
An Embedded Deep Learning-based Package for Traffic Law Enforcement

Abbas Omidi1, Amirhossein Heydarian1, Aida Mohammadshahi1,
Behnam Asghari Beirami2, Farzan Haddadi1

1Iran University of Science and Technology, 2K. N. Toosi University of Technology
Tehran, Iran

abbas omidi@elec.iust.ac.ir, heydarian a@elec.iust.ac.ir, aida mohammadshahi@elec.iust.ac.ir

behnam.asghari1370@gmail.com, farzanhaddadi@iust.ac.ir

Abstract

Crossing Heavy Good Vehicles (HGVs) from the over-
taking lane in highways is not only a traffic violation but
may also cause severe casualties in case of an accident
happening in such velocities. Currently, the only way
to prevent this violation is to identify the violating ve-
hicles by the highway police, so in this paper, a viola-
tion detection system using an embedded camera is intro-
duced using algorithms based on deep learning and im-
age processing techniques. The embedded system bene-
fits of a multi-stage deep system based on the YOLO net-
work, which consists of four stages of cascaded detec-
tion, including overtaking lane detection, HGV detection,
license plate detection, and character recognition. In this
research, the developed deep learning models, after some
initial training, are fine-tuned on a local Persian dataset
collected with distributed cameras. The accuracy obtained
on the test dataset of each of the four separate stages was
above 85% and the results show the efficiency of the pro-
posed smart system with 70% accuracy in the union of all
stages. All data including local datasets, implementations,
codes, and results are available on the project’s GitHub
(https://github.com/NEFTeam/Traffic-Law-Enforcement).

1. Introduction

As the number of automobiles on the road has risen in
recent years, traffic violations have become more common.
This has resulted in several issues, including an increase in
traffic accidents and injuries or deaths [1]. As a result, de-
tecting violations plays a significant role in reducing these
casualties. For police officers, however, it is extremely dif-
ficult. Due to high speed or distance, it is possible that offi-
cers will not see violations or that cars will not stop after a
violation has been detected. It is also possible that officers
will not be able to recognize the license plate number with

the naked eye. Furthermore, there are no adequate sites for
policemen to monitor traffic in other regions, such as sub-
urban roadways. As a result, several violations occur in re-
gions where there is no surveillance. Automatic systems
could be a great substitute in these cases, detecting many
sorts of traffic violations with high accuracy, no missed vi-
olations, and at a cheaper cost. As a result, intelligent traf-
fic monitoring could be highly beneficial in detecting vio-
lations and recognizing license plate numbers of violating
vehicles [2, 3, 4].

Passing of Heavy Goods Vehicles (HGV) through the
highway-overtaking lane is the violation addressed in this
study. Because of the large weight of these cars compared
to passenger cars, accidents involving this type of car at
high speeds in the overtaking lane generally result in fa-
talities and irreversible dangers, and they usually generate
significant traffic congestion on highways than other car in-
cidents. Indeed, the probability of a fatality when an HGV
is involved in an accident is multiplied by 2.6 [5]. This vi-
olation can currently only be prevented by policemen, and
it will not be identified automatically. However, a series
of steps are introduced in this article to prevent HGVs from
crossing the overtaking lane and better control them, includ-
ing identifying the overtaking lane in a traffic camera image,
identifying HGVs in the lane, detecting the HGV’s license
plates, and finally, recognizing the characters of the license
plates and registering them to impose fines.

The first step in using a traffic monitoring system is to
determine the road lanes. There are numerous line detec-
tion algorithms available, including both traditional image
processing algorithms and deep learning algorithms. Com-
monly, traditional methods locate road lines based on edges,
which are highly dependent on the hyperparameters and the
environment under consideration [6, 7, 8, 9]. Deep learn-
ing approaches such as Point Instance Network (PINet) [10]
and LaneATT [11] have also been proposed in recent years,
and several artificial neural networks have been built for this
purpose [12, 13, 14, 15]. Despite the high efficiency of the

262

previously proposed methods, most of them are designed
for a specific situation and a particular application.

The detection of objects (such as HGVs) in a picture is
one of the most fundamental tasks in computer vision, and
it has been revolutionized by deep learning. Earlier ob-
ject detection methods such as region-based convolutional
neural networks [16] work in stages, including finding pro-
posed regions, classifying them, and then performing post-
processing to remove duplicates and refine bounding boxes.
The complexity of optimization due to the requirement of
training multiple networks, as well as the long prediction
time, were also issues with this method. YOLO (You Only
Look Once) [16] proposed a CNN-based, one-stage, and
real-time method that, in addition to addressing previous
problems, had significant improvements in object detection
accuracy.

Traffic violation registration requires two separate stages
of license plates detection and character recognition. Sev-
eral classical approaches have been proposed in the litera-
ture for detecting license plates, including edge-based and
color-based approaches [17, 18]. Recently, deep learning-
based object detection algorithms are widely used to detect
license plates. The great speed, accuracy, and ease of Yolo-
based methods for real-time applications are what make
them an excellent option [19, 20, 21]. For the task of the
plate’s character recognition, due to the poor performance
and the difficulties in classical approaches, deep learning-
based models are the most common alternatives. For exam-
ple, recurrent neural network (RNN) and bidirectional long
short-term memory (LSTM) networks are used in the differ-
ent studies for character recognition [22, 23, 24, 25]. how-
ever, despite its advantages, the method is less implemented
in real-time systems due to model complexity.

In this study, a real-time integrated automated system is
developed that identifies and records violations of HGVs
crossing the overtaking lane. To the best of our knowledge,
there are just a few works for this particular violation. To
begin with, a suitable local Persian dataset is collected for
test and train of our models. The system is divided into
two parts: software and hardware. The software part of the
system is based on the use of the YOLO object detection
method successively for lane detection, HGV detection, li-
cense plates detection, and finally, plate character recog-
nition. For the hardware section, an embedded camera is
employed for data collection and real-time road monitor-
ing in this system. The proposed embedded system benefits
of NVIDIA Jetson Nano which is a compact and powerful
computer that allows many neural networks to run in paral-
lel for tasks like image classification, object identification,
segmentation, and audio processing.

This is how the paper is structured: Section 2 provides
background information. Section 3 introduces the method-
ology. Section 4 proposes our dataset and hardware system

configuration, as well as experimental results and discus-
sions. Finally, in Section 5, the conclusion is given.

2. Background
This section reviews the YOLO object detection, Hough

transform, Canny edge detection, and perspective correc-
tion.

2.1. YOLO

The YOLO network structure consists of three main
parts. The first part is called the backbone and is respon-
sible for extracting image features in different scales. The
second part is the neck that combines the extracted features
to prepare for the prediction. Finally, the network head uses
the neck features to predict box and class of each object in
the image [16]. Fig. 1 shows the structure of the YOLO
network.

Figure 1. The backbone, neck and head form the three main parts
of the YOLO network. [16].

YOLO models the detection problem as a regression
problem by dividing the input image into an S × S grid.
Each grid cell predicts B bounding boxes holding x, y, w, h
and an “objectness” score P (Object) which shows whether
the grid cell contains an object or not. Each grid cell also
predicts a conditional probability P (Class|Object) for the
class of the object associated with that cell. Thus, for
each grid cell, YOLO predicts B × 5 parameters and C
class probabilities. These predictions are encoded as an
S × S × (B × 5 + C) tensor. Eventually, Non-Maximum
Suppression (NMS) and thresholding are applied to produce
final object detection predictions [16].

Training is accomplished by decreasing the loss function
based on sum-squared error, all in one stage. Since there
are no objects in many grid cells, the gradients from cells
that contain the objects increase the weights. YOLO han-
dles this problem by raising bounding box weights for ob-
jects (λcoord) and reducing them for non-objects (λnoobj).
The total loss function is composed of three main compo-
nents. Eq.(1) shows the GIoU part which is responsible for

263

Figure 2. Final YOLO output consisting of Box Co-ordinates, ob-
jectness Scores and Class Scores.

bounding box prediction. It computes the sum squared error
between the network output and labels [16].

GIoU =

λcoord

s2∑
i=0

B∑
j=0

1objij [(xi − x̂i)
2 + (yi − ŷi)

2]

+λcoord

s2∑
i=0

B∑
j=0

1objij [(
√
wi−

√
ŵi)

2+(
√

hi−
√
ĥi)

2]

(1)

Objectness part is indicated as follows and is responsible
for predicting whether a grid contains an object or not [16]:

Objectness =
s2∑
i=0

B∑
j=0

1objij (Ci−Ĉi)
2+λnoobj

s2∑
i=0

B∑
j=0

1noobjij (Ci−Ĉi)
2

(2)

The last part is the classification error and is responsible for
object class prediction [16]:

Classification =

s2∑
i=0

∑
c∈classes

1objij (pi(c)− p̂i(c))
2 (3)

The final loss function is composed of the summation of
Eqs. (1), (2) and (3). YOLO was initially created in Dark-
net [16]. It is a low-level language-based research frame-
work with a lot of flexibility for deep learning. The Origi-
nal YOLO was the first object detection network to integrate
object localization and classification problems into a single
end-to-end neural network. BatchNorm, higher resolution,
and anchor boxes were added in YOLO-v2 [26]. YOLOv3

improved performance on smaller objects by adding con-
nections to the backbone network layers and making pre-
dictions at three different scales [27]. This paper utilizes
YOLO-v5 which is implemented in PyTorch instead of
Darknet and comes with several training techniques and
structural improvements such as CSPNet [28] as backbone,
new feature aggregation method, and mosaic data augmen-
tation. These innovations were initially known as YOLO-
v4. However, since YOLO-v4 was released in DarkNet
framework, it was changed to YOLO-v5 to prevent version
collisions [29].

2.2. Hough Transform

The Hough algorithm is a popular technique for detect-
ing the borderlines of any type of geometric shape, even if
the shape is curved or has broken lines [30]. In general, a
line can be represented by equation y = mx+c, but there is
another conventional form for representing the equation of
a line, which is polar coordinate ρ = xcos(θ) + ysin(θ). In
this equation, ρ represents the vertical distance of the line
from the origin and θ is the angle of the line ρ with the hor-
izontal axis of the coordinates. Therefore, a line in a polar
representation can be identified with two parameters ρ and
θ (Fig. 3).

Figure 3. Representation of the polar coordinate in Cartesian coor-
dinate and its mapping in Hough space.

To distinguish a line in Cartesian coordinates, any point
on it with (x, y) coordinates can be converted to a curve in
polar coordinates using ρ = xcos(θ)+ysin(θ) formula. Af-
ter mapping all of an image’s edge points into Hough space,
a large number of curves are formed, and for every two edge
points that one line passes through them, their correspond-
ing curves intersect each other on a specific (ρ, θ) pair. Fi-
nally, the Hough Transform algorithm discovers edge lines
by looking for (ρ, θ) pairs with more than a threshold num-
ber of intersections.

2.3. Edge Detection

The Canny edge detection algorithm consists of 5 steps
as follows [31]: 1. Noise reduction; 2. Gradient calcula-
tion; 3. Non-maximum suppression; 4. Double threshold;
5. Edge tracking by Hysteresis. In the first step, a Gaussian
filter is used to reduce the noise on the image and smooth
it. for this purpose, convolution is applied using a Gaussian

264

kernel with odd width. It is obvious that the bigger kernel
results in a more visible blur. The equation of a Gaussian
filter with kernel size (2k + 1)× (2k + 1) is [31]:

Hij =

1
2Πσ2 exp

(
− (i−(k+1))2+(j−(k+1))2

2σ2

)
;1≤i,j≤(2k+1) (4)

In the second step, calculating the gradient of the image
helps to detect the edge intensity and direction. Edges are
related to pixels’ intensity changes. It can be done by So-
bel filtering which is able to detect the intensity changes for
both horizontal (Gx) and vertical (Gy) directions by defin-
ing Sobel kernels as shown in the Eq. (7). In addition, mag-
nitude (G) and slope (θ) of gradient are calculated as below:

|G| =
√
G2

x +G2
y (5)

angle (θ) = arctan
Gy

Gx
(6)

Kx =

−1 0 1
−2 0 2
−1 0 1

 ,Ky =

 1 2 1
0 0 0
−1 −2 −1

 (7)

This step results in edges with different thicknesses. The
next step, non-maximum suppression is performed to over-
come this problem and get thin edges in the image. Every
pixel is checked in this step to find the pixels with the max-
imum intensity in their neighborhoods in the direction of
the gradient. In the double threshold step, two threshold
values are selected, minVal and maxVal, and the pixels are
categorized into three classes. Edges with higher intensity
than maxVal are considered to be edges for sure. Edges
with lower intensity than minVal are removed and are not
considered as edges. Pixels with intensity values between
maxVal and minVal are the third class. The Edge tracking
by Hysteresis as the last step specifies which pixels in the
third class are considered as a part of an edge. One is con-
sidered an edge if there is at least one edge pixel around
it.

2.4. Perspective Correction

The purpose of perspective correction is to neutralize the
effect of the camera angle and achieve a front-view image.
To do this, it is needed to get a mapping matrix that mul-
tiplies individual pixels of the current image to move the
pixel to its new location and get an image of the corrected
license plate. The goal is to find the center point in the an-
gled image and select a trapezoidal area around the plate
that naturally looks like a regular square or rectangle from
front [32]. This trapezoid is optionally selected and there
is no restriction on the length of the horizontal sides or the
angles of the lateral sides. The construction of the transfor-
mation matrix by this algorithm is such that the algorithm

looks for mapping to move a point with coordinates (x1, y1)
to a new point (x2, y2). In terms of matrix relations, these
new coordinates are obtained as:x2

x2

1

 = H

x1

y1
1

 (8)

In the above equation, H is a homography matrix, which is
a 3×3 matrix, which handles transferring and mapping the
points of input to the output [33].

H =

h00 h01 h02

h10 h11 h12

h20 h21 h22

 (9)

Thus transfer of a point (x1, y1) to (x2, y2) by the homog-
raphy matrix will be:x2

y2
1

 = H

x1

y1
1

 =

h00 h01 h02

h10 h11 h12

h20 h21 h22

x1

y1
1

 (10)

In the above equations, the homography matrix (H) is ob-
tained by coordinate of four corners of the bounding box
of the previous and final frame. By transferring the previ-
ous points to these points, the license plate with a corrected
perspective is obtained.

3. Methodology
As mentioned earlier, our model includes four steps of

lane detection, HGV detection, license plates detection, and
finally, plate character recognition. The flowchart of the
proposed model is shown in Fig. 4 and detailed information
is given in the next subsections.

Figure 4. Functional block diagram of the proposed embedded sys-
tem.

3.1. Overtaking Lane

In this subsection, a hybrid method based on both classi-
cal and deep learning algorithms has been proposed to de-
tect overtaking lane. A vehicle-free background image is

265

obtained by averaging the input camera frames. The edges
of the background image are then extracted using Canny
edge detector. The next step is to use the YOLO network to
locate areas where road lines are most likely to exist. The
importance of YOLO is to eliminate the effect of undesired
edges through line detection procedure. YOLO’s detected
regions are combined to form a YOLO binary mask. Fi-
nally, desired edges are extracted by applying the road line
mask to the Canny edge output.

With the Hough transform, lines of the remaining edges
are extracted and the line mask is obtained. Several steps of
dilation and erosion are applied to the line mask to merge
close lines and prevent them from being rediscovered. The
final lines’ equations are calculated, and the area between
them is referred to as the road lane. Since the overtaking
lane is in the leftmost place, the mask of the left lane is out-
put as the overtaking lane. In (11) OV represents overtak-
ing lane, (xi, yi) are pixel coordinates and m,b are leftmost
lines’ slopes and intercepts.

OV = {(xi, yi) | (m1xi + b1 < yi) ∧ (m2xi + b2 > yi)}
(11)

Fig. 5 shows the block diagram of overtaking lane detec-
tion.

Figure 5. Overtaking lane detection block diagram.

3.2. HGV Detection

The next stage in detecting a violation is to locate HGVs.
At this stage, a YOLO network detects all the heavy vehi-
cles in the frame. At the next step after detecting the HGVs,
the algorithm compares the vehicle’s bounding box cen-
ter to the overtaking lane mask obtained from the previous
stage, and if it matches, the vehicle is marked as violating.

3.3. Plate Detection

Plate detection is referred to the determination of the
area encompassing the license plate. The proposed plate
detection method consists of two parts. In the first part, the
method uses YOLO for plate detection, and in the second
part, it uses perspective correction to provide the front view
of the plate. Based on the experiments, perspective correc-
tion has a huge impact on the accuracy of the next stage,
character recognition, as the Persian characters are similar

in some angles. Fig. 6 shows the effect of perspective cor-
rection on detection accuracy, where number 7 is misclassi-
fied as number 1 before the perspective correction.

Figure 6. The effect of perspective correction (a) without perspec-
tive correction 7 is misclassified as 1 (red box), (b) correct recog-
nition of 7 after perspective correction.

3.4. Character Recognition

Precise recognition of license plate characters is criti-
cal because it completes all of the preceding processes. In
fact, by recognizing the license plate characters, the identity
of the violating HGV is determined. Inappropriate light-
ing, blurred license plate images, and various environmen-
tal conditions make character recognition challenging. The
YOLO network has been used to overcome these problems
and take all conditions into account. Several datasets of Per-
sian license plates have been acquired in various conditions
to train the network. Each Persian number and letter is la-
beled as a rectangular box and the corresponding number or
letter is assigned to them. The network is trained with var-
ious training data in different conditions, and when the vi-
olating vehicle is detected, after the license plate detection,
the license plate characters are determined by the trained
network.

Order of the identified characters is crucial in identify-
ing the vehicle. For this purpose, coordinates of bounding
boxes are identified and the characters are arranged accord-
ing to x coordinates of their bounding boxes. The character
with the smallest x of the bounding box sits on the left,
and as the length increases, the location of the characters
is determined, and finally, the license plate and the identity
of the car are determined. The mathematical model of the
characters’ placement is as follows in which a represents
a character and x(a) represents the length of the bounding
box of the character.

license plate characters =
{(a1, a2, a3, a4, a5, a6, a7, a8) |x(ai) < x(ai+1)} (12)

The pseudocode of the proposed system is shown in the
Alg. 1.

266

Algorithm 1 The pseudocode of the proposed system
Begin
Input traffic video
Background image generation based on averaging of the
frames:
Background image =

∑n
i=1 framei

n
Determine overtaking lane from background image:
OV = {(xi, yi) | (m1xi+b1 < yi)∧(m2xi+b2 > yi)}
for frame in traffic video do

Detect HGVs
HGVi = Boundingboxi

Check existence of HGV in over taking lane:
inLane = {HGVi | center(HGVi) in OV }
for each car ∈ inLane do

Detect licensce plate:
licensce platei = Bounding boxi

Correct prespective of licensce plate
Recognize characters :
{(a1, a2, a3, a4, a5, a6, a7, a8) |x(ai) < x(ai+1)}

end for
end for

4. Experiments
4.1. Datasets

To train the model, various datasets have been used in
this research. Some of these datasets have already been col-
lected in previous studies which will be mentioned further,
and some of these datasets have been collected by the au-
thors. Of course, all the functions presented in this study
are tested on the local dataset.

4.1.1 Overtaking Lane Dataset

Road lines are similar in different countries. so, in order
to have a large dataset for training line recognition, London
traffic videos have been used. These videos are recorded by
fixed traffic cameras and are freely available. The dataset
consists of 150 images with of 352×288 pixels, each of
which belongs to a specific camera, obtained by averaging
video frames. In this way, moving cars and objects are re-
moved, and each photo shows us the empty road, which
facilitates the work of labeling the lines for YOLO. Also,
295 local images of Iran taken by the embedded camera
have been added to the dataset. Sample images are shown
in Fig. 7.

4.1.2 HGV Dataset

For identification of HGVs, the default dataset used for
training of YOLO, the Coco dataset [34], has been used
alongside the local dataset. The Coco dataset contains
330,000 images from 80 different classes that include all of

Figure 7. Samples of overtaking lane dataset, (a) and (b) examples
of London dataset and (c) example of the local dataset

the classes we are considering, including trucks and buses.
But in this research, the trained model on this dataset has
been fine-tuned on the local dataset collected by the authors.
Sample images of data set are shown in Fig. 8.

Figure 8. Samples of HGV datasets. (a) shows HGVs of Coco
dataset and (b) and (c) are examples of the local dataset.

4.1.3 License Plate Dataset

The dataset used in this section is a local dataset contain-
ing 295 photos of various cars in Iran with Persian license
plates, taken with the embedded cameras. Sample images
of dataset are shown in Fig. 9.

Figure 9. Samples of local dataset which consists of HGVs with
Persian license plate.

4.1.4 Plate Character Dataset

A dataset of Persian license plates was collected using an
embedded camera to perform character recognition. Var-
ious data augmentation approaches, such as adding noise,
blur, color shift, and contrast have been used to simulate dif-
ferent environmental conditions. Finally, all of the character

267

bounding boxes in each license plate are labeled, and a to-
tal number of 10105 Persian license plates, along with their
labels, has been prepared. Sample images of the dataset are
shown in Fig. 10.

Figure 10. Samples of the persian license plate characters dataset
captured from different angles.

The embedded camera was used to collect a dataset of
urban streets and out-of-town roads containing 314 differ-
ent samples of HGVs to train the system and evaluate its
performance in real-world situations. These videos vary in
location and time and also include light and heavy traffic
places to cover various roads, heavy vehicles, and license
plates. The integrated model was trained on 250 images of
this data set in every stage, such as overtaking, lane detec-
tion, HGV detection, license plate detection, and character
detection. Finally, the model was evaluated on 45 images
of the data set including different types of heavy vehicles.
The evaluation dataset contains 20 violating and 25 non-
violating vehicles.

Figure 11. Samples of the local dataset in different locations and
times of day, including images with violating HGVs and non vio-
lating HGVs

4.2. Hardware Configuration

The hardware used in this research consists of Jetson
Nano ™ designed by NVIDIA® and Waveshare 12.3MP
camera. The NVIDIA® Jetson Nano B01 ™ Developer
Kit with GPU processor is a small, powerful computer that
lets multiple neural networks run in parallel for applications
such as image classification, object recognition, segmenta-
tion, and speech processing [35]. The image provided by
Waveshare 12.3MP camera is of size 4056 × 3040 pixels.
The camera is based on the Sony IMX477-160 sensor and
can capture up to 90 frames per second. Also, the operat-

ing system used in this hardware is based on Ubuntu 18.04.
Fig. 12 shows the embedded system.

Figure 12. Waveshare 12.3MP camera connected to NVIDIA Jet-
son Nano™.

4.3. Experimental Results

The evaluation has been done separately for each of the
stages of overtaking lane detection, HGV detection, license
plate detection, and character recognition in the following
tables.

The Intersection over Union (IoU) criterion was used to
evaluate the performance of the algorithm in the overtak-
ing lane extraction. Local dataset backgrounds with their
ground truth masks are prepared for evaluation. The over-
taking lane mask is obtained using our algorithm for all of
the images. The overlap between the predicted and ground
truth mask is measured based on IoU. Accuracy is deter-
mined based on a 50% threshold So that correct prediction
indicates an IoU value above 0.5.

Figure 13. Overtaking lane detection results. The top images rep-
resent the predicted overtaking lane by the system in red and the
bottom images show the ground truth in green.

Table. 1 shows the performance results of overtaking
lane detection algorithm on this task.

Table 1. Overtaking lane results.

IoU Accuracy
Overtaking lane 0.881 93.1%

268

Precision, recall, F1, and accuracy are used to evaluate
the HGV detection, license plate detection, and character
recognition sections. The existing characters which are not
detected are referred to as False Negative, while the num-
ber of characters that do not exist and are misidentified is
referred to as False Positive. The results show that all sec-
tions are above 85%. Also, the recall of the HGV detection
section is above 95%. Therefore, each step individually has
an appropriate performance.

Table 2. Stage results.

Stage Precision Recall F1 Accuracy
HGV 93.7% 95.7% 94.7% 90.0%

License plate 93.8% 91.5% 92.6% 86.2%
Character 93.5% 94.0% 93.7% 88.2%

General evaluation of the implemented system is inves-
tigated as follows. The system works properly when all the
steps perform flawlessly. In other words, the HGV passing
through the overtaking line must be detected, the license
plate must be obtained and all the characters must be rec-
ognized correctly. As a result, precision, recall, F1, and the
overall accuracy which is defined as the number of correct
license plates divided by the number of HGVs are reported
in Table 3.

Table 3. Overall perfomance of the system.
Precision Recall F1 Accuracy

Proposed
method 96.9% 72.1% 82.7% 70.5%

Figure 14. Sample results of the proposed system performance in-
cluding 4 stages of overtaking lane detection, HGV detection, Li-
cense plate detection and Character recognition

4.4. Discussion

In this section, two types of problems in detecting viola-
tions are mentioned. The first type includes solvable prob-
lems using computer vision algorithms. For example, vi-
olating vehicles have a high speed when crossing the over-
taking lane. This high-speed mobility can blur license plates
and affect their readability. The solution for these problems
will be discussed in future articles. However, some chal-
lenges are outside the scope of computer vision algorithms

including occlusion and distortion (Fig. 15.a), filth and mud
(Fig. 15.b), and absence of license plate (Fig. 15.c).

Figure 15. Challenging situations captured by embedded camera.

5. Conclusion
In this paper, a multi-stage system was introduced to

monitor the violation of crossing heavy goods vehicles
(HGVs) through the overtaking lane, which is an intelligent
system based on deep learning and was implemented on em-
bedded cameras. The system consists of four cascaded deep
stages based on YOLO. After fine-tuning the model on the
local data set and evaluating it on the test data, the model
has achieved accuracy above 85% in various stages in sep-
arate tests. Finally, a total accuracy of 70.5% was achieved
based on correct prediction at all stages.

Acknowledgement
We appreciate the people who contributed to the de-

velopment of www.tfljamcams.net and the provision of
London traffic camera images. Thanks also to the
collectors of the COCO dataset and the developers
of the YOLOv5 network who shared their models on
github.com/ultralytics/yolov5.

Authors’ Contribution
The first four authors have equal contributions in this ar-

ticle at all stages, and the fifth author is the supervisor of the
project.

References
[1] Lele Xie, Tasweer Ahmad, Lianwen Jin, Yuliang Liu, and

Sheng Zhang. A new cnn-based method for multi-directional
car license plate detection. IEEE Transactions on Intelligent
Transportation Systems, 19(2):507–517, 2018.

[2] Nourdine Aliane, Javier Fernandez, Mario Mata, and Sergio
Bemposta. A system for traffic violation detection. Sensors,
14(11):22113–22127, 2014.

[3] Julien A Vijverberg, Nick AHM de Koning, Jungong Han,
Peter HN de With, and Dion Cornelissen. High-level
traffic-violation detection for embedded traffic analysis. In
2007 IEEE International Conference on Acoustics, Speech

269

and Signal Processing-ICASSP’07, volume 2, pages II–793.
IEEE, 2007.

[4] Ala Mhalla, Thierry Chateau, Sami Gazzah, and Najoua Es-
soukri Ben Amara. An embedded computer-vision system
for multi-object detection in traffic surveillance. IEEE Trans-
actions on Intelligent Transportation Systems, 20(11):4006–
4018, 2018.

[5] Michel Gothié, Véronique Cerezo, and Florence Conche.
Relationship between road infrastructure characteristics and
hgv accidents. In The 10th International Symposium on
Heavy Vehicle Transport Technology, Paris, 2008.

[6] Fatemeh Mazrouei Sebdani and Hossein Pourghassem. A ro-
bust and real-time road line extraction algorithm using hough
transform in intelligent transportation system application. In
2012 IEEE International Conference on Computer Science
and Automation Engineering (CSAE), volume 3, pages 256–
260. IEEE, 2012.

[7] Weifeng Liu, Zhenqing Zhang, Shuying Li, and Dapeng Tao.
Road detection by using a generalized hough transform. Re-
mote Sensing, 9(6):590, 2017.

[8] Hui Kong, Jean-Yves Audibert, and Jean Ponce. General
road detection from a single image. IEEE Transactions on
Image Processing, 19(8):2211–2220, 2010.

[9] Hui Kong, Jean-Yves Audibert, and Jean Ponce. Vanishing
point detection for road detection. In 2009 ieee conference
on computer vision and pattern recognition, pages 96–103.
IEEE, 2009.

[10] Yeongmin Ko, Younkwan Lee, Shoaib Azam, Farzeen Mu-
nir, Moongu Jeon, and Witold Pedrycz. Key points esti-
mation and point instance segmentation approach for lane
detection. IEEE Transactions on Intelligent Transportation
Systems, 2021.

[11] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos.
Keep your eyes on the lane: Real-time attention-guided lane
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 294–302,
2021.

[12] Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak
Shin, Oleksandr Bailo, Namil Kim, Tae-Hee Lee, Hyun
Seok Hong, Seung-Hoon Han, and In So Kweon. Vpgnet:
Vanishing point guided network for lane and road marking
detection and recognition. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1947–1955,
2017.

[13] Zhan Qu, Huan Jin, Yang Zhou, Zhen Yang, and Wei Zhang.
Focus on local: Detecting lane marker from bottom up via
key point. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14122–
14130, 2021.

[14] Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. Cond-
lanenet: a top-to-down lane detection framework based on
conditional convolution. arXiv preprint arXiv:2105.05003,
2021.

[15] Hala Abualsaud, Sean Liu, David Lu, Kenny Situ, Ak-
shay Rangesh, and Mohan M Trivedi. Laneaf: Robust
multi-lane detection with affinity fields. arXiv preprint
arXiv:2103.12040, 2021.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[17] Vahid Abolghasemi and Alireza Ahmadyfard. An edge-
based color-aided method for license plate detection. Image
and Vision Computing, 27(8):1134–1142, 2009.

[18] Yule Yuan, Wenbin Zou, Yong Zhao, Xinan Wang, Xuefeng
Hu, and Nikos Komodakis. A robust and efficient approach
to license plate detection. IEEE Transactions on Image Pro-
cessing, 26(3):1102–1114, 2016.

[19] Sérgio Montazzolli and Claudio Jung. Real-time brazilian
license plate detection and recognition using deep convolu-
tional neural networks. In 2017 30th SIBGRAPI conference
on graphics, patterns and images (SIBGRAPI), pages 55–62.
IEEE, 2017.

[20] Gee-Sern Hsu, ArulMurugan Ambikapathi, Sheng-Luen
Chung, and Cheng-Po Su. Robust license plate detection
in the wild. In 2017 14th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS),
pages 1–6. IEEE, 2017.

[21] Yousri Kessentini, Mohamed Dhia Besbes, Sourour Ammar,
and Achraf Chabbouh. A two-stage deep neural network for
multi-norm license plate detection and recognition. Expert
systems with applications, 136:159–170, 2019.

[22] Hui Li and Chunhua Shen. Reading car license plates using
deep convolutional neural networks and lstms. arXiv preprint
arXiv:1601.05610, 2016.

[23] Teik Koon Cheang, Yong Shean Chong, and Yong Haur
Tay. Segmentation-free vehicle license plate recognition us-
ing convnet-rnn. arXiv preprint arXiv:1701.06439, 2017.

[24] Hui Li, Peng Wang, Chunhua Shen, and Guyu Zhang. Show,
attend and read: A simple and strong baseline for irregular
text recognition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 8610–8617, 2019.

[25] Yongjie Zou, Yongjun Zhang, Jun Yan, Xiaoxu Jiang,
Tengjie Huang, Haisheng Fan, and Zhongwei Cui. A ro-
bust license plate recognition model based on bi-lstm. IEEE
Access, 8:211630–211641, 2020.

[26] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017.

[27] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.

[28] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu,
Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. Cspnet: A
new backbone that can enhance learning capability of cnn.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 390–391,
2020.

270

[29] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020.

[30] Richard O Duda and Peter E Hart. Use of the hough trans-
formation to detect lines and curves in pictures. Communi-
cations of the ACM, 15(1):11–15, 1972.

[31] John Canny. A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine intelli-
gence, (6):679–698, 1986.

[32] Michael J Magee and Jake K Aggarwal. Determining van-
ishing points from perspective images. Computer Vision,
Graphics, and Image Processing, 26(2):256–267, 1984.

[33] Daniel Paulus Sihombing, Hanung Adi Nugroho, and Sunu
Wibirama. Perspective rectification in vehicle number plate
recognition using 2d-2d transformation of planar homogra-
phy. In 2015 International Conference on Science in Infor-
mation Technology (ICSITech), pages 237–240. IEEE, 2015.

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[35] Stephen Cass. Nvidia makes it easy to embed ai: The jetson
nano packs a lot of machine-learning power into diy projects-
[hands on]. IEEE Spectrum, 57(7):14–16, 2020.

271

