
Deep Quaternion Pose Proposals for 6D Object Pose Tracking

Mateusz Majcher Bogdan Kwolek�

AGH University of Science and Technology, 30 Mickiewicza, 30-059 Kraków, Poland
{majcher,bkw}@agh.edu.pl

Abstract

In this work we study quaternion pose distributions for
tracking in RGB image sequences the 6D pose of an object
selected from a set of objects, for which common models
were trained in advance. We propose an unit quaternion
representation of the rotational state space for a particle
filter, which is then integrated with the particle swarm op-
timization to shift samples toward local maximas. Owing
to k-means++ we better maintain multimodal probability
distributions. We train convolutional neural networks to es-
timate the 2D positions of fiducial points and then to deter-
mine PnP-based object pose hypothesis. A CNN is utilized
to estimate the positions of fiducial points in order to calcu-
late PnP-based object pose hypothesis. A common Siamese
neural network for all objects, which is trained on keypoints
from current and previous frame is employed to guide the
particles towards predicted pose of the object. Such a key-
point based pose hypothesis is injected into the probability
distribution that is recursively updated in a Bayesian frame-
work. The 6D object pose tracker is evaluated on Nvidia
Jetson AGX Xavier both on synthetic and real sequences of
images acquired from a calibrated RGB camera.

1. Introduction

Pose estimation of known objects is essential task for
robotic grasping and manipulation. It is one of the old-
est problems in computer vision [16]. Early approaches
to 6D object pose estimation aimed at finding correspon-
dences between images and model instances [12]. More
recent methods focus on generalizing to all instances within
an object class by employing class-specific 3D keypoints
[31]. Motivated by the success of large-scale image clas-
sification, last approaches are based on deep neural net-
works. In a seminal work [13] the object pose estimation is
treated as a classification problem, where a neural network
is trained to classify the image features into a discretized
pose space. PoseCNN [36] was a first convolutional neu-
ral network (CNN) for direct regression of 6D object poses.
Overall, in recent years there have been two main CNN-

based approaches to object pose estimation, i.e. either re-
gressing the 6D object pose from the image directly [36] or
predicting 2D key-point locations in the image [23], from
which the object pose can be determined by the PnP algo-
rithm. In a two stage approach [23], in the first stage the
centers of objects of interest are determined and afterwards
deep neural networks are employed in order to determine
the rotation of the object. Although recent methods that
fit into the aforementioned research directions have turned
out to be very successful at synthetic-to-real generalization
[27], they still have not enough capabilities in terms of gen-
eralizing to novel unseen classes. Thus, considerable re-
search efforts are devoted to training neural networks on
large-scale datasets covering all kinds of objects, similar to
ImageNet in the image classification domain [26].

Most existing methods for object pose estimation out-
put a single guess of each object’s pose [13, 36, 21, 26].
However, in context of robotic applications such approaches
can be less useful as robots should be aware of pose uncer-
tainty before taking an action. There are many environmen-
tal factors, such as illumination conditions, occlusions, ob-
ject symmetry, not-enough texture as well as other factors
such as insufficient training data that might lead to lower
uncertainty of pose estimates. In case of lower uncertainty
the robot should take information from the previous frame
or eventually gather more information in order to reduce the
uncertainty. Thus, methods for estimating the object pose,
which are designed with robotics in mind should output a
distribution of object poses rather than just a single estimate
of the object pose. So far little work has been done in this
area. In [24] a probabilistic modeling of the pose space for
sequential state estimation has been studied. More recently,
in [20] conditional probability distribution over orientations
is used to update the hypothesis about actual object orienta-
tion. Modeling uncertainties in the form of continuous dis-
tributions over 3D object coordinates or bounding box co-
ordinates have been proposed in [4] and [30], respectively.

Several robotic tasks such as visual object manipula-
tion require online tracking. Although deep learning-based
methods for object pose estimation can be executed rela-
tively fast on modern GPUs, they re-estimate pose from

243

scratch for every frame, which is inherently redundant.
Moreover, this results in less or even incoherent estimations
of object poses over consecutive frames. Such data-driven
techniques usually require real-world pose-annotated data.
To reduce costs related to data annotations several recent
methods focuses on training deep models on synthetic data,
rendered on the basis of 3D models [13, 30]. Although tech-
niques like domain adaptation and randomization can im-
prove realism of synthetic data, training neural networks for
object pose estimation on synthetic data can lead to much
worse results in comparison to results achieved on relevant
real data [13, 23]. It is also worth noting that photorealistic
image synthesis requires accurately textured models, which
in turn necessitates sophisticated engineering techniques to
obtain desirable effects. Moreover, it is still common to
train individual models for every newly encountered object
instance. As lately shown, approaches relying on models
that were trained for pose estimation of many objects re-
sulted in deteriorated performance [37].

In this work we focus on embedded applications that
can achieve fast adoption of a visual system for a novel
set of objects to be tracked on RGB image sequences. We
study quaternion pose distributions for tracking in image se-
quences the 6D pose of an object selected from a set of ob-
jects, for which common models were trained in advance.
We propose an unit quaternion representation of the rota-
tional state space for a particle filter, which is then inte-
grated with the particle swarm optimization to shift samples
toward local maximas. Thanks to k-means++ clustering we
improve maintaining multimodal probability distributions.
We train convolutional neural networks to estimate the 2D
positions of fiducial points and then to determine PnP-based
object pose hypothesis. A common Siamese neural network
for all objects, which is trained on keypoints from current
and previous frame is employed to guide the particles to-
wards predicted pose of the object. Such a keypoint based
pose hypothesis is injected into the probability distribution
that is recursively updated in a Bayesian framework. The
object is delineated by a common U-Net for all objects.

2. Quaternion Particle Filter. Quaternion Par-
ticle Swarm Optimization

Particle filters (PFs) allow robust estimation of hidden
features of dynamical systems [15]. Due to their capability
to deal with severe nonlinearities and non-Gaussian noise
they are widely used in robotics and automotive industry
[2].

Particle swarm optimization (PSO) [33] is a stochas-
tic population-based optimization algorithm, which iter-
atively tries to ameliorate a candidate solution with re-
spect to objective function. Substantial research efforts have
been devoted to advance this global optimization algorithm.
A selectively-informed approach [8] permits particles to

choose different learning strategies based on their connec-
tions. In [5] the resampling from a particle filter has been
used to improve the optimization performance of the PSO.

2.1. Quaternions

Quaternions are particularly appropriate within those ar-
eas of science where it is necessary to compose rotations
with minimal computations. They permit reducing the num-
ber of parameters and operations in comparison to vector
algebra. In [25], a fast quaternion-based PSO for pose esti-
mation on RGB-D images has been proposed.

Mathematically, quaternions are members of a noncom-
mutative division algebra. They can be regarded as num-
bers with one real part and three distinct imaginary parts:
q = qw + qxi + qyj + qzk, where qw, qx, qy, and qz are
real numbers, and i, j, k satisfy i2 = j2 = k2 = ijk = −1,
and ij = −ji = k, jk = −kj = i, ki = −ik = j. The
quaternion q = qw + qxi + qyj + qzk can also be viewed
as q = w + v, where v = qxi + qyj + qzk. If we con-
sider v as the 3D vector, then quaternion multiplication can
be expressed using vector dot product and cross product of
vectors. Every quaternion with unit magnitude that enforces
the number of DoF to three, represents a rotation of angle θ
about an arbitrary axis. If the axis passes through the origin
of the coordinate system and has a direction given by the
vector n with |n| = 1, we can parameterize this rotation in
the following manner:

q = [qw qx qy qz] =
[
cos(

1

2
θ) n̂ sin(

1

2
θ)
]
= [w v] (1)

The set of unit-length quaternions is a sub-group whose un-
derlying set is named S3. This set of unit quaternions cor-
responds to the unit sphere S3 in R4. As the quaternions
q and −q represent identical rotation, only one hemisphere
of S3 needs to be taken into account, and thus we choose
the northern hemisphere S3+ with q ≥ 0, which in turn is
equivalent to θ ∈ [0, π].

The quaternion multiplication can be expressed as:

q0 ? q1 = [w0 v0][w1 v1]
= [w0w1 − v0 · v1 w0v1 + w1v0 + v0 × v1]

(2)

where× stands for vector cross product, · is vector dot prod-
uct and ? denotes quaternion multiplication. The logarithm
of q is defined as follows:

logMap(q) = logMap([cos(α) nsin(α)]) ≡ [0 αn] (3)

where α = 1
2θ. It is worth noting that the logMap(q) is not

a unit quaternion. The exponential function is defined as:

expMap(p) = expMap([0 αn]) ≡ [cos(α) nsin(α)]
(4)

where p = [0 αn] = [0 (αx αy αz)] with n as unit vec-
tor (‖n‖ = 1). By definition expMap(p) always returns a
unit quaternion. Exponential map has an advantage that it
linearizes quaternions [9].

244

2.2. Quaternion Particle Filter

A particle filter (PF) is a Monte Carlo method that allows
to solve such inverse problems. Recently, a dual quater-
nion filter for recursive estimation of rigid body motions
has been proposed [18]. In this work we propose the unit
quaternion representation of the rotational state space for
a particle filter, which is then integrated with the particle
swarm optimization responsible for moving the particles
near the local maxims.

The state vector describing the 6D object pose comprises
two parts: a quaternion as a description of rotations and
translation vector in Euclidean space, which origin is in the
camera coordinate system. Let us denote by q the unitary
quaternion representing the rotation in time t, and by z the
3D translation in time t. The state vector assumes the fol-
lowing form: x = [q z], where q is a unitary quaternion and
z is a 3D translation vector. To introduce the process noise
in the quaternion motion of particle i, a three dimensional
normal distribution with zero mean and covariance matrix
Cr in the tangential space is applied as follows:

qi(t+ 1) = expMap(N ([0, 0, 0]T , Cr)) ? qi(t) (5)

where qi(t) - orientation of particle i at time t, Cr -
covariance matrix for rotation with standard deviations
(γr1 γr2 γr3) on the diagonal, ? - quaternion product (2)
and expMap - exponential function (4). The probabilistic
motion model for the translation is as follows:

zi(t+ 1) = zi(t) +N ([0, 0, 0]T , Ct) (6)

Each particle i is represented as si(t) = (xi(t), wi(t)),
where wi(t) is the particle’s weight. The weights are calcu-
lated on the basis of a probabilistic observation model and
then used in the resampling of the particles. With the re-
sampling the particles with large weights are replicated and
the ones with negligible weights are eliminated.

2.3. Quaternion Particle Swarm Optimization

Particle Swarm Optimization (PSO) [14] is a global,
derivative–free, population–based optimization method. It
optimizes a problem by iteratively trying to improve a can-
didate solution with respect to a fitness measure. The opti-
mal solution is sought by a population of particles explor-
ing candidate solutions. During exploring the search space
each particle is stochastically accelerated towards its previ-
ous best position (personal best) and towards the best so-
lution of the group (global best). Every individual moves
with its own velocity in the multidimensional search space,
calculates its own best position and determines its fitness
upon a fitness function f(x). The objective function is em-
ployed to determine the best particles’ locations as well as
the global best location.

In an ordinary PSO every particle is initialized with a
random position and velocity [14]. During exploration of
the search space, every particle i updates its position that
is affected by the best position pi = [qi,best zi,best] deter-
mined so far and the global best position ĝ = [qgbest zgbest]
found by the entire swarm.

The 3D position z and 3D velocity of the particle i in
iteration k are determined as follows:

vi(k + 1) = wvi(k) + c1r1(zi,best(k)− zi(k))
+ c2r2(zgbest(k)− zi(k))

(7)

zi(k + 1) = zi(k) + vi(k + 1) (8)

where zi(k) is 3D position in iteration k, vi(k) is velocity
in iteration k, zi,best(k) is the best 3D position found so
far by the particle i, zgbest(k) is the best 3D position of all
particles, w is a positive inertia weight, c1, c2 are positive,
cognitive and social constants, respectively, r(i)1,j and r

(i)
2,j

are uniquely generated random numbers with the uniform
distribution in the interval [0.0, 1.0], generated in each iter-
ation, for each dimension and independently for each parti-
cle. Spherical linear interpolation (SLERP) is used to obtain
the object’s angular velocity. The angular velocity update
for the i-th particle is realized in the following manner:

ωi(k + 1) =wωi(k) + c1r1[2logMap(qi,best(k) ? q∗i (k))]

+ c2r2[2logMap(qgbest(k) ? q∗i (k))] (9)

where qi(k) is rotation of particle i in iteration k, qi,best(k)
is the best rotation found so far by particle i, qgbest(k) is
the best rotation found so far by all particles and logMap is
logarithmic map (3). The rotation of the i-th particle is then
updated in the following manner:

qi(k + 1) =

[
cos

(
‖ωi(k + 1)‖Tc

2

)
,

sin

(
‖ωi(k + 1)‖Tc

2

)
ωi(k + 1)

‖ωi(k + 1)‖

]
qi(k)

(10)

where Tc is a parameter to scale the angular velocity. The
number of iterations is set to three.

After determining xi(k + 1) using (8,10), pi(k + 1) is
updated as follows:

pi(k+1) =

{
pi(k) if f(xi(k + 1)) ≥ f(pi(k))

xi(k + 1) if f(xi(k + 1)) < f(pi(k))
(11)

As topology with global best usually results in better perfor-
mance on problems with small number of modes due to its
faster convergence rate, such topology is used in this work.

3. Pose Tracking Using Quaternion PF-PSO
3.1. 6D Pose Tracking

Estimating the 6-DoF pose (3D rotations + 3D transla-
tions) of an object with respect to the camera is an impor-

245

tant problem due to potential applications in robotics. Auto-
matic estimation of the object pose on RGB images is a dif-
ficult ill-posed problem. The discussed task has many im-
portant aspects that should be resolved to achieve robust ob-
ject grasping, including object classification, object detec-
tion, object tracking, and finally, estimation of the 6D object
pose. A lot of successful approaches have been developed
in these directions [10, 6]. The pose of a calibrated camera
can be estimated on the basis of a set of 3D points in the
world and their corresponding 2D projections in the image
by Perspective-n-Point (PnP) algorithm [7]. In such an ap-
proach, natural point features can be employed [17, 32]. In
general, features can either encode image properties or can
be learned. PoseCNN has been first convolutional neural
network (CNN) for direct regression of 6DoF object poses
[36]. In [13], the pose estimation is achieved by classifica-
tion of image features in a discretized pose space. Gener-
ally, there are two main CNN-based approaches to 6D ob-
ject pose estimation: regressing the 6D object pose from
the image directly [36] or predicting 2D key-point locations
in the image [23] and then using the PnP algorithm. In
[21], a Pixel-wise Voting Network (PVNet) to regress pixel-
wise unit vectors pointing to the keypoints and then using
these vectors to vote for keypoint locations via RANSAC
has been proposed. Although, several methods for pose es-
timation on single RGB images have been proposed, a num-
ber of successful approaches to 6D pose tracking is limited.
There are a number of datasets for benchmarking the per-
formance of algorithms for 6D object pose estimation, in-
cluding OccludedLinemod [3], YCB-Video [36]. However,
current datasets do not focus on 6D object tracking using
RGB image sequences and they have been mainly designed
for single-frame based pose estimation.

3.2. Algorithm for 6D Object Pose Tracking

On the basis of Q-PF and Q-PSO as the base ingredients
we investigated an algorithm for 6-DOF object pose estima-
tion and tracking on RGB images acquired from a calibrated
camera. The object of interest is segmented in sequence of
images using U-Net neural network. The segmented object
is then fed to a neural network that estimates the 2D lo-
cation of eight fiducial points on the object. Next, the 6D
pose of the object is estimated by the PnP algorithm. It is
then employed as a pose hypothesis during inference of the
6D pose. A Siamese neural network, which is trained on
keypoints from current and previous frames is employed to
predict the 6D object pose. The object pose prediction is
employed as a pose hypothesis in the next frame. A quater-
nion particle filter (Q-PF) combined with a quaternion par-
ticle swarm optimization (Q-PSO) that were presented in
Section 2 are employed to infer the posterior probability
distribution of the object poses as well as the best 6D pose
of the object. The observation model and objective func-

tion utilize the projected 3D model onto images in order
to determine matching among the rendered object with the
segmented object. The matching is calculated using object
silhouette and distance transform-based edge scores. A hy-
pothesis about 6D object pose that is determined on the ba-
sis of eight fiducial keypoints and the PnP algorithm is in-
cluded in the probability distribution of the object poses. A
second hypothesis is 6D object pose in the next frame. As-
suming that this is multi-modal probability distribution a k-
means++ algorithm is then executed to find dominant clus-
ters in such a distribution. The quaternion particle swarm
optimization is executed afterwards to seek modes in the
probability distribution. It is also responsible for determin-
ing the best 6D object pose. The probability distribution
that undergoes prediction to represent possible object poses
in the next frame is represented by particles maintained by
Q-PF, particles from two sub-swarms determined by the k-
means++ as well as particles shifted towards high probabil-
ity areas by the Q-PSO.

3.3. Siamese Neural Network for Pose Prediction

Figure 1 depicts architecture of neural network for pre-
diction of the object pose. As it contains shared weights
it is a Siamese-like neural network. The input are pairs of
positions of eight keypoints in current frame and a previous
one. The trained neural network predicts 3D positions and
3D rotations of the object in the next frame. The cost func-
tions is calculated using 3D positions of the object in time
t−1 and t, quaternions representing object rotations in time
t− 1 and t and delta translations from time t− 1 to time t.
The loss function is sum of the following components:

L = LT,t−1+LQ,t−1+LT,t+LQ,t+LDT1+LDT2 (12)

where LT,t−1 and LQ,t−1 denote the position and rotation
loss components in time t − 1. Same, LT,t and LQ,t rep-
resent position and rotation loss ingredient in time t. LDT1

and LDT2 stand for two delta translation loss components.
First of them expresses discrepancy between ground truth
translation with predicted translation. The second one cal-
culates delta translation from predicted poses in time t− 1,
t and then calculates its discrepancy with the ground truth.
The quaternions delivered by the network were normalized.
Mean squared error was chosen to calculate all losses.

3.4. Quaternion PF-PSO with PnP-based Hypothe-
ses and Siamese Neural Network-based 6D
Pose Predictions

Given the particle set representing the posterior probabil-
ity distribution in the previous frame, the particles are prop-
agated according to a probabilistic motion model, the pose
likelihoods on the basis of probabilistic observation model
are calculated, and afterwards the particle weights are deter-
mined and a resampling is executed, as in ordinary particle

246

Figure 1: Architecture of Siamese neural network for pre-
diction of 6D pose of the object.

filters. A particle with a small weight is replaced in such
a resampled particle set by a particle with pose determined
on the basis of keypoints and the PnP algorithm, see line #3
in below pseudo-code. After that, a particle with smallest
weight is replaced by a particle with pose predicted by the
Siamese neural network. Next, samples are clustered us-
ing k-means++ algorithm [1], which applies a sequentially
random selection strategy according to a squared distance
from the closest center already selected. Afterwards, a two-
swarm PSO executes three iterations to find the modes in
the probability distribution. Next, ten best particles are se-
lected to form a sub-swarm, see lines #8-9 in pseudo-code.
Twenty iterations are executed by such a sub-swarm to find
better particle positions. The best global position returned
by the discussed sub-swarm is used in visualization of the
best pose. Finally, an estimate of the probability distribu-
tion is calculated by replacing the particle positions deter-
mined by the Q-PF with corresponding particle positions,
which were selected to represent the modes in the probabil-
ity distribution, see lines #6-7, and particles refined by the
sub-swarm, see line #11. The initial probability distribu-
tion is updated by ten particles with better positions found
by the Q-PSO algorithms and ten particles with better posi-
tions found by the sub-swarm, see line #12. The probabilis-
tic observation model and objective function in the Q-PSO
are based on matching among the rendered object with the
segmented object. The matching is calculated using object
silhouette and distance transform-based edge scores.

1 function select(n best,X)
2 Xsorted ← quicksort(X) using f(x)
3 return Xsorted[1...n best]

Input: Xt−1 - particle set (x=[q z])
1 Xt ← propagate Xt−1 using (5, 6)
2 Xt ← PF(Xt) using f(x)
3 xPnP

t ← PnP (), replace worst x ∈ Xt with xPnP
t

4 xSiam
t ← Siam(), replace worst x ∈ Xt with xSiam

t

5 Xc1
t , X

c2
t ← k-means++(Xt)

6 ∼, Xc1
t ← QPSO(Xc1

t , 3) using (8,10)
7 ∼, Xc2

t ← QPSO(Xc2
t , 3) using (8,10)

8 Xc1 best
t ← select(5, Xc1

t)
9 Xc2 best

t ← select(5, Xc2
t)

10 Xbest
t ← Xc1 best

t

⋃
Xc2 best

t

11 xgbest, Xbest
t ← QPSO(Xbest

t , 20) using (8,10)
12 foreach x1 ∈ Xc1 best

t

⋃
Xc2 best

t

⋃
Xbest

t do
with x1 subst. corr. x2 ∈ Xt

13 return xgbest, Xt

The Q-PF-PSO presented above has been verified in var-
ious simulation experiments. Figure 2 depicts sample simu-
lation results. In discussed experiment we simulated a sce-
nario with rotating object about one of its axis. We assumed
that an object rotates according to a probabilistic motion
model. The object orientations are represented by red dots.
The second image depicts the probability density, which
was estimated using KDE after prediction of the samples
in the Q-PF, whereas third one depicts the probability den-
sity after resampling. In the next images the densities in
1st, 2nd and 3rd iterations of Q-PSO are shown. In the dis-
cussed experiment, the measurements were contaminated
by Gaussian random noise of zero value and a given co-
variance matrix. For visualization purposes relatively large
standard deviations were utilized both in probabilistic mo-
tion and observation model.

Figure 2: Simulation of Q-PF-PSO on toy data. From left
to right: ground-truth marked as red dots, predicted distri-
bution, distribution after resampling, distribution after 1-st,
after 2-nd and after 3-rd iteration (best viewed in color).

4. Experimental Results
At the beginning we discuss computer simulations. Af-

terwards, we discuss evaluation metric for 6D pose estima-
tion. Finally, we present experimental results.

4.1. Computer simulations

The proposed Q-PF, Q-PSO and Q-PF-PSO supported by
a k-means++ are general algorithms and can be used in wide
spectrum of applications. Figure 3 depicts sample plots that
were obtained during tuning of Q-PF-PSO for tracking ro-
tation of a real object, c.f. Section 4.3.

4.2. Evaluation Metric for 6D Pose Estimation

We evaluated the quality of 6-DoF object pose estima-
tion using ADD score (Average Distance of Model Points)

247

Figure 3: Simulation tests of Q-PF-PSO on real data. Prior
distribution, distribution after resampling, clusters deter-
mined by k-means++, locations of particles after execution
of PSO on two sub-swarms.

[11]. ADD is defined as average Euclidean distance be-
tween model vertices transformed using the estimated pose
and the ground truth pose. This means that it expresses the
average distance between the 3D points transformed using
the estimated pose and those obtained with the ground-truth
one. It is defined as follows:

ADD = avgx∈M ||(Rx+ t)− (R̂x+ t̂)||2 (13)

where M is a set of 3D object model points, t and R are
the translation and rotation of a ground truth transforma-
tion, respectively, whereas t̂ and R̂ correspond to those of
the estimated transformation. This means that it expresses
the average distance between the 3D points transformed us-
ing the estimated pose and those obtained with the ground-
truth one. The pose is considered to be correct if average
distance e is less than ked, where d is the diameter (i.e.,
the largest distance between vertices) of M and ke is a pre-
defined threshold (normally it is set to ten percent).

We determined also the rotation error on the basis of the
following formula:

errrot = arccos((Tr(R̂R−1)− 1)/2) (14)

where Tr stands for matrix trace, R̂ and R denote rota-
tion matrixes corresponding to ground-truth and estimated
poses, respectively.

4.3. Evaluation of Pose Tracking

All tracking scores presented below are averages of three
independent runs of the algorithm with unlike initializa-
tions. At the beginning we evaluated our algorithm on
freely available OPT benchmark dataset [35], which has
been recorded for evaluation of algorithms for tracking 6D
pose of the objects. In discussed benchmark dataset the
image sequences have been recorded under various light-
ing conditions, different motion patterns and speeds using
a programmable robotic arm. Table 1 presents the tracking
scores that were achieved on the OPT dataset in FreeMotion
scenario with the use as well as with no use of pose predic-
tions by the Siamese neural network. As we can observe,
considerable gains in the ADD scores can obtained thanks
to Siemese neural network-based pose predictions. The dis-
cussed results were achieved using common Siamese neural
network that has been trained for all objects.

Table 1: Tracking scores [%] achieved by our algorithm on
OPT dataset [35] in tracking 6D pose of House and Ironman
in FreeMotion scenario (nS - no Siamese).

view, ADD [%] House (nS) House Ironman (nS) Ironman
Behind, 10% 85±2.07 82±2.53 64±2.29 77±3.06
Behind, 20% 99±0.51 97±1.68 91±1.62 95±2.06
Left, 10% 81±1.52 76±2.58 35±5.56 42±3.37
Left, 20% 97±1.34 98±1.34 66±6.77 69±3.82
Right, 10% 55±5.13 75±2.02 46±5.15 56±4.34
Right, 20% 74±7.20 96±1.80 73±6.73 79±5.04
Front, 10% 53±3.66 82±1.14 55±6.02 68±3.45
Front, 20% 81±5.40 97±1.10 73±5.94 83±3.29
Average, 10% 68 79 50 61
Average, 20% 88 97 76 82

Afterwards, we compared results achieved by our algo-
rithm with a neural network trained for all objects with re-
sults that were obtained by a neural network trained for each
object. Table 2 presents the tracking scores achieved in 6D
pose tracking of House, Ironman and Jet objects in FreeMo-
tion scenario. Although the tracking scores achieved by the
algorithm with a Siamese neural network trained for all ob-
ject are slightly worse than these achieved with the use of
a separate network for each object, the difference between
tracking scores is not high.

Table 2: Tracking scores [%] achieved by our algorithm in
tracking 6D pose of House, Ironman and Jet in FreeMotion
scenario.

Siamese for all Siamese for each
tracking score [%] House Iron. Jet House Iron. Jet
Behind, ADD 10% 82 77 74 85 73 80
Behind, ADD 20% 97 95 86 99 93 90
Left, ADD 10% 76 42 39 80 48 33
Left, ADD 20% 98 69 66 97 68 55
Right, ADD 10% 75 56 60 78 58 61
Right, ADD 20% 96 79 84 96 79 86
Front, ADD 10% 82 68 61 82 69 68
Front, ADD 20% 97 83 86 98 87 89
Average, ADD 10% 79 61 59 81 62 60
Average, ADD 20% 97 82 80 97 82 80

Table 3 contains AUC scores achieved by recent meth-
ods in 6D pose tracking of six objects in the FreeMotion
scenario. As we can observe, our algorithm achieves bet-
ter results in comparison to results achieved by PWP3D,
UDP and ElasticFusion. In comparison to results attained
by algorithm [29] our method outperforms it in many cases.
However, the discussed method delivers a single guess of
each object’s pose, whereas our method delivers best poses
together with probability distributions.

Afterwards, we conducted experiments on our dataset
[19]. For evaluation of 6D pose tracking we selected the se-
quences #2 in which every object moves from left to right,
simultaneously makes rotations from 0 to 180◦, and after
reaching the right side of the image, the object moves back

248

Table 3: AUC scores on OPT Dataset [35] in FreeMotion
scenario, compared to results achieved by recent methods.
AUC score [%] House Ironman Jet Bike Chest Soda
PWP3D [22] 3.58 3.92 5.81 5.36 5.55 5.87
UDP [4] 5.97 5.25 2.34 6.10 6.79 8.49
ElasticFusion [34] 2.70 1.69 1.86 1.57 1.53 1.90
Reg. G-N. [29] 10.15 11.99 13.22 11.90 11.76 8.86
w/o Siamese 11.52 9.26 9.19 10.81 6.93 6.61
Siamese for each 13.68 10.59 10.37 12.36 7.80 8.60
Siamese for all 13.27 10.32 10.33 11.88 7.60 8.90

from right to left, simultaneously makes full rotation about
its axis. The training of neural networks both for object
segmentation/detection and 6D pose estimation was done
on synthetic images only. Table 4 presents experimental re-
sults that were obtained by our algorithm.

Figure 4 depicts ADD scores over time that were ob-
tained by the Q-PF-PSO algorithm. As we can observe,
slightly bigger errors were achieved for 0◦ camera view for
the extension and the multimeter. The larger errors are due
to similar appearances of the objects from the side view.
For 10% ADD the pose predictions by the Siamese neu-
ral network lead to considerable improvements of tracking
scores. Although, the tracking scores achieved by the al-
gorithm with Siamese neural network trained for all objects
are smaller, the drop in the performance is relatively small.
The advantages of using a single neural network for all ob-
jects are considerable. Moreover, this in turn opens several
new research possibilities.

Figure 4: ADD scores over time for images from sequence
#2, obtained by Q-PF-PSO with Siamese neural network
predicting object pose (plots best viewed in color).

Figure 5 depicts rotation errors over time on real im-
ages, which have been obtained by the Q-PF-PSO with neu-
ral network predicting the object pose over time. As we
can observe, the largest errors were obtained for the exten-
sion, which is symmetric and texture-less object. Somewhat
larger errors were observed for 30◦ camera view. The exper-
imental results presented above were achieved on the basis
of eight fiducial points, which were determined by a neural
network, trained separately for each object. This could in-
dicate the limited potential of the proposed approach. How-
ever, it is worth noting that the proposed approach is uni-
versal as it can be used for points that are discovered in
semi-supervised or unsupervised learning.

In order to segment all objects we trained a single U-Net

Figure 5: Rotation errors over time for real images, obtained
by Q-PF-PSO using object poses that were predicted by the
Siamese neural network.

on 900 images from the OPT benchmark. A single U-Net
has been trained on 1800 images in order to segment all
six objects from our dataset. The Dice scores were higher
than 95% for all objects. The neural networks for estima-
tion of positions of keypoints were trained on 300 images
and evaluated on 50 images. We trained separate Siamese
neural networks for OPT and our dataset. They were trained
in 15 epochs, batch size set to 256 using Adam optimizer
with lr set to 1e−4. It has been trained on 1e6 pairs of
positions of eight keypoints. The keypoint positions were
generated on the basis of projections of 3D keypoints of the
objects. The pairs were generated with the starting pose in
the range [-180◦, 180◦] with 45◦ step on every axis. Trans-
lation was sampled from uniform distribution in interval [-
30 cm, 30 cm] with step 15 cm for all axes. Z axis was
fixedly increased to fit the object in the image. The second
pose of pair was then generated by changing randomly the
starting rotations on the basis of (5) and changing randomly
the translation through sampling from uniform distribution
[-5 cm, 5 cm] with 2 cm step for all axes. It is obvious that
the use of trajectories, or even keypoints from three consec-
utive frames might lead to better results or similar result but
using fever number of particles.

The complete system for 6D pose estimation has been
evaluated on Nvidia Jetson AGX Xavier board. The Jetson
AGX Xavier has 512-core Volta GPU with Tensor Cores. It
offers more than 20x the performance and 10x the energy
efficiency of the Nvidia Jetson TX2. Table 5 presents run-
ning times that were compared with times obtained on a PC
equipped with AMD Ryzen 7 2700, GeForce RTX 2060.
The evaluations were performed by setting the Jetson AGX
Xavier board to maximum performance mode (MAXN0).
We used Jetpack 4.3, CUDA 10 and Tensorflow 2.1. We
have optimized the weights of neural networks with the Ten-
sorRT library (6.0) with default settings. As we can ob-
serve, thanks to optimized code the U-Net executes on the
Jetson in about two times shorter time. The speed-up for
the Siamese neural network is even larger. The time needed
for determination of the keypoints on the Jetson is some-
what larger in comparison to time needed on the PC. The
discussed operations are executed in 0.04 sec. on the Jet-
son, i.e. with about 25 Hz. Thanks to implementation of
the k-means++ in CUDA and executing it on the GPU, al-

249

Table 4: ADD scores [%] achieved by our algorithm with and without Siamese.

tracking score [%]
0◦,
ADD
10%

0◦,
ADD
20%

30◦,
ADD
10%

30◦,
ADD
20%

60◦,
ADD
10%

60◦,
ADD
20%

90◦,
ADD
10%

90◦,
ADD
20%

Avg.,
ADD
10%

Avg,
ADD
20%

drill w/o Siam. 88 98 88 98 68 93 77 98 80 97
drill with Siam. sep. 92 98 87 100 70 93 83 93 83 96
drill with Siam. com. 90 98 90 99 78 93 77 84 84 94
frog w/o Siam. 71 82 87 98 66 79 38 57 65 79
frog with Siam. sep. 81 87 75 81 83 93 66 82 76 86
frog with Siam. com. 81 87 81 89 76 87 63 88 75 88
pig w/o Siam. 45 74 52 73 63 83 85 93 61 81
pig with Siam. sep. 53 73 61 70 64 79 93 100 68 80
pig with Siam. com. 53 73 56 83 64 79 91 93 66 82
duck w/o Siam. 52 94 78 86 73 79 86 100 72 90
duck with Siam. sep. 55 88 79 88 75 84 93 100 75 90
duck with Siam. com. 53 79 84 91 77 90 93 100 77 90
ext. w/o Siam. 23 35 58 71 62 75 75 98 54 70
ext. with Siam. sep. 37 50 58 77 70 83 86 97 63 76
ext. with Siam. com. 40 49 58 68 70 83 81 97 62 74
mult. w/o Siam. 15 26 75 93 85 96 94 100 67 79
mult. with Siam. sep. 17 26 76 96 84 98 98 99 69 80
mult. with Siam. com. 15 28 78 98 84 98 93 100 68 81

most five times speed-up has been obtained in comparison
to executing the k-means++ on NVIDIA Carmel ARMv8.2
CPU. In the current unoptimized GPU implementation of
the PSO it is executed on the Jetson in almost two times
larger time than on the PC. Summarizing, the Jetson-based
implementation of the algorithm runs at about 5 Hz, i.e.
at about the same speed as on the PC. The most computa-
tionally demanding operation is matching between the pro-
jected 3D model and image observations, supported by an
edge distance transform. The functions mentioned above
are implemented using CUDA parallel programming envi-
ronment. They can be further speed up with more advanced
parallel processing such as CUDA-OpenGL interoperabil-
ity, which has been shown to render one thousand images in
100 milliseconds [28].

Table 5: Running times on Jetson AGX Xavier [sec.]
PC Jetson

U-Net 0.040 0.020
Keypoints 0.035 0.040
Siamese 0.030 0.007
k-means++ 0.005 0.010
PSO 200p. 3 iter. 0.037 0.060
PSO 10p. 10 iter. 0.026 0.040
overheads 0.017 0.023
Total 0.190 0.200

5. CONCLUSIONS
In this paper, we showed that Siamese neural network

can deliver pose predictions over time, which considerably
improve the performance of the object tracking. We demon-
strated experimentally that the tracking accuracy does not

drop significantly if one Siamese neural net trained for sev-
eral objects is used instead of the neural network trained
for each object separately. We proposed an unit quaternion
representation of the rotational state space for particle fil-
ter hybridized with the particle swarm optimization. The
6D object pose tracker was evaluated both on synthetic and
real sequences of images acquired from a calibrated RGB
camera. The evaluations were done on freely available OPT
benchmark dataset as well as on our dataset that contains
both real and synthesized images of six texture-less objects.
We demonstrated experimentally that thanks to use of pose
predictions by the Siamese neural network the tracking per-
formance is much better. One of the advantages of our
approach is that in contrast to recent approaches, our al-
gorithm delivers probability distribution of object poses in-
stead of a single object pose guess. On Nvidia Jetson AGX
Xavier the neural networks for object segmentation, fidu-
cial keypoints determination and pose prediction are exe-
cuted with 25 Hz, whereas the whole algorithm is running
at about 5 Hz. In ongoing work the keypoint extraction will
be done in a semi-supervised manner.

Acknowledgement

This work was supported by Polish National
Science Center (NCN) under a research grant
2017/27/B/ST6/01743.

References
[1] D. Arthur and S. Vassilvitskii. K-means++: The Advantages

of Careful Seeding. In Proc. ACM-SIAM Symp. on Discrete
Algorithms, pages 1027–1035, 2007. 5

250

[2] K. Berntorp and S. Di Cairano. Particle Filtering for auto-
motive: A survey. In 22th Int. Conf. on Inf. Fusion, pages
1–8, 2019. 2

[3] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton,
and C. Rother. Learning 6D object pose estimation using 3D
object coordinates. In ECCV, pages 536–551, 2014. 4

[4] E. Brachmann, F. Michel, A. Krull, M. Yang, S. Gumhold,
and C. Rother. Uncertainty-driven 6D pose estimation of ob-
jects and scenes from a single RGB image. In CVPR, pages
3364–3372, 2016. 1, 7

[5] Q. Cheng, X. Han, T. Zhao, and Sarma Y. Improved Particle
Swarm Optimization and neighborhood field optimization by
introducing the re-sampling step of Particle Filter. J. of In-
dustrial & Management Opt., 15:177–198, 2019. 2

[6] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D.
Fox. PoseRBPF: A Rao-Blackwellized Particle Filter for 6D
Object Pose Tracking. In Robotics: Science and Systems
(RSS), 2019. 4

[7] M. Fischler and R. Bolles. Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Im-
age Analysis and Automated Cartography. Commun. ACM,
24(6):381–395, 1981. 4

[8] Y. Gao, W. Du, and G. Yan. Selectively-informed particle
swarm optimization. Scientific Reports, 5(1), 2015. 2

[9] F. Grassia. Practical parameterization of rotations using the
exponential map. J. of Graphics Tools, 3(3):29–48, 1998. 2

[10] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-
CNN. In ICCV, pages 2980–2988, 2017. 4

[11] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski,
K. Konolige, and N. Navab. Model based training, detec-
tion and pose estimation of texture-less 3D objects in heavily
cluttered scenes. In ACCV 2012, pages 548–562, 2013. 6

[12] D. Huttenlocher and S. Ullman. Recognizing solid objects
by alignment with an image. Int. J. of Computer Vision,
5(2):195–212, 1990. 1

[13] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab.
SSD-6D: Making RGB-Based 3D Detection and 6D Pose
Estimation Great Again. In IEEE Int. Conf. on Computer
Vision, pages 1530–1538, 2017. 1, 2, 4

[14] J. Kennedy and R. Eberhart. Particle Swarm Optimization.
In Proc. of IEEE Int. Conf. on Neural Netw., pages 1942–
1948, 1995. 3

[15] A. Kutschireiter, C. Surace, H. Sprekeler, and J.-P. Pfister.
Nonlinear Bayesian filtering and learning: a neuronal dy-
namics for perception. Scientific Reports, 7(1), 2017. 2

[16] R. Lawrence. Machine Perception of 3D Solids. PhD thesis,
Massachussets Inst. of Technology, MIT, 6 1965. 1

[17] V. Lepetit, J. Pilet, and P. Fua. Point matching as a classifi-
cation problem for fast and robust object pose estimation. In
CVPR, pages 244–250, 2004. 4

[18] K. Li, F. Pfaff, and U. D. Hanebeck. Unscented dual quater-
nion particle filter for SE(3) estimation. IEEE Control Sys-
tems Letters, 5(2):647–652, 2021. 3

[19] M. Majcher and B. Kwolek. 3D model-based 6D object pose
tracking on RGB images using particle filtering and heuristic
optimization. In VISAPP, pages 690–697, vol. 5, 2020. 6

[20] Z. C. Márton, S. Türker, Ch. Rink, M. Brucker, S. Kriegel,
T. Bodenmüller, and S. Riedel. Improving object orienta-
tion estimates by considering multiple viewpoints. Aut. Rob.,
42(2):423–442, 2017. 1

[21] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. PVNet:
Pixel-Wise Voting Network for 6DoF Pose Estimation. In
IEEE Conf. CVPR, pages 4556–4565, 2019. 1, 4

[22] V. Prisacariu and I. Reid. PWP3D: Real-Time Segmenta-
tion and Tracking of 3D Objects. Int. J. Comput. Vision,
98(3):335–354, 2012. 7

[23] M. Rad and V. Lepetit. BB8: A scalable, accurate, robust to
partial occlusion method for predicting the 3D poses of chal-
lenging objects without using depth. In IEEE ICCV, pages
3848–3856, 2017. 1, 2, 4

[24] S. Riedel, Z.-C. Marton, and S. Kriegel. Multi-view orienta-
tion estimation using Bingham mixture models. In IEEE Int.
Conf. on Aut., Quality and Testing, Robotics. IEEE, 2016. 1

[25] S. Rosa, G. Toscana, and B. Bona. Q-PSO: Fast quaternion-
based pose estimation from RGB-D images. J. of Intelligent
& Robotic Systems, 92(3):465–487, 2018. 2

[26] C. Sahin, G. Garcia-Hernando, J. Sock, and T.-K. Kim. A
review on object pose recovery: From 3D bounding box de-
tectors to full 6D pose estimators. Image and Vision Comp.,
96:103898, 2020. 1

[27] H. Su, Ch. Qi, Y. Li, and L. Guibas. Render for CNN: View-
point estimation in images using CNNs trained with rendered
3D model views. In IEEE ICCV, 2015. 1

[28] Z. Sui, L. Xiang, O. Jenkins, and K. Desingh. Goal-directed
robot manipulation through axiomatic scene estimation. The
Int. J. of Robotics Research, 36(1):86–104, 2017. 8

[29] H. Tjaden, U. Schwanecke, E. Schmer, and D. Cremers. A
region-based Gauss-Newton approach to real-time monoc-
ular multiple object tracking. IEEE Trans. on PAMI,
41(8):1797–1812, 2019. 6, 7

[30] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox,
and S. Birchfield. Deep object pose estimation for seman-
tic robotic grasping of household objects. In Proc. 2nd Conf.
on Robot Learn., volume 87, pages 306–316, 2018. 1, 2

[31] H.-Y. Tseng, S. De Mello, J. Tremblay, S. Liu, S. Birchfield,
M.-H. Yang, and J. Kautz. Few-shot viewpoint estimation.
In BMVC, page 39, 2019. 1

[32] J. Vidal, C. Lin, and R. Mart. 6D pose estimation using an
improved method based on point pair features. In Int. Conf.
on Control, Aut. and Robotics, pages 405–409, 2018. 4

[33] D. Wang, D. Tan, and L. Liu. Particle swarm optimization
algorithm: An overview. Soft Comp., (2):387–408, 2018. 2

[34] T. Whelan, R. Salas-Moreno, B. Glocker, A. Davison, and S.
Leutenegger. ElasticFusion. Int. J. Rob. Res., 35(14):1697–
1716, 2016. 7

[35] P. Wu, Y. Lee, H. Tseng, H. Ho, M. Yang, and S. Chien.
A benchmark dataset for 6DoF object pose tracking. In Int.
Symp. on Mixed & Aug. Reality, pages 186–191, 2017. 6, 7

[36] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN:
A Convolutional Neural Network for 6D Object Pose Esti-
mation in Cluttered Scenes. In IROS, 2018. 1, 4

[37] S. Zakharov, I. Shugurov, and S. Ilic. DPOD: 6D pose object
detector and refiner. In ICCV, pages 1941–1950, 2019. 2

251

