "PB_’ represent pertur-
bations of objects with translation (7"), rotation (R) and
scaling (S). PB_T25 variant has objects with 25% trans-
lation. PB_T25_R variant contains objects with 25% trans-
lation and involve rotations. PB_T50_R variant refers to ob-
jects with 50% translation and rotation. PB_T50_RS variant
has objects with 50% translation along with rotations and
scaling. Each perturbed variant consists of five randomly
sampled objects from the ground truth objects enlarging
ScanObjectNN dataset into 14,510 perturbed objects.

4.4. Training and Testing details

We have uniformly sampled 1024 points as input to the
models in our experiments for each of the datasets men-
tioned earlier. We accommodate PatchAugment in [45]
PointNet++ and single set abstraction PointNet++ models
and trained for 200 epochs. DGCNN is trained for 400
epochs. For PointNet++ based models, we use a learning
rate of 0.001, a batch size of 24, a dropout rate of 40%,
and Adam optimizer during training, and we have evalu-
ated these models with a majority voting of 12 votes. For
DGCNN experiments, we follow the experimental setup as
described in [5], i.e, a learning rate of 0.1 reduced by cosine
annealing till 0.001, SGD optimizer, momentum 0.9 and
a batch size of 32. For fair comparison with DGCNN re-
sults majority voting is not used in DGCNN with PatchAug-
ment experiments. Our code is available at https://
github.com/VimsLab/PatchAugment .git.

5. Experimental Results

We conducted extensive experiments with PatchAug-
ment using a single scale grouping(SSG) PointNet++ [2],
DGCNN [5] and single Set Abstraction-based SSG Point-
Net++ (demonstrated in [46] to improve 3D point cloud
classification accuracy) models. Our experimental re-
sults constitute 3D classification accuracies of PointNet++
and DGCNN with PatchAugment on four benchmark
datasets. i.e., ModelNet40 (synthetic), ModelNet10 (syn-
thetic), SHREC’16 (synthetic), and ScanObjectNN (real-
world).
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Table 2: Improvement in 3D object classification accuracy by using PatchAugment technique in Pointnet++, DGCNN and
PointNet++ with a single Set Abstraction layer models on CAD models based datasets i.e., SHREC16, ModelNet40, Model-
Net10 and OBJ_ONLY variant of ScanObjectNN. Accuracies reported here are obtained by training the models from scratch.

Method | SHREC16 | ModelNet40 | ModeINet10 | ScanObjectNN
# Training Samples 35764 9843 3991 2309
# Testing Samples 10265 2468 908 581
# Classes ‘ 55 ‘ 40 ‘ 10 ‘ 15
PointNet++ 85.1 90.7 94.1 84.3
DGCNN 87.0 92.2 94.7 86.2
PointNet++(with single SA) 84.5 91.3 95.0 824
with PatchAugment
PointNet++ 86.9(1 1.8) | 92.4(11.7) 95.1(1 1.0) 87.1(12.8)
DGCNN 87.2(10.2) | 93.1(10.9) 95.6(1 0.9) 86.9 (1 0.7)
PointNet++(with single SA) | 87.4(12.9) | 93.0(1 1.7) 95.6(1 0.6) 85.7 (13.3)

Table 3: Comparison of Various augmentation techniques
by evaluation accuracy with single scale grouping for Point-
Net++ [2] on ModelNet40 (M40) and ModelNet10 (M10).
’-’ not available.

Method M40 (Acc. %)|M10 (Acc. %)
Conventional DA [2] 90.7 -
RSMix [47] 92.1 94.4
PointMixUp [37] 91.7 -
PointAugment [38] 92.9 95.8
PatchAugment 92.4 95.1

5.1. Experiments Using Synthetic Datasets

Table 2 shows boost in the 3D classification accuracy
by using PatchAugment technique in PointNet++ by 1.7%,
DGCNN by 0.9%, single set abstraction PointNet++ by
1.7% on ModelNet40 dataset. Similarly, the improvement
of accuracies for these three models on SHREC16, Mod-
elNet10 and the CAD-based variant of ScanObjectNN (re-
ferred as OBJ_ONLY) are shown in Table 2. Table 3 shows
the comparable performance of PatchAugment as a DA
technique with other recent DA techniques accommodated
in single scale grouping based PointNet++ model.

5.2. Experiments Using Real-World Dataset

In the case of a more complex real-world dataset
ScanObjectNN, our PatchAugment technique boosted the
classification accuracy of PointNet++ on all the six vari-
ants. ie., OBJ.ONLY (2.8% 1), OBJ.BG (3.1% 1),
PB_T25 (1.9% 1), PB_.T25R (3.3% 1), PB_T50_R (0.5%
1), and PB_T50_RS (3.1 % 1) as shown in Table 4 along
with improvement in performance of DGCNN model due
to PatchAugment. Table 5 shows class-wise accuracies

of models with PatchAugment for the most challeng-
ing perturbed variant of the ScanObjectNN dataset, i.e.,
PB_T50_RS, in comparison with the same models with con-
ventional DA techniques.

5.3. Ablation Studies

Table 6 shows a brief ablation study on few augmen-
tations at patch level combined with patch level random
points drop with a drop ratio of A. Further we follow [47]
to show the ablation studies using ModelNet40 and Mod-
elNetl0 datasets as shown in Table 7 and Table 8 on sin-
gle scale grouping PointNet++ [2] and DGCNN [5] mod-
els respectively. Table 9 lists an ablation study with dif-
ferent ranges of values for scale factors and rotation fac-
tors (both perturbed and up-axis rotations) while keeping
random point drop, random translation and jitter at 25%,
[-0.05, 0.05] and [-0.01, 0.01] respectively.

6. Conclusion

In this work, we introduced PatchAugment, a novel
neighborhood-level data augmentation framework. The
framework samples out data augmentation parameters for
each of the neighborhoods. We use these parameters to drop
points randomly, scale, rotate, translate, and jitter differ-
ent point patches or neighborhoods differently. We demon-
strate that PatchAugment is straightforward to include in
deep network models similar to the PointNet++ network
model, i.e., models that involve neighborhood querying. We
have evaluated the impact of our augmentation technique on
PointNet++ and DGCNN using various synthetic and real-
world datasets, i.e., ModelNet40, ModelNet10, SHREC’ 16,
and ScanObjectNN. Our experimental results encourage the
use of PatchAugment for neighborhood augmentation in
models that involve neighborhood querying.
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Table 4: Improvements in 3D Object Classification accuracy (%) by using PatchAugment technique in the single scale
grouping PointNet++ model, trained and tested on six variants(row 1) of the real-world ScanObjectNN dataset.

y Models/Variants OBJ.ONLY | OBJ.BG [ PB_T25 | PB_T25R | PB_T50R | PB_T50_RS
PointNet++[] 843 823 82.7 81.4 79.1 71.9
PointNet++ w/ PatchAugment 87.1 85.4 84.6 84.7 79.6 81.0
% 1 from PointNet++ 2.8 3.1 1.9 33 0.5 31
DGCNN[5] 86.2 82.8 833 81.5 80.0 78.1
DGCNN w/ PatchAugment 86.9 84.2 84.3 823 80.7 79.7
% 1 from DGCNN 0.7 1.4 1.0 0.8 0.7 1.6

Table 5: Improvements in 3D Object Classification accuracy (%) by using PatchAugment technique in PointNet++ and
DGCNN models on the hardest variant, i.e., PB_T50_RS of ScanObjectNN benchmark dataset. Abbreviations: OA (Overall
Accuracy), ACA (Average Class Accuracy), ’-’ means not available.

Methods OA ACA bag bin box cabinet

chair desk display door shelf table

bed

pillow sink

sofa toilet

#shapes

298 794 406 1

344

1585 592

678

892 1084 922

564

405 469

1058 325

PointNet++ [2] 77.9 754 49.4 844 31.6
DGCNN [5] 78.1 73.6 494 82.4 33.1

77.4
83.9

91.3 740 794
91.8 63.3 77.0

852 72.6 72.6
89.0 793 774

75.5
64.5

81.0 80.8
77.1 75.0

90.5 85.9
914 694

with PatchAugment

PointNet++ 81.0 79.7 66.3 81.1 63.5
DGCNN 79.7 76.4 56.5 83.0 57.3

80.3
82.1

919 694 91.2
91.0 61.1

90.3

93.8 80.6
95.0 79.9 72.8

65.8 84.2

79.8

76.6
69.3

71.4
75.1

934 854
89.1 64.1

Table 6: An ablation study on different patch augmenta-
tions with random drop (A) in PointNet++ [2] on Model-
Net40. R and Ry represent perturbed and up-axis rotations

respectively.

Scaling

R

Ry

Translation

Jitter

Acc.(%)

91.6

92.0

92.0

91.9

91.8

Table 7: An ablation study for evaluation accuracy on single
scale grouping PointNet++ [2] model on ModelNet40.

Jitter+Shift|Rotation|Scaling|RandDrop|PatchAug| Acc.(%)
91.5
v 1924 (10.9)
v 91.7
v v |91.8(10.1)
v v 91.9
v v V' 192.0(10.1)
v v 90.5
v v v 1908 (10.3)
v v v 91.0
v v v v 90.9 (0.1)
v v v 90.2
v v v v' 1907 (10.5)
v v v v 90.6
v v v v v 190.8 (1 0.3)

Table 8: An ablation study for DGCNN [5] on ModelNet40
(MN40) and ModelNet10 (MN10). Random scaling aug-
mentation was applied as ConvDA.

ConvDA

RandDrop

PatchAug

Acc(%)

Dataset

ANENENEN

<

NN

925
93.1 (1 0.6)
92.6
92.8 (10.2)
922
93.0 (1 0.8)

MN40
MN40
MN40
MN40
MN40
MN40

SNENENEN

v
v

v

v

94.6
95.6 (1 1.0)
94.8
95.2 (1 0.4)
94.7
95.4 (1 0.7)

MNI10
MNI10
MNI10
MNI10
MNI10
MNI10

Table 9: An ablation study on different ranges of scale S
and different ranges of rotation angles represented by R’ =
{a, 5,7, 0}. PointNet++ [2] trained on ModelNet40.

S | R" —[[-0.1, 0.1]|[-0.2, 0.2]([-0.3, 0.3]|[-0.4, 0.4]|[-0.5, 0.5]
[0.95,1.05]] 92.4 91.5 91.7 92.1 922
[0.90,1.10]| 91.7 92.0 91.8 91.2 91.6
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