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Abstract

At the state of the art, Capsule Networks (CapsNets)
have shown to be a promising alternative to Convolutional
Neural Networks (CNNs) in many computer vision tasks,
due to their ability to encode object viewpoint variations.
Network capsules provide maps of votes that focus on en-
tities presence in the image and their pose. Each map is
the point of view of a given capsule. To compute such
votes, CapsNets rely on the routing-by-agreement mecha-
nism. This computationally costly iterative algorithm se-
lects the most appropriate parent capsule to have nodes in
a parse tree for all the active capsules but this behaviour is
not ensured by the routing, hence it possibly causes van-
ishing weights during training. We hypothesise that an
attention-like mechanism will help capsules to select the
predominant regions among the maps to focus on, hence
introducing a more reliable way of learning the agreement
between the capsules in a single pass. We propose the Atten-
tion Agreement Capsule Networks (AA-Caps) architecture
that builds upon CapsNet by introducing a self-attention
layer to suppress irrelevant capsule votes thus keeping only
the ones that are useful for capsules agreements on a spe-
cific entity. The generated capsule attention map is then
assigned to classification layer responsible of emitting the
predicted image class. The proposed AA-Caps model has
been evaluated on five benchmark datasets to validate its
ability in dealing with the diverse and complex data that
CapsNet often fails with. The achieved results demonstrate
that AA-Caps outperforms existing methods without the
need of more complex architectures or model ensembles.

Figure 1. Summarised overview of the proposed AA-Caps. The
proposed structure investigate the application of self-attention [49]
layer to replace the routing-by-agreement mechanism [45].

1. Introduction

Smart cameras are heavily relying on machine learn-
ing tools providing the possibility of transferring the visual
recognition abilities to an edge device. Most of such de-
vices leverage Deep Neural Networks (DNNs) [33, 55, 32,
26, 46] architectures due to their excellent results on dif-
ferent challenges. The most famous DNN architecture for
visual-related tasks is the Convolutional Neural Network
(CNN) [27]. CNNs are the dominating approach on vi-
sual recognition tasks with continuous improvements of the
state-of-the-art results in many research fields.

Under the ”smart cameras umbrella”, we can find many
applications of such methods in: (i) the medical field [5,
14, 15, 17] where they helped to diagnose organs dis-
eases [4, 2, 23, 20]; (ii) bio-informatics for protein dis-
covery [3, 21, 38]; and (iii) conservation ecology research
projects [53, 16, 48, 35, 10, 6]. Despite the success of
CNNs in different fields, such an architecture still presents
many limitations. Among those, there are two well-known
issues, one regarding the robustness of CNNs to affine trans-
formations (such as shift in object locations within an im-
age), the other on its limitations with respect to the spatial
relationships between object features. The former issue is
generally alleviated through data augmentation (but the test
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set data can present some unpredictable shifts). The latter
is due to the pooling operations maintaining the presence
information but ignoring the positional one [47].

Capsule network (CapsNet) [45], a new model based
on the capsules concept [18, 50, 24], has been recently
proposed to address these two main CNNs limitations. In
a nutshell, CapsNets store information at a vector level
(through a group of neurons) not via scalars, like tradi-
tional DNNs do. Such groups of neurons are known as cap-
sules. CapsNets also introduce the concept of routing-by-
agreement, where each capsule considers the information
extracted from all the previous (parent) capsules to estab-
lish if there is an an agreement among them for a particular
feature in the image.

Through such a concept, CapsNets [45] achieve state-
of-the-art performance on “simple” datasets (e.g., MNIST)
but fail with “more complex” data (e.g., CIFAR10). To im-
prove performance on such complex datasets, the seminal
work [45] exploited an ensemble procedure, thus requiring
additional training time and learnable parameters. Addi-
tional works were then proposed with the aim to improve
CapsNet and reach CNN performance with a single model.
Most of such efforts focused on the expansion of the fea-
ture extraction layers [37, 40, 43] (i.e., inclusion of addi-
tional convolutional layers before capsules) and on design-
ing complex structures of capsule layers [44, 11, 19, 42, 41].
All such works introduce significant computational burden
that limits the exploitation of capsule networks within smart
cameras. This motivates a study on improving the CapsNet
model performance on complex inputs with special atten-
tion to the computational operations.

Differently from such works, our aim is to maintain
unaltered the original CapsNet architecture by introducing
only a limited set of operations among capsules. We pro-
pose to achieve such an objective by focusing our attention
on the interaction between capsules rather than introduc-
ing additional computational layers or different sets of cap-
sules. Capsules interact through the routing-by-agreement
iterative procedure that at state of the art demonstrate to
be effective in identification of entities as parts of objects,
and their viewpoints and finally in the classification of im-
ages [45, 19]. This routing, due to its iterative nature, has an
increasing computational costs, moreover prior work [39]
demonstrates that the routing-by-agreement mechanisms
may fail to construct a parse tree between each set of entities
and object capsules, this is mainly due to the inability of the
network to learn routing weights through back-propagation.

Self-attention mechanisms [49] have the ability to access
to the entire input to selectively pick out specific elements of
it to produce the output. We hypothesise that such an ability
can be leveraged to build a novel agreement process among
capsules. The intuition is that, using an attention mecha-
nism, a child capsule can build its internal feature represen-

tation by selecting the most important features from the set
of its parents inputs in a single forward pass without the
need of iterative procedures.

Thus, this paper proposes an attention-driven mechanism
as an alternative to the CapsNet routing-by-agreement pro-
cedure with the aim of improving its performance without
the need of resorting to model ensembles or complex al-
teration of the structure. The motivations that promote this
work: i) improve the performance of original CapsNet, in
terms of better accuracy and faster convergence; ii) achieve
better performance on complicated datasets such as CIFAR-
10, SmallNorb, AwA2; iii) we reduce the model complexity
for baseline application (MNIST). We introduce the follow-
ing contributions: (i) we remove the routing-by-agreement
and we achieve a non-iterative model based on capsules; (ii)
we perform digit capsules votes analysis through attention
layers; (iii) we show performance improvements over basic
CapsNet architectures without the need of ensembles.

To validate the proposed approach, we have conducted
multiple experiments on five benchmark datasets having in-
creasing complexity. Results demonstrate that the proposed
approach outperform the original CapsNet in accuracy on
CIFA10, SmallNORB, Animals with Attributes benchmark
datasets, and AA-Caps performs in line with the state of
the art with MNIST and SVHN datasets.

2. Related works

2.1. Capsule Network

The idea of capsules was presented in [45] where cap-
sules were proposed as an approach to capture the presence
of an entity. A capsule is a set of neurons that collectively
produce an activity vector with one element for each neu-
ron to hold that neuron’s instantiation value. The CapsNet
model presented in [45] consists of layers of capsules ap-
plied to the task of classification of images. Authors for-
malise a training procedure based on routing-by-agreement
where each capsule makes prediction over the parent cap-
sule and computes a coupling coefficient between the ac-
tual capsule and the parent capsule outputs. Capsule out-
puts are vectors indicating the presence of an entity within
the processed input, while their norms represent the con-
fidence of the indication. Many works at state of the art,
present the application of CapsNet structure to cope with
image classification using hyperspectral images [12] and
medical images [1, 34, 22]. Works focus on the empower
of the CapsNet structure to improve the performance of the
model with complex datasets (coloured and real images), in
DenseNet [40] authors propose to deep the structure adding
dense block to the model, the new layers provide an high
level of feature extraction while reducing the model inter-
pretability. The idea of stressing out the CapsNet struc-
ture to better understand the performances is also presented
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in [36, 52, 37]. In [40], authors propose two frameworks
where the standard convolutional layers is replaced with
densely connected convolutions. This helps in extracting
feature maps by different layers and it gives a representa-
tive base for the primary capsules entities recognition. In
our work, we focus on the routing-by-agreement procedure
and we propose AA-Caps , a modified CapsNet, based on
self-attention mechanism as a valid alternative to routing-
by-agreement algorithm. The attention mechanism learns
from the votes computed by the primary capsule layer, a
compatibility function between low-level features and high-
level features. Where the compatibility function is a feed
forward neural network with a softmax activation function,
the transformers presented in [49] were the first implemen-
tation of attention function. We think that the CapsNet
needs a smarter and lighter mechanism for training, and, in-
stead of modifying the architecture by a deeper structure,
we propose to remove the iterative mechanism of learn-
ing with a non-iterative one. This modification makes the
training procedure faster compared to the original routing-
by-agreement, the learning proves to be more interpretable,
and we think that the self-attention mechanism is a validate
candidate for capsule training due to the similarity with the
routing-by-agreement idea. A detailed discussion on this
point will be presented in Section 3.3.

2.2. Transformers

Transformers, or so-called self-attention networks, are
a family of deep neural network architectures, where self-
attention layers are stacked on top of each other to learn
contextualised representations for input tokens via multiple
transformations. These models have been able to achieve
state of the art on many vision and Natural Language Pro-
cess tasks. There are many implementation details about the
transformer. Still, at a high level, transformer is an encoder-
decoder architecture, where each of encoder and decoder
blocks consists of a stack of transformer layers. In each
layer, we learn to (re-)calculate a representation per input
token. This representation is computed by attending to the
representations of all tokens from the previous layer. The
main component of transformer is the self-attention, and
one essential property of it is using a multi-headed attention
mechanism. We mainly focus on this component and dig
into some of its details as we get back to it when comparing
capsule nets with transformers.The primary motivation of
using multi-head attention is to get the chance of exploring
multiple representation subspaces since each attention head
gets a different projection of the representations. In an ideal
case, each head would learn to attend to different parts of
the input by taking a different aspect into account, and it
is shown that in practice, different attention heads compute
different attention distributions. Having multiple attention
heads in transformers can be considered similar to having

multiple filters in CNNs.
The application of self-attention networks for images

recognition is an open challenge at the state of the art in
computer vision. In [54], authors show the use of self-
attention as a basic building block for image recognition
models. In [9], authors trained a sequence transformer to
auto-regressively predict pixels, achieving results compa-
rable to CNNs on image classification tasks. ViT is a vi-
sion transformer model, which applies a pure transformer
directly to sequences of image patches proposed in [13], it
has achieved state of the art performance on multiple image
recognition benchmarks. In addition to basic image clas-
sification, transformer has been utilised to address a vari-
ety of other computer vision problems, including object de-
tection [7, 56], semantic segmentation [8], image process-
ing [13], and video understanding [30]. In this paper we
apply self-attention layer to collaborate with capsules in ex-
tracting entities features. The multi-heads are addressed to
deal with a dedicated capsule and the mechanism is trained
to create the connections between lower layer and upper
layer in capsules. There is not a direct manipulation of im-
ages trough transformers, but we propose transformers as
mechanism to aggregate and interpret entities parts features
in order to recognise classes.

3. Proposed model
In this section, we begin by presenting the state-of-the-

art mechanism that are the main subjects of our research. In
particular, we provide a brief description of the routing-by-
agreement mechanism proposed in [45], and an introduc-
tion to the self-attention layer [49] functionalities. Then, in
Sections 3.3 and 3.4, we describe the similarities between
the two mechanisms to provide the theoretical foundations
behind the proposed model.

3.1. Capsules and Routing-by-Agreement

A capsule consists of a group of neurons that depicts
the properties of various entities present in an image. Such
properties are captured while training, and they are automat-
ically selected as more representative for the recognition of
the entities. There could be various properties like position,
size, texture.

Capsule output is a vector that is obtained by the ac-
tivation value of each neuron that composes the capsule.
This is the activation vector and it is used in the routing-by-
agreement procedure where the activation vector at lower
layer is sent to all capsules at a higher layer. The activation
vector of each capsule of the higher layer makes predictions
for the parent capsule. The routing mechanism compares
the higher layer prediction with the activation vector of the
parent capsule and if the activation vectors matches, there is
an agreement and the coupling coefficient between the two
capsules is increased.
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Figure 2. Overview of the proposed AA-Caps architecture. The neural processing pipeline begins with a Conv2d designated to extract
features from the input image that are then fed to the Primary-Caps (composed of capsules) trained to identify entities. These are then
processed by a Self-Attention layer to build the connection among the views of the heads of the layer. A final Conv1d maps the
computed attention over capsules to the number of classes.

In other words, the capsule in the routing-by-agreement
process increases the connection with all the capsules at the
lower layer that contribute to the prediction of an entity.

More formally, let ui ∈ Rdu be an output of a capsule i,
and j be the parent capsule, the prediction is calculated as:

ûi|j = Wijui (1)

where the Wij ∈ Rdu×dû is a weighted matrix applied
to compute the affine transformation that given a activation
vector ui provides a prediction vector ûi|j .

To compute the importance of capsule i at lower layer
for capsule j at higher layer. This relation is represented by
the coupling coefficients cij . The coupling coefficients cij
are computed applying the softmax function over bij

cij =
exp(bij)∑
k exp(bik)

(2)

where bij is log probability of capsule i being coupled with
capsule j.This value is 0 when routing is started, then it is
updated while the procedure iterates.

The input vector to parent capsule j is the weighted sum
of the probability vectors at capsule i multiplied by the cou-
pling coefficient:

sj =
∑
i

cij ûj|i (3)

The output of the capsule vectors represent the probability
of an object of been present in the given input or not. These
output vectors can exceed value one, depending on the out-
put, so to make the output vector represent a probability,
a non linear squashing function is used to restrict the vec-
tor length to 1, where sj is input to capsule j and vj is the
output.

vj =
||sj ||2

1 + ||sj ||2
sj

||sj ||
(4)

Finally bij are updated by computing the inner product of vj
and ûj|i. If two vectors agree, the product would be larger
leading to longer vector length.

3.2. Self-Attention Layer

In the self-attention layer, the input vector is first trans-
formed into three different vectors: (i) the query vector q,
(ii) the key vector k and (iii) the value vector v with dimen-
sion dq = dk = dv = dmodel = dm. The vectors q,k, and v
are then concatenated by type into three different matrices,
namely, Q, K and V each belonging to RC×dm where C
is the number of capsules. To compute the attention func-
tion between different input vectors the network compute
the scores between matrices Q and K:

S = QKT (5)

These scores determine the degree of attention that we give
other vectors when encoding the vector at the current po-
sition. The score matrix is then normalised based on the
dimension dm to enhance gradient stability for improved
training:

SN =
S√
dm

(6)

The score matrix is transformed into probabilities by the ap-
plication of the function softmax across the vectors scores
and we obtained the weighted value by multiplying the
probabilities with the values vectors V.

P = softmax(SN ) (7)

Z = PV (8)

Vectors with larger probabilities receive additional focus
from the following layers. The self-attention layer de-
scribed above, implement the only encoder of the trans-
formers. The encoder-decoder attention layer in the decoder
module is similar to the self-attention layer in the encoder
module with some exceptions. In this paper we take into
consideration the only encoder module for the AA-Caps
proposed network.
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Figure 3. Datasets samples. The images shown are samples from the five dataset that we used to validate the proposed AA-Caps. The
selected dataset are shown clockwise from the top left: MNIST, SmallNORB, Animals with Attributes 2 (AwA2), CIFAR10, and Street
View House Numbers (SVHN). All of these datasets are benchmarks at the state of the art.

3.3. Routing-by-agreement and Self-Attention
Layer

In this section, we want to analyse the similarities be-
tween the two mechanisms. The routing-by-agreement and
the self-attention layer are built on the same idea of ex-
tracting a probability distribution that describes the relation
among the lower layer and the upper layer. In capsule net-
works, the dynamic routing determines the connection from
the lower layer to the higher layer of capsules, in par with
this the self-attention layer decides how to attend to differ-
ent parts of the input and how information from different
parts contribute to the updates of representations. It is pos-
sible to map the attention weights the self-attention layer
to assignment probabilities in capsule net. The probabilities
distribution differs between the two mechanisms: in capsule
nets, the assignment probabilities are computed bottom-up,
in self-attention the attention is computed top-down. i.e.
the attention weights in self-attention are distributed over
the representations in the lower layer, but in capsule nets,
the assignment probabilities are distributed over the higher
layer capsules. The attention probabilities are computed
based on the similarity of the representations in the same
layer, but this is equivalent to the assumption that the higher
layer is first initialised with the representations from the
lower layer and then it is updated based on the attention
probabilities computed by comparing these initial represen-
tations with the representations from the lower layer.

3.4. Capsules and Attention Heads

In networks base on capsules, each pair of capsules types
from two adjacent layers has a different transformation ma-
trix. So each instantiation of different capsules types has
a different point of view over the capsules at the previous
layer. In par with this, in a self-attention layer, there are
multiple attention heads and each attention head uses a set
of transformation matrices to obtain the projection of key,
value, and query. So, each attention heads works on a dif-
ferent projection of the representations in the lower layer.
The purpose of the two mechanisms is to have different ker-
nels in convolutional neural networks in order to have dif-
ferent representations/points of view. Capsules with differ-
ent types have a different point of view, but at the lower
layer, the assignment probabilities for a capsule are nor-
malised over all capsules in the higher layer regardless of
the type. Hence we have one assignment distribution per
capsule in the lower layer. In the self-attention layer, each
head processes independently its input, with the result of a
separate attention distribution for each position in the higher
layer. The outputs of the heads are only combined at the
last step where they are simply concatenated and linearly
transformed to compute the final output of the multi-headed
attention block.

3.5. AA-Caps Architecture

Figure 2 shows the architecture proposed for AA-Caps.
The architecture consists of a 2D Convolutional layer
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(Conv2d), a Primary Capsule Layer (Primary-Caps),
a Self-Attention layer (Self-Attention), a 1D Con-
volutional layer (Conv1d) and it ends with a classifica-
tion layer based on the attention outputs. The input im-
age of the model is defined over m channels, the number
of channels depends on the dataset to be considered. The
image is fed into the Conv2d that applies a 2D convo-
lution on m channels and extracts 256 feature maps. It
applies a kernel = 9 × 9 and stride = 1 × 1. This
layer is the original feature map extraction described for
CapsNet([45]). The Primary-Caps layer takes the 256
feature maps and identify the entities present in the im-
age. Each capsule in the Primary-Caps provides prob-
ability vectors with dimension dû. We obtain a tensor of
[C,W ×H × dû], where for each capsule c ∈ C, there is a
map W × H of activation vectors with dimension dû. We
reshape the tensor obtained by the capsules in order to feed
each head into Self-Attention with one map from a
capsule. We think that feeding each head with a map from
a single capsule, focus the head into the identification of
the entities in which the capsule is specialised and let the
Self-Attention layer collect from each head the main
features identified by the capsules. In particular, the input
to attention head i is the map from the i capsule and we ex-
tract the linear transformation of the K (Key), Q (Query)
and V (Value) as described in Section3.2, and the output of
attention head i is the attention function:

attention = softmax(
QKT

√
dm

)V (9)

that is described in equations presented in Section 3.2.
The representation of each position in the upper layer of
capsules is a weighted combination of all the representa-
tions in the lower layer. In order to compute these weights,
the attention distributions, each attention head, computes
the similarity between the query in each position in the up-
per layer to the keys of all positions in the lower layer. Then,
the distribution of attention over all positions is computed
by applying Equation 9 on these similarity scores. Each po-
sition in the Self-Attention layer, have a distribution
of attention. The values at all positions are combined us-
ing the attention probabilities of the head. These probabil-
ities are concatenated and transformed linearly to compute
the output of the multiple head attention component. The
Self-Attention layer is implemented with the Trans-
former Encoder Layer with C heads. We finally apply the
Conv1d with kernel = 1×1 and stride = 1×1 and map
the distributed attention over Y channels, Y is the number
of classes in the datasets. The summation provides the final
classification matrix X ∈ RY×dû , in Figure 2 on the right.

3.6. Loss Function

The obtained matrix X represents for each row a class
in the pool of classes of the dataset and for each column
the attention raised by the heads in Self-Attention .
We think that the class represented with the vector of major
intensity represents the prediction of the model. We apply
the marginal loss introduced in [45] to compute the error in
prediction.

Lmargin =

C∑
c=1

(
Tc max(0,m+ − x̂c)

2+

λ(1− Tc) max(0, x̂c −m−)2
) (10)

where Tc equals 1 if the input datum belongs to class c, 0
otherwise, x̂c is the magnitude of the c-th row of matrix X,
i.e. the c-th row of X, which represents the prediction for
class c. The m+ = 0.9 and m− = 0.1 are hyperparameters
controlling the margins, and the initial weights for absent
classes is controlled with λ = 0.5.

4. Experiments
We validate AA-Caps over five benchmark dataset at

state of the art. We split each dataset in training and test
dataset following the split proposed by the authors of the
datasets. The results shown in this section are obtained by
training and testing AA-Caps separately for each dataset.
We do not apply any pre-trained layers to maintain the orig-
inal structure of the CapsNet model [45].

4.1. Datasets

To validate the proposed approach, we have consid-
ered five different benchmarks, namely: Handwritten digits
dataset (MNIST), CIFAR10, SmallNorb, Animals with At-
tributes 2 (AwA2), Street View House Numbers (SVHN).
Figure 3 shows some image samples from these data
sources.
MNIST [28] dataset consists of 70000 images with dimen-
sion 28×28. The dataset has been split in 60000 and 10000
images for training and testing respectively. The dataset is a
collection of greyscale images of handwritten numbers clas-
sified among 10 classes.
SVHN contains 73000 and 26000 real-life digit images for
training and testing.
CIFAR10 [25] is a well known standard dataset for im-
age recognition experimentation, it consists of 60000 im-
ages from 10 classes of objects from different contexts. We
maintain the dataset split in training and test suggested by
the dataset authors: 50000 images in training set and 10000
images in test set. The images have dimension 32× 32 and
they are defined over three colour channels (RGB colour
space).
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Model MNIST SVHN CIFAR10 SmallNORB AwA2
Baseline CapsNet 99.67% (100E) 93.23% (100E) 68.70% 89.56% (50E) 12.1% (100E)
AA-Caps (Ours) 99.34% (100E) 92.13% (100E) 71.60% 89.72% (50E) 23.97% (100E)

Table 1. Summary of evaluation results. The model is validated over different bechmark to prove the contribution provided respect to the
original CapsNet. We present results obtained with MNIST, SVHN, CIFAR10, SmallNORB, and AwA2 datasets.

Model Description Parameters Test Acc.
CapsNet (Baseline) Conv - Primary Capsules - Final Capsules 8.2M 99.67%
AA-Caps (Ours) Conv - Primary Capsules - Self-Attention - Conv 6.6M 99.34%

Table 2. Comparison of CapsNet model with AA-Caps . The table presents a brief description layers that compose the structure of baseline
CapsNet compared to the structure of AA-Caps, the number of trainable parameters, and the accuracy achieved by the model after 100
epochs on MNIST dataset.

SmallNORB [29] consists of 24300 image 96 × 96 stereo
grey-scale images defined over 2 colour channels. We re-
sized the images to 48x48 and during training processed
random 32x32 crops, and central 32x32 patch during test.
AwA2 [51] consists of 37322 images of 50 animals classes.
The images are collected from public sources, that makes
the dataset challenging due to the uncontrolled images.

4.2. Results

We demonstrate the potential of AA-Caps on multiple
datasets and compare it with the CapsNet architecture. The
CaspNet architecture considered for this evaluation is the
baseline CapsNet, it does not include the reconstruction
module. All the experiments are performed using NVIDIA
TITAN RTX with 8GB RAM. We run all our models for 50
- 100 epochs. The initial learning rate is set to 0.0001 with
RAdam as optimiser [31].

SVHN dataset The dataset is defined on C = 10, due
to the complexity of images we set the dimension of acti-
vation vector dû = 64. In Table 1, AA-Caps provide an
accuracy of 92.13% in 100 epochs, this result is compet-
itive with CapsNet result trained at the same epoch. We
think that it is an interesting result that needs to be deeply
investigated.

CIFAR10 The proposed model is compared with the Cap-
sNet without the ensemble models. This choice is made
to compare the two models with similar conditions. The
model for AA-Caps is the same as what we use for SVHN
dataset. The model outperforms the original CapsNet, per-
forming well on accuracy with 71.60% compared to the
original 68.70%.

SmallNORB The dataset is defined on C = 5, and we use
a activation vector of dû = 32 due to the reduced number
of channels (the images are defined over 2 channels). The

performance of AA-Caps is compared with CapsNet for
the first 50 epochs, and it outperforms the CapsNet at the
state of the art with the accuracy of 89.72%.

AwA 2 The Awa2 dataset is the more complex dataset
considered in this work, the images in the dataset are in high
definition and they are defined over 50 classes of animals.
We set C = 50 and we use a activation vector dimension
of 64. The performance of the original CapsNet is low and
after 100 epochs it obtains an accuracy of 12.1%. We ob-
serve a strong improvement in performance with AA-Caps
that achieves 23.97%. We think that the proposed model
provides a high improvement taking into consideration the
complexity of the dataset.

4.3. Conclusions

We proposed a new model based on Capsule Network,
AA-Caps that replaces the routing-by-agreement mecha-
nism with self-attention layer. The direct connection be-
tween activity matrices from capsules and the multi-head
attention create dedicated heads that analyse the similari-
ties between capsules output. The effectiveness of this ar-
chitecture is demonstrated by state-of-the-art performance
(99.34%) on MNIST data with an important decrease of
memory space, almost 2M parameters, making the model in
line with the conventional CapsNets. Similar behaviour is
observed on digit in real-life with SVHN dataset, AA-Caps
performance is competitive with the original CapsNet,
92.13% and 93.23% respectively. Although AA-Caps per-
formed better (71.60%) than the baseline CapsNet model on
CIFAR10 data. The AA-Caps outperform CapsNet also on
SmallNORB dataset by 0.18% (89.72%) and Animals with
Attributes 2 dataset by 11.96% (23.97%). Performance on
real-life, complex data (CIFAR-10, AwA 2, etc.) is known
to be substandard compared to simpler datasets like MNIST.
We think that the AA-Caps performs well on the bench-
marks considered in the study and that proves the improve-
ment in performance compared to existing CapsNet.
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[21] José Jiménez, Miha Skalic, Gerard Martinez-Rosell, and Gi-
anni De Fabritiis. K deep: protein–ligand absolute bind-
ing affinity prediction via 3d-convolutional neural networks.
Journal of chemical information and modeling, 58(2):287–
296, 2018.

[22] Amelia Jiménez-Sánchez, Shadi Albarqouni, and Diana Ma-
teus. Capsule networks against medical imaging data chal-
lenges. In Intravascular Imaging and Computer Assisted
Stenting and Large-Scale Annotation of Biomedical Data
and Expert Label Synthesis, pages 150–160. Springer, 2018.

[23] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Car-
olina CS Valentim, Huiying Liang, Sally L Baxter, Alex
McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al.
Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell, 172(5):1122–1131, 2018.

[24] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geof-
frey E Hinton. Stacked capsule autoencoders. In Advances
in Neural Information Processing Systems, pages 15486–
15496, 2019.

[25] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436, 2015.

[27] Y. LeCun, B. E Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. E. Hubbard, and L. D. Jackel. Handwritten

279



digit recognition with a back-propagation network. In NIPS,
pages 396–404, 1990.
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