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Abstract

In this paper, we propose a DISCO, which is a manner
of designing autoencoder architecture to process dual input
streams for skeletal image generation. The DISCO was de-
signed to be dealing with binary masks and skeletonized im-
ages concurrently at the input side. We expected the skele-
tonized images using traditional thinning algorithms could
help to boost skeleton prediction performances. Inside the
DISCO architecture, there exist two encoders and a single
decoder. Each functional block is stacked with multiple log-
ical layers. We designed that logical layer outputs of en-
coders transferred corresponding counterpart layers in a
decoder referring to U-Net architecture. In addition, we
proposed hybrid-type encoder models based on the DISCO
architecture to capitalize on the effect of the model ensem-
ble. We demonstrated performances of the DISCO-A and
DISCO-B models derived from the proposed architecture in
terms of f1-score and loss convergence per each epoch. We
confirmed the DISCO-B had produced the best performance
under symbolic label usage. In the development phase, our
best score reached 0.7386 with 500 epochs.

1. Introduction

Skeletonization [1] is one of the object representation
methods in images. It converts each target object from
a shape to a set of joints and edges. Even though the
skeletonized objects look simple, they can provide suffi-
cient information in some situations with shapes of car-
toons, emoticons, and road signs. Moreover, the simpli-
fied shapes help us perceive inherent object features intu-
itively. The skeletonization methods have been researched
traditionally in the computer vision field by algorithmic ap-
proaches. Most of the algorithms tried to make them thin
using geometric characteristics, for instance, medial axis
calculation or morphological skeletonization. The legacy

approaches work well for complex shapes having irregular
curves. On the other hand, they possibly work poorly in
objects having undistinguished features, such as symmetric
and uniform shapes. So these approaches should make rules
to applying proper algorithms depending on object features.
Recently, some researchers proposed deep-learning based
approaches to generate skeletal images for multiple ob-
jects, including human shapes. Many kinds of research fo-
cused on increasing skeletonization accuracy for the human
body using joint-edge relationships since the OpenPose [2].
However, skeletonized datasets for general objects such as
animals and insects have existed relatively rare.

In SkelNetOn 2019 Challenge [3], a Pixel SkelNetOn
dataset containing binary mask and skeleton images for var-
ious objects was unveiled to understanding target shapes
and their geometric characteristics. In terms of deep-
learning methodologies, the goal of this challenge was to
generate skeletonized results using the provided dataset.
Applying autoencoder models that can transform source
data to different information domains is one of the candi-
dates for this task. Autoencoder tasks such as instance and
semantic segmentation are examples of autoencoder appli-
cations. The autoencoder encodes input images to latent
features, as shown in Figure 1. Following that, it decodes to
generate images from the features. In these types of gener-
ative tasks, generative adversarial network models [4] may
be useful in dealing with the given problem. In practice, a
baseline model devised by SkelNetOn authors was trained
based on the Pix2Pix method [5], and it was announced to
perform around 0.6244 in terms of f1-score. Referred to
the baseline, we trained our Pix2Pix model based on U-Net
[6] backbone with configuring mask and skeleton images
as input and output, respectively. We confirmed the model
had a similar performance. We discovered that some pix-
els around joints did not decode well during visual inspec-
tion for the prediction results. Thus, we assumed that the
decoding performance could be increased by utilizing sup-
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Figure 1. An example of semantic segmentation with the autoen-
coder: a sample in PASCAL VOC 2012 dataset [7]

plementary skeletal input images when training deep neural
networks.

In this paper, we propose a DISCO architecture (Dual
Input Streams autoenCOder) based on the U-Net models to
dealing with additional skeleton image input. We consider
U-Net, U-ResNet [8], and U-Transformer [9] as backbone
neural network models to design our skeletonization mod-
els. At the beginning of neural network training, the pro-
posed method generates reference skeleton images with tra-
ditional thinning methods. Here, we used Zhang’s [10] and
Guo’s [11] thinning algorithms that had been already imple-
mented in one of the extensions in the OpenCV for conve-
nience. We designed the DISCO to the manner of modify-
ing the backbone models to allocating dual encoders. The
encoders were connected to a decoder via additional paths
to transfer mask and skeleton features. We evaluated the
performances of the proposed DISCO models in terms of
f1-score and loss for training. In this paper, our contribu-
tions are as follows:

• In provided Pixel SkelNetOn dataset, we tried to utilize
additional materials to training by guessing symbolic
labels, and then we presented training results compar-
ing with cases of using binary labels. Under the la-
bel settings, we trained baseline U-Net models and our
models designed by the proposed DISCO architecture.
The learning trends for those models will give us in-
sights into optimization methodology researches for
deep-learning based skeletonization.

• We presented our training pipeline to make reference
skeleton images and corresponding model architec-
ture. The proposed model architecture handled mask
and reference images simultaneously. We showed an
example of the DISCO model based on U-Net archi-
tecture, including inter-layer feature flows and their
combinations. Moreover, the DISCO was designed to
allocate heterogeneous encoders. Blending between
the different types of encoders could enhance skele-
tonization performance by ensemble effects. We ex-
pect to help designing better architectures by referring
to our methodologies.

2. Pixel SkelNetOn Dataset

The Pixel SkelNetOn dataset consists of pairs of source
masks and target skeletons. The images are a single-channel
gray color with 256 × 256 pixels resolution. Even though
the images are gray-colored attributes, each pixel only con-
tains a value which is one of 0 and 255. This dataset pro-
vides training, validation, and test samples with 1218, 241
pairs, and 266 masks, respectively. Here, we noticed that
file names of masks for training and testing were available
to guess true symbolic labels when analyzing the provided
dataset. In the development phase, there were 90 labels in
train shapes and 68 labels in test shapes. The test labels
were a subset of train labels. We configured 91 labels, in-
cluding a background tag. Logit vectors corresponding with
the true labels were available, so cross-entropy [12] might
be applicable for loss calculation and skeleton prediction.
However, we hardly knew the effects of skeletonization per-
formances when using the auxiliary labels. For this reason,
we also tested under a condition of binary labels. The binary
labels represented background and skeleton pixels. Like-
wise earlier, we used cross-entropy for loss calculation.

3. Proposed DISCO Model

3.1. Data Augmentation

As previously stated, the provided dataset contains 1218
pairs of images for training our models. It is insufficient
to train objective models to improve performance. Thus,
data augmentation is required to ensure an adequate quan-
tity of training materials. In general, data augmentation in-
volves manipulating source images through rotation, flip-
ping, resizing, masking, and erasing. The Pixel SkelNetOn
dataset contains images of both the source and the target.
The images in a pair should have the same geometric prop-
erties when manipulating. In this challenge, we excluded
resizing, masking, and erasing to preserve inherent skeletal
characteristics for source masks. We applied random angle
rotation, horizontal and vertical flips for data augmentation
with 50% probability when loading the image samples.

3.2. Skeletonization

Even though the data augmentation increased the num-
ber of images, decoding performance was still insufficient.
Some edge or joint pixels did not appear when examin-
ing the prediction results. To resurrect the vanished skele-
ton components, we will incorporate reference skeleton im-
ages into neural network models. Traditional thinning algo-
rithms make it simple to obtain reference skeleton images.
We consider Zhang’s and Guo’s thinning methods because
they are already included in OpenCV extension packages.
In the case of Python3, reference skeleton images are gen-
erated by cv2.ximgproc.thinning method.

2129



Figure 2. Simplified information flow for the proposed DISCO
architecture

3.3. Model Architecture

U-Net models are useful to transform input images to
other types of images. Usually, the U-Net models have
been used to generate interpretable output results. For in-
stance, the U-Net models can make mask images from the
source in semantic segmentation tasks. Those results help
to make decisions easily. The U-Net models are designed
to have two main parts. The first one is an encoder, and the
other one is a decoder. The encoder and decoder are built by
stacking up logical layers. Each logical layer is structured
with convolution, pooling, batch normalization blocks se-
quentially. Intermediate logical layers in the encoder and
decoder are connected to equivalent-depth layers. The de-
coder possibly yields enhanced output results by referring
to down-sampled features made from the encoder.

Similar to the U-Net architecture, we proposed the
DISCO architecture with a dual encoder structure. The
DISCO architecture intended to use additional features
from reference skeleton images during the decoding pro-
cess. As shown in Figure 2, the two images are fed into
the encoders in turn. Convolutional filters fuse the two fea-
ture streams from the encoders’ final logical layer at latent
space. The decoder receives latent features corresponding
to the convolutional filter outputs. Inter-layer features and
latent features are merged at the same time. By reflecting
from the convolutional features, the decoder restituted pre-
diction images by passing through intermediate deconvolu-
tion layers.

In Figure 3, there is an example of a DISCO architec-
ture that is modified based on the U-Net backbone. In the
figure, there are two input paths. The first input path ex-
tracts mask features. Likewise, the second input path ex-
tracts reference skeleton features. The features go through
logical layers, and they are transformed deeper and wider
features. The features are downsampled with convolutional,
maxpool, and batch-normalization blocks. The transformed

features are delivered to the next logical layer and decoder’s
counterpart layer. These operations repeat until the frag-
mented features are reached the final layer. Final features
by each encoder arrive at a latent space. After merging
the features, they pass through convolutional blocks, then
feed into a decoder’s first layer. Here, the latent features are
made by concatenating with two encoder’s output features
coming from mask and reference skeleton images. The de-
coder’s logical layer yields upsampled features by transpose
convolutional blocks. The upsampling process repeats until
the skeleton prediction is finished.

In this paper, we proposed DISCO-A and DISCO-B
models. The DISCO-A had the same architecture in Figure
3. The DISCO-B had a similar structure with the DISCO-A
model, but the second path and decoder were replaced with
U-Transformer components as well as changing the num-
ber of encoder layers. The DISCO-B had a similar struc-
ture to the DISCO-A model. But this model was modified
to having 4 logical layers for the encoders and decoder by
referring to the U-Transformer. To train the proposed mod-
els, we considered applying two loss functions which were
known as CE (cross-entropy) and CE Dice (cross-entropy
+ dice [13]). The dice coefficient looks similar to the IoU
(intersection over union) definition, and it leads predictions
to make resembling targets. The dice coefficient is defined
in the following Equation (1).

dice =
2× |A ∩B|
|A|+ |B|

, (1)

where A and B are the set of prediction and true pixels re-
spectively.

4. Evaluation
4.1. Metric

In our task, pixels in prediction results have only two val-
ues. Thus, a goal of the given task is possible to regard as
pixel classification. In the Pixel SkelNetOn baseline, mod-
els are evaluated by f1-score. Generally, the f1-score is de-
fined by the following Equation (2).

f1− score =
2× precision× recall

precision+ recall
, (2)

where

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
. (4)

The TP, FP, and FN are the number of pixels for true
positives, false negatives, and false positives, respectively.
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Figure 3. Example of specific DISCO architecture based on a U-Net backbone with 8-logical layers

4.2. Experiment Setup

Our evaluation software was written in Python 3.8 and
Pytorch 1.8 environments. Other models, except U-ResNet,
were created from scratch. Because the U-ResNet was built
to use the ResNet18 backbone, it was trained using trans-
fer learning. In this case, some pre-trained layers copied
from the ResNet backbone had their weight, bias, and gra-
dient terms froze. In addition, we calculated f1-score for the
traditional thinning methods to compare the performance
of deep-learning based models. We intended to train the
proposed models on an NVIDIA GeForce RTX3090. We
chose batch size 3 based on graphic memory capacity and
U-Transformer model size. Because batch size can affect
the convergence characteristics of performance curves, we
use the same batch size for all training processes.

Also, the target skeleton images contain little positive
pixels comparing with negative pixels. It means the pix-
els representing the skeleton target are sparse. Usually, the
sparsity leads to overfitting when effective data samples are
not sufficient. For this reason, we applied learning rate
scheduling to alleviate bad effects such as falling into lo-
cal minima. We used a ReduceLROnPlateau method with a
default patience setting (=10). The rest of the hyperparam-
eters are described in the following Table 1.

4.3. Performance Results

In Table 2, we provided the performance results in terms
of the f1-scores and the loss values. This table consisted
of three groups. The first one was the performance of the

Table 1. Configuration of hyperparameters
parameters properties
baseline models U-Net, U-ResNet, U-Transformer
proposed models DISCO-A (dual U-Net encoders),

DISCO-B (U-Net &
U-Transformer encoders)

thinning Zhang (Z), Guo (G)
number of labels 2 (binary), 91 (symbol)
loss function cross entropy (CE),

cross entropy + dice (CE Dice)
optimizer Adam
epoch 100
learning rate 1.0× 10−3 ∼ 1.0× 10−8

LR decay rate 0.5

traditional algorithms that decided skeleton pixels by cal-
culation to geometric distance. We calculated the f1-score
by averaging 10-times experiments for the augmented train-
ing dataset. We got 0.3130 and 0.3011 for Zhang’s and
Guo’s methods, respectively. The second one was the per-
formance of the U-Net based models that decided skele-
ton pixels with fully convolutional neural networks. In this
case, the U-Transformer models showed good performance
results. Even though the U-Transformer models were pro-
posed quite recently, they still possessed lower f1-scores
than the Pix2Pix baseline. The last one was the performance
of the proposed DISCO models. The DISCO-B models
showed higher performance results than the others. In the
results, the best f1-score for the DISCO-B was 0.6668.
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Table 2. The skeletonization performance for training dataset

model f1-score loss
Traditional Algorithm (Zhang) 0.3130 -
Traditional Algorithm (Guo) 0.3011 -
U-Net (CE, binary) 0.4072 0.0245
U-Net (CE, symbol) 0.4355 0.0240
U-Net (CE Dice, binary) 0.4128 0.0340
U-Net (CE Dice, symbol) 0.2688 0.0364
U-ResNet (CE, binary) 0.4968 0.0204
U-ResNet (CE, symbol) 0.4981 0.0204
U-ResNet (CE Dice, binary) 0.5269 0.0290
U-ResNet (CE Dice, symbol) 0.5168 0.0294
U-Transformer (CE, binary) 0.5526 0.0199
U-Transformer (CE, symbol) 0.5708 0.0190
U-Transformer (CE Dice, binary) 0.6095 0.0245
U-Transformer (CE Dice, symbol) 0.5984 0.0258
DISCO-A (Z, CE, binary) 0.5569 0.0209
DISCO-A (Z, CE, symbol) 0.5840 0.0206
DISCO-A (Z, CE Dice, binary) 0.5905 0.0283
DISCO-A (Z, CE Dice, symbol) 0.5943 0.0288
DISCO-A (G, CE, binary) 0.5457 0.0208
DISCO-A (G, CE, symbol) 0.5253 0.0222
DISCO-A (G, CE Dice, binary) 0.5669 0.0286
DISCO-A (G, CE Dice, symbol) 0.6082 0.0278
DISCO-B (Z, CE, binary) 0.5081 0.0214
DISCO-B (Z, CE, symbol) 0.6468 0.0151
DISCO-B (Z, CE Dice, binary) 0.6048 0.0242
DISCO-B (Z, CE Dice, symbol) 0.6668 0.0206
DISCO-B (G, CE, binary) 0.6111 0.0156
DISCO-B (G, CE, symbol) 0.6375 0.0206
DISCO-B (G, CE Dice, binary) 0.6182 0.0253
DISCO-B (G, CE Dice, symbol) 0.6167 0.0284

In Figure 4, parts of skeletonized results for our best
DISCO-B model were presented to verify the benefits of
deep-learning based approaches. In some situations, algo-
rithmic approaches possibly lose detailed skeletons since
they are hard to adapt target skeletons. However, the
DISCO-B was able to recover branch skeletons as shown in
Figure 4-(a). Also, the DISCO-B was able to alleviate noisy
skeletons as shown in Figure 4-(b). However, the third im-
age in Figure 4-(b) showed that the proposed model still had
skeleton vanishing problems.

In Figures 5-12, training curves were presented. We con-
trolled loss function and label type to drawing the perfor-
mance curves to compare model performances purely. For
all of the curves, the proposed DISCO models are better
than other models. In the f1-score comparisons for the
DISCO-B, we found out thinning methods affect model per-
formances. In our experiment, Zhang’s method showed bet-
ter performances. Also, in the case of symbolic labels, we

verified the proposed models took performance gains com-
paring with the other models. In the development phase, we
reached 0.7386 with 500 epochs.

5. Conclusion and Future Work
We proposed the DISCO architecture for dual input

streams in this paper. We provided DISCO-A and DISCO-B
models based on the architecture to handle skeletonization
tasks. The DISCO-B, in particular, was designed to be a
hybrid type based on U-Net and U-Transformer, so we ex-
pected the model to improve skeletonization performance.
As expected, we found that the DISCO-B had higher f1-
scores than the other models in the evaluation results. How-
ever, skeleton outputs for the proposed models were still
imperfect due to vanished pixels. In our architecture, the
input skeletons affected the performance results positively
even though skeletonization methods were quite old. We
expect that better performance results will probably come
when clean reference skeletons are available. Therefore,
it is necessary to evaluate the proposed model with recent
skeletonization algorithms in future work.
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Figure 4. Benefits of the deep-learning based approaches: (a) Branch recovery, (b) Denoising
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Figure 5. Training curve with respect to f1 score under CE criterion
and binary labels

Figure 6. Training curve with respect to loss under CE criterion
and binary labels

Figure 7. Training curve with respect to f1 score under CE criterion
and symbolic labels

Figure 8. Training curve with respect to loss under CE criterion
and symbolic labels
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Figure 9. Training curve with respect to f1 score under CE Dice
criterion and binary labels

Figure 10. Training curve with respect to loss under CE Dice cri-
terion and binary labels

Figure 11. Training curve with respect to f1 score under CE Dice
criterion and symbolic labels

Figure 12. Training curve with respect to loss under CE Dice cri-
terion and symbolic labels
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