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Abstract

Infra-red (IR) cameras have found widespread use in
many different fields. The most common ones are generally
related to industrial applications, particularly maintenance
and inspections activities. In the domain of surveillance,
instead, they are mostly used for threat detection and secu-
rity purposes. Pushed by cost reduction and the availabil-
ity of compact sensors, intelligent IR cameras are gaining
popularity in the field of Internet-of-Things, in light of the
valuable information made available by the acquired data.
Unfortunately, the achievable overall quality is not always
satisfactory. For example, low-resolution devices, noise,
or harsh environmental conditions, like high temperatures
on sunny days, can degrade the quality of the thermal im-
ages. This paper presents the development of a portable,
low-cost, and low-power thermal scanner prototype con-
sisting of a thermal sensor assisted by a grayscale cam-
era. The prototype is completely made using COTS compo-
nents and provides 80× 60 IR and 160× 120 grayscale im-
ages, mostly used to collect and validate the IR-based data.
Our application focuses on people detection, for which we
present a suitable learning framework together with the
corresponding IR dataset, collected and annotated via the
paired grayscale images.

1. Introduction

In recent years with the increased interest in security and
surveillance applications, advanced driver assistance sys-
tems, autonomous vehicles, and human behaviour analy-
sis, people detection has become a key research problem
in the computer vision research community [1, 2, 3]. De-
spite the many successful approaches presented in litera-
ture, which guarantee very promising performance on the
existing benchmark datasets, the in-the-wild still detection
might still present challenges. Appearance variations, illu-

mination variations, occlusions, human motion variations,
and background noises are some of the challenges currently
faced by the research community; such troubles become
even more evident when the available computational re-
sources are limited, as in the case of embedded systems.
To ease this task, researchers have proposed to fuse ther-
mal imaging and a traditional camera to detect human sub-
jects [4]. Thermal imaging, also referred to as InfraRed
Thermography (IRT) is a technique that detects the intensity
of radiation in the infrared part of the electromagnetic spec-
trum and visualizes the recorded temperatures as 2-D im-
ages. It has the advantages of providing high-precision and
non-invasive temperature measurement as a non-destructive
test method to detect temperature-related features. Thermal
imaging sensors have been adopted in various environments
to detect human subjects and heat signatures [5, 6, 7, 8].

The recent literature shows that efforts still focus on
high-resolution thermal imaging. Nevertheless, thanks to
technological progress and the availability of low-cost and
low-power thermal sensors, low-resolution thermal imaging
has emerged as trending research topic [9, 10, 11, 12].

This paper presents a portable and low-cost thermal
scanner prototype, capable of acquiring both grayscale and
IR images through two separate sensors. To demonstrate
the feasibility of the solution, the current work focuses on
using the sensors to perform human detection. We provide
a labelled dataset containing 3765 pairs of IR and grayscale
images. Compared to other datasets, the one we propose
is suitable for consumer implementations with uncalibrated
and low-resolution devices. Despite the small image size,
we show that it is still possible to rely on existing learning
frameworks to train a reliable detector.

To achieve the above-mentioned goal, we developed a
thermal scanner prototype board together with the rele-
vant software, interfacing the microcontroller (a STM32F4
MCU), with the two camera modules; a Lepton Flir v2.0
thermal sensor and a Himax HM01B0 grayscale VGA sen-
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sor. Further details about the chosen hardware are provided
in the next sections.

The acquired images are then transferred to a PC, where
the training of the people detection module is performed
off-line. In order to train the model for people detection, an
ad-hoc annotation strategy has been devised, superimpos-
ing the visible-spectrum and IR data, and using a common
state-of-the-art detector to create the corresponding bound-
ing boxes. Further details about each processing stage are
reported in the coming paragraphs. Figure 1 shows the de-
veloped prototype.

The main contributions of this paper are:

• The development of a portable thermal scanner based
on a STM32F4 MCU with two camera sensors. A
Lepton Flir IR camera and Himax HM01B0 grayscale
camera;

• The development of an image pre-processing algo-
rithm to correctly align and fuse IR and RGB images

• The collection and annotation of a publicly available
dataset;

• The training and fine-tuning of a YOLO [13] detector
for people detection in the IR domain;

The remainder of this paper is organized as follows: the
relevant related work is reviewed in Section 2. Section 3
describes the hardware used and the software developed. In
Section 4 we present the acquired dataset, while the detec-
tion algorithm is discussed in Section 5. Section 6 describes
the simulations and experimental results, also comparing
against the existing state-of-the-art. Section 7 concludes

Figure 1: Thermal scanner prototype.

this article with some final remarks and some considera-
tions regarding potential future work directions.

2. Related Work
In recent years, thermal imagery [6, 7, 8] has become

a trending topic thanks to its wide applicability in different
sectors. Possible applications span from the agriculture sec-
tor [14, 15] to the industrial sector [16] and also to the med-
ical [17] domain. The authors in [18] describe how a drone
equipped with an IR camera has been used as an effective
solution for soil monitoring. Soil temperature, in fact, is
closely related to the ability of the terrain to retain water,
thus determining its fertility. Different research studies can
be found in the literature with regard to the industrial sector.
In [19, 20] the authors describe how a UAV equipped with
an IR camera can be a viable solution for the inspection
of photovoltaic installations. In [21] an IR camera is ex-
ploited to enhance pedestrian visibility. The authors point
out that, although the information acquired by the IR cam-
era is insightful, a standard grayscale camera should also be
added. For example, on bright sunny days, the temperature
of the road increases, making the silhouette of the pedes-
trians less detectable in the IR spectrum. In those cases,
the grayscale camera works at its peak performance, with a
minimum signal-to-noise ratio (SNR). Therefore, the paper
proposes an advanced solution based on deep neural net-
works to optimally fuse the image from the two visual sen-
sors to achieve better pedestrian recognition accuracy.

Machine learning applied to thermal imagery, is becom-
ing the standard de facto for thermal image analysis and
manipulation. In the literature, the topic is well investigated
by different research works. In [22] pedestrian detection is
implemented by evaluating thermal images through a CNN.
In [23] and [24] infrared thermography is used for auto-
matically detecting anomalies using deep neural networks
(DNNs). In [25] neural networks are used to classify ob-
jects in thermal images for search and rescue missions using
UAVs. Deep neural networks are exploited yet again in [26]
for fast eye tracking from thermal images. Finally, infrared
images are also being used to enhance face recognition ap-
plications [27]. The importance of thermal imagery is also
confirmed by the continuous increase of publicly available
datasets for training learning models, as presented in Ta-
ble 1, where we report the details of some freely-available
datasets.

Fueled by recent technological advantages, neural net-
works are being also used to enhance the performance of
automatic analysis of low-resolution thermal images [36,
37, 38, 39, 40, 12, 10, 11]. To ease this task, more recent
works are trying to fuse images from multiple sources into a
comprehensive image [41, 42, 43, 44]. As reported in [45],
combining multiple images obtained by different kinds of
sensors generates a robust and informative image that can
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Table 1: Example of thermal imaging datasets freely avail-
able online

Dataset Description Ref
L-CAS Thermal Physiological Monitoring
Dataset ∼3000 382 x 288 pixels images. [28]

A Face Database Simultaneously Acquired in Visible,
Near-Infrared and Thermal Spectrums,
∼7380 640 x 480 pixels images.

[29]

KAIST Multispectral Pedestrian Dataset,
∼95k 640 x 480 color-thermal pairs images [30]

Far-infrared human action dataset,
∼75k 16 x 16 pixels images [31]

Large-Scale High-Diversity Thermal Infrared
Object Tracking Benchmark, ∼600k images [32]

LWIR Thermal Imaging Dataset for Person Detection,
∼12K 1280 x 960 pixels images [33]

FLIR Thermal Dataset for Algorithm Training,
∼18k 640 x 512 pixels images [34]

CASIA Infrared Night Gait Dataset,
129 × 130 pixels images [35]

facilitate the training phase of a learning architecture.

3. System Architecture
The system we propose in this paper is designed and

conceived to create a compact and portable thermal scan-
ner suitable for collecting a thermal image dataset and val-
idate the potential of low-resolution IR images. The main
components of the device are a microcontroller, two camera
modules (visual and IR) and a 3D printed camera support
with 2 degrees of freedom, allowing the correct alignment
of the two visual sensors, which have different fields of view
and to guarantee an easy customization of the setup depend-
ing on the specific needs. The collected images are then
streamed using a serial connection to a nearby computer.
The components used for building the thermal scanner are
presented in Figure 2.
MCU. The thermal scanner is built around a STM32F41

high-performance MCU. To ease the prototyping phase, we
chose to use the Nucleo-F4012 development board, provid-
ing a wide range of connectivity protocols (i.e., I2C, SPI,
UART). Finally, the integrated programmer and available
code sample allow a straightforward development of the
streaming software.
IR sensor. For the IR camera module, we used a Flir Lep-
ton3 camera module mounted on the Breakout Board v2.0.
One of the advantages of this device is having both I2C
and SPI peripherals. The I2C protocol is used to set up
and properly configure the camera settings, while the SPI

1https://www.st.com/en/microcontrollers-microprocessors/stm32f4-
series.html

2https://www.st.com/en/evaluation-tools/nucleo-f401re.html
3https://www.flir.it/products/lepton/

takes care of the data transmission. The resolution of the
Lepton Flir is 80x60 pixels. The horizontal field of view
of the camera is 50◦ and the scene dynamic range spans
from -10◦C to 140◦C. The device will capture either black
and white (grayscale) or coloured images depending on the
camera settings. In the latter case, a few color palettes are
already built-in, with the option for customizations. An-
other useful built-in feature is the Automatic Gain Control
(AGC), through which the dynamic range of the sensors is
remapped according to the image to be displayed.
RGB sensor. The visual sensor used is a Himax HM01B04

Ultra-Low-Power camera with a custom-designed breakout
board. The sensor offers an I2C interface for the configu-
ration of the camera settings. Data transmission, instead,
is implemented with an 8-bit parallel communication. The
camera has an active area of 324x324 pixels, each of which
with a side dimension of 3.6µm. It can be configured to
provide QVGA (320×240) or QQVGA (160×120) images.
Unlike the Lepton camera, the chosen Himax module only
works in grayscale.

(a) SMT32
F401RE

(b) Lepton
Flir v2.0

(c) Himax
HM01B0

Figure 2: Hardware components used for developing the
portable thermal scanner prototype.

Table 2: Camera modules configurations

Camera Settings Resolution [p] Colour

Lepton Flir RAW 14 80x60 B&W
Lepton Flir RGB 888 80x60 Colour
Himax QVGA 320x240 B&W
Himax QQVG 160x120 B&W

Table 2 summarizes the different tested configura-
tions for the two camera modules. For the final fused
image, among the available combinations between IR
and grayscale camera, we tested features the Lepton on
RGB888 profile and the Himax at QVGA resolution, im-
plementing the appropriate routines to ensure the images
can be superimposed.

4https://www.himax.com.tw/products/cmos-image-sensor/always-on-
vision-sensors/hm01b0/

309



3.1. Image manipulation

We tested several image processing routines. As previ-
ously explained, the images coming from the Himax camera
was already of an acceptable quality. Thus, only the ther-
mal image required some enhancements. The most straight-
forward routines to improve the image quality, feature a
custom 3×3 convolution matrix. In our tests we checked
the outcomes of several convolutional Gaussian-like filters.
However, the image acquired by the camera still resulted
quite noisy, driving us towards the adoption of a 3×3 me-
dian filter, which is slightly more invasive, compared to a
low-pass one, yet better suiting our purpose.

It is well known that median filtering is generally used
when dealing with non-uniform noises, which is our case
when looking at the Lepton Flir camera. Unlike the aver-
aging method, the noise patches are often partially replaced
rather than blurred, thus yielding a cleaner image. The ef-
fect of the median filter, although very beneficial for the
noisy areas of the image, is often too invasive for the re-
maining portions of the frame. To balance this, we per-
formed, in addition to the median filter, an averaging step
based on the original value of the pixel:

pi,j = α · pi,j + (1− α) ·MF (pi,j)

where pi,j is the pixel in the i − th row and j − th col-
umn of the frame, α is a experimentally found coefficient
(α ∈ [0, 1]) and MF (pi,j) is the result of the median fil-
ter applied to the pixel pi,j . After some experimental tests,
we concluded that a suitable value for the α coefficient was
0.6. The values has been chosen manually, by checking the
visual consistency of the data.

3.2. Image Fusion

For the thermal scanner image, namely the combination
between the IR and the grayscale image, we tested a few
options in order to obtain a reliable representation. This
has been achieved aligning the images gathered by the two
cameras and performing a weighted average between the
two, in particular:

pi,jF = α · pi,jT + (1− α) · pi,jV

where pi,jF , pi,jT , pi,jV represent the pixel pi,j of the fused
image, thermal and grayscale image, respectively, with α,
chosen experimentally, set to 0.3. Also in this case, the
value has been set manually, especially considering that it
only serves to visualization purposes, not affecting the pro-
cessing pipeline whatsoever.

This proved to be a sufficiently accurate, and turned out
to be a valuable qualitative way to check the correctness of
the superimposition of the two images. In fact, considering
on the one hand the low resolution of the cameras, and, on
the other hand, the fact the IR image is positioned at the

Male Female
Subject N of images % N of images %
1 750 19.8 74 1.9
2 375 9.9 181 4.8
3 107 2.9 166 4.4
4 88 2.4 105 2.8
5 112 2.9 - -
6 370 9.8 - -
7 209 5.5 - -
8 651 17.3 - -
9 587 15.6 - -
Tot 3249 86 526 14

Table 3: Description of dataset, reporting the number of
images, and the corresponding percentage in the dataset, for
each subject involved.

center of the grayscale one, the mismatches due to the dif-
ferences in the cameras parameters can be considered negli-
gible. It is also to be noted that the spatial resolution and the
intrinsic parameters of the two cameras are different, mak-
ing it impossible to cover the same portion of the observed
environment. This would have been possible only by plac-
ing the two cameras considerably far apart. However, this
would have had two shortcomings: in the first place the two
sensors should be positioned at least 30cm apart, with the
Himax in front of the Flir IR camera, a quite sub-optimal
setup. On the other hand it would have required doubling
the size of the IR image. The ultimate solution we picked,
is to preserve the original resolutions of the images and fuse
the IR image in the central portion of the grayscale one. A
few examples are reported in the experimental section.

4. Dataset

To generate a heterogeneous dataset, we set up a shoot-
ing session, in which participants have been recorded in dif-
ferent poses. The whole dataset is composed by 3765 gray
scale pictures with a resolution of 160×120 pixels. For each
picture a corresponding 80×60 pixels IR image was also
acquired. This lead to a grand total of 7530 pictures. As
shown in Table 3 the users’ panel that contributed to the cre-
ation of the dataset consists of 13 candidates, 9 male and 4
female. All images were taken in a controlled environment,
in which the subjects were free to move. As can be noted
from Figure 3, which shows a few samples, the dataset fea-
tures a wide variety of poses, as well as a reasonably het-
erogenous pool of people in terms of body size. It is also
worth mentioning that the pictures we have collected do not
raise privacy concerns, as the involved subjects are hardly
recognizable, especially when considering the IR data.
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(a) Lepton Flir camera images

(b) Himax camera images

Figure 3: Sample dataset images.

5. Detection algorithm
Once the correctness of the two images superimposi-

tion is verified, we proceeded developing the detection al-
gorithm. We decided to rely on the well-known and es-
tablished real-time detector YOLO. YOLO is considered
among the best-performing state-of-the-art tool for object
detection, backed by an ever-growing online community.
Among the different versions of YOLO, we had to find out
the one ensuring a reliable detection feeding as input the
low-resolution images at our disposal.

In order to verify the feasibility of the approach, and
remembering that the grayscale image is mostly used as a
piece of information supporting the IR data,we decided to
train two separate networks, one for each camera, to even-
tually compare the achieved results.

To do so, an initial dataset consisting of almost 800 im-
ages was manually created and labelled, both for the visual

and IR domain. Much of our effort was put into creating a
dataset that would be as diverse as possible in terms of the
subjects’ pose, and their position inside the frame. After-
wards, both of the datasets have been digitally augmented
with automatic online tools, thus increasing the size of the
dataset by performing common image manipulations such
as shear, rotation, vertical flips and colour balancing.

The training phase has been performed on Google Colab.
This allowed us to easily share datasets and final results and
have access to free external computational resources.

For each training session we have considered a different
YOLO version, starting from the recommended configura-
tion file and set of pre-trained weights, and then tuning them
based on our specific needs. In the end, we trained 8 differ-
ent networks (4 for each of the two camera modules), testing
the following versions of the network:

• YOLO v3 [46]

• YOLO v3-tiny-3l

• YOLO v4 [47]

• YOLO v4-tiny-3l

Specifically, we wanted to compare the different YOLO
versions on two levels: the v3s and v4s families and their
corresponding tiny versions. The idea is pretty straightfor-
ward; we run the detection algorithm on a benchmark video
recorded with our camera modules. Then, we compare the
performance of the different YOLO nets in terms of number
of detections and average computational time for each de-
tection. The experimental results will be showed and better
discussed in 6.

As we intuitively predicted, the network trained with the
grayscale camera images tends to yield better and more re-
liable detections with respect to the IR network, and we
assume this is due to the use of data in the visible spec-
trum, which makes it very comparable to the data originally
used to train YOLO. The performance on the IR data are in-
stead lower, and are likely to be bound to the low-resolution
images and low robustness with respect to noise sources.
With this consideration in mind, our goal to develop an
IR dataset by exploiting the more reliable detection offered
by the grayscale camera, seems even more appropriate and
meaningful.

For the dataset creation, we then relied on the detection
accuracy in the grayscale domain, to automatically label the
IR data, thanks to the verified quality of the superimposi-
tion. The script is meant to work offline, thus diminishing
the computational burden of the real-time image-acquisition
phase. The overall structure of the code and procedure to be
followed is :

1. Visual and IR images are acquired and stored in a
memory directory
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2. The detection algorithm is run offline on the grayscale
images

3. Whenever a detection is returned, the bounding box is
properly translated to the correspondent IR image

4. The position and dimension of the bounding box are
stored in a label file, associated with the IR image

By iteratively performing such matching operation
across all the stored images, we can rely on an automatic
labeling tool, that requires minimum supervision to correct
the position of a few erroneous detections, thus generating
ready-to-use datasets.

6. Experimental results
Below, we show, compare and discuss some experimen-

tal results. In particular, we can consider the effects of the
different post-processing routines that we described in sub-
section 3.1, compare the detection algorithms among the
different YOLO versions and finally evaluate the robustness
of the automatically generated IR dataset. For the filtering
operations, we report hereafter three different examples (see
Figure 4) where the following convolution masks have been
used:

WA1
=

1

10

0 1 0
1 6 1
0 1 0

 WA2
=

1

1000

25 75 25
75 600 75
25 75 25


As we can see from the images provided in Figure 4, the

difference among the two averaging filters is subtle, while
the difference between the effect of the median and the av-
eraging filters is more evident. In particular, it could be
pointed out that the convolution matrix WA2 yields, as it
was easy to expect, a more rounded blur. The benefits of
applying the custom median filter, instead, is very notice-
able from the noise point of view. As anticipated, in fact,
some of the noisier portions of the frame are considerably
enhanced, benefiting the whole image. Therefore, we can
safely say that the custom median filter was the best image
processing routine among the ones we tested.

When considering one of the project’s core objec-
tives, namely the superimposition between the thermal and
grayscale camera, the results are indeed satisfying. The sup-
port device proved itself to be very functional and easy to
use. As a result, the overlapping of the two images is very
acceptable, especially in the central portion of the frame.
Here, the distortions caused by the different lenses of the
camera modules, are hardly noticeable.

For what concerns the software point of view of the
project, all the developed material can be found in a GitHub
repository [48]. Here, you will also find a reference to some
video footage that we captured with the device. Although

(a) Averaging convolution matrix WA1 (cross)

(b) Averaging convolution matrix WA2

(c) Custom median filter

Figure 4: Image sample of different superposition approach.

the cameras’ performance is more than capable of providing
video footage with a satisfying frame rate, this could not be
achieved in our particular setup. We found our bottleneck
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to be the transmission of the data from the microcontroller
to the PC, via the UART port. The low speed of the com-
munication, in fact, dramatically decreased the perceived
performance of the cameras.

Although it may not be considered reasonable for many
applications, the frame rate is still acceptable for an early
stage of the product. Moreover, it should be noted that the
frame rate is highly dependent on the amount of data to be
transferred. This means, for example, that an RGB footage
will inevitably perform worse than a grayscale one due to
the presence of three times the amount of data. The same
concept also applies to the image’s resolution: the lower the
amount of data, the faster the frame rate. When combining
the two, it is easy to understand why the frame rate of the
grayscale IR image is substantially higher than the fused
image between RGB IR and grayscale. After the training
phase, we move to test the performance of the different net-
work presented. Figures 5 and 6 show the achieved per-
formance, respectively for the detection of human subjects
from gray scale images and from IR images. During this
evaluation phase, 261 samples where used, among which
243 where the positive (i.e., with human subjects) ones. We
performed the same test also with the GPU support enabled,
and naturally we saw a noticeable drop in computational
time. Figure 7 shows an example of a pair of grey-scale/IR
pictures after their evaluation using a YOLO detector.

Figure 5: Performance of different Yolo models - Himax

As it was to be expected, the YOLO v4 network ranks
first as far as number of detections for both camera mod-
ules, closely followed by the YOLO v3. These networks, al-
though allowing to achieve a greater number of detections,
are typically much more expensive in terms of computa-
tional burden. This will translate, inevitably, in a longer
period of time for the detection to be performed, or smaller
perceived frames per second (FPS) as showed in the plot.
An opposite case can be made for the tiny-3l versions, in

Figure 6: Performance of different Yolo models - Lepton

which the focus is shifted more on the computational speed.
It is evident how, in general, it exists an underlying com-
promise between accuracy and computational speed, which
will be ruled mainly by the field of application. In this case,
since our algorithm for the dataset generation is meant to be
run offline, there is really no point in sacrificing accuracy
in favour of computational effort. Furthermore, given that
our final product, namely the automatically labelled dataset,
would be the foundation for future detection algorithms, the
possibility of having poor detections was not an option.

When comparing the two plots, a noteworthy aspect of
the YOLO v4-tiny-3l shall be mentioned. This network
achieved quite different results in terms of number of de-
tections between the two sets of images. For the visual
camera, in fact, this version could be a very valuable com-
promise and could be considered as the network of choice
for some real-time applications. Regarding the performance
of the other tiny-3l versions, the amount of detections is so
small that we discourage their use for this specific applica-
tion. These performance are most probably due to low res-
olutions of the images and small scale of the subjects. The
performance related to the processing speed refer to the of-
fline execution of the detector. In fact, the main bottleneck
is delivering the information from the board to the process-
ing unit, which allows for about 3fps.

On the positive side, an element to be considered is the
fact that none of the trained network tend to perform notice-
able misdetections.
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(a) Black and white frame with YOLO labeling

(b) IR frame with automatic labeling

Figure 7: Dataset sample image after the evaluation using a
YOLO network. In (a) a detected human from a grey scale
image while in (b) the same subject detected from the IR
image.

7. Conclusion

We presented a portable, low-cost thermal scanner proto-
type consisting of a thermal sensor assisted by a gray-scale
camera. The device is built with COTS components and
is connected to a separate computer for the analysis. The
system has been tested in the context of a people detection
problem, which we found to be an appropriate use-case to
set up the learning framework together with the correspond-
ing IR dataset, collected and annotated via the paired gray-
scale images. Results show that the use of IR data can be
beneficial, also in light of a more privacy-preserving detec-
tion. At the current stage we believe that better accuracy
could be reached by further expanding the IR dataset and
introducing a filtering stage capable of better highlighting
the shapes of the moving subjects. Future works will en-
compass both the expansion of the dataset in order to in-
crement the detector performance and the development of
a more compact, battery powered and standalone thermal
scanner in order to ease the creation of low-resolution IR
datasets for people detection.
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