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Abstract

Multiple object tracking has attracted great interest in
the computer vision community. Most researchers focus
on the applications under a single static or moving cam-
era. More recently, tracking across multiple static cameras
is also investigated due to the need for surveillance pur-
poses. With the growing development of autonomous driv-
ing, it is critical to correlate all the vehicles’ vision sys-
tems on the road to achieve a global perception. However,
tracking across multiple moving cameras has not been well
studied yet. We observe a lack of such a publicly available
dataset for coordinated mining of multiple moving cam-
eras. In this paper, we aim to bridge the gap and propose
a new dataset of multiple moving cameras, called “DHU-
MTMMC”, in which the videos are collected from several
cameras mounted on the moving cars. The dataset contains
fourteen sequences in different scenarios with annotated
pedestrians. We propose a baseline MTMMC workflow to
deal with tracking pedestrians across cameras. When the
joint detection and embedding are performed, the associa-
tion algorithm can run online under single-camera settings.
We treat multi-camera tracking as a linear assignment prob-
lem that can be solved efficiently. The overall IDF1 of the
proposed MTMMC tracking on the dataset is 57.8%.

1. Introduction

Autonomous vehicles are gradually available in people’s
daily lives. The comprehensive and timely perception of
road condition is of great significance to improve the driv-
ing safety. Currently, there are still many challenges in
designing an complete autonomous driving perception sys-
tems [39]. Considering that the visual sensors from on-road
moving vehicles record a large number of video data, it
is meaningful to coordinatedly mine the information from
multiple cameras to get a comprehensive knowledge about
the environment. Benefiting from the rapid development

of mobile communication technology, 5G or 5G+ will pro-
vide a good V2X communication to allow all synchronized
cameras share the analyzed results, which can further as-
sist the intelligent driving of on-road vehicles. Thus, it is
a quite valuable attempt to take a further step into fusing
the multi-source video data, rather than dealing with only a
single-source data.

Tracking is a major task in computer vision field, espe-
cially when talking about autonomous cars. Reliably track-
ing the pedestrians on the road can help with future tasks
like trajectory prediction and route planning for the au-
tonomous car. This paper investigates the tracking issues
for multiple pedestrian tracking under multiple cameras.
Multi-Target Multi-Camera Tracking (MTMCT), which has
gained growing attention in the community [32, 15], aims
to locate every detected object at all times from videos
taken by multiple cameras. Many remarkable works have
been reported, including indoor [25, 33] and outdoor sce-
narios [15], enabling a wide range of applications such as
visual surveillance, suspicious activity, and anomaly detec-
tion. Sport-player tracking and crowd behavior analysis can
also be related to MTMCT tasks.

Currently, the cameras evolved in the MTMCT are usu-
ally installed at fixed locations [9, 1]. The relationship and
connectivity among these static cameras can be easily es-
tablished. But the flexibility of camera views is reduced.
MTMCT under multiple moving cameras is a notoriously
difficult problem [21]. More specifically, the spatial rela-
tionship among cameras is unknown, and the fields of views
change all the time. Even though the subject is challeng-
ing, it has good scientific value. The research results are
expected to overcome the limitations of the existing track-
ing framework and to achieve global perception in complex
traffic scenarios.

When it comes to the approaches for tracking, previous
researches have mainly focused on a single moving cam-
era [40, 27] or multiple static cameras [29, 25]. The im-
proved detection and feature embedding are expected to
lift the tracking performance to a large extent [5]. The

252



MTMCT sometimes can be regarded as a Re-ID prob-
lem [41, 10, 26, 34] with additional information from spa-
tial/temporal/appearance cues. In the static multi-camera
settings, time constraints and connected exit/entry zones
can be exploited with a camera link model [15]. Consid-
ering that a driving recorder or other visual sensor on the
vehicle passively records the dynamic scene data with the
vehicle enrolled in the traffic, the visual data from cam-
eras on different vehicles can be substantially explored for
a dynamic surveillance. The tracking can be much more
challenging due to the changes from different lighting con-
ditions, viewing perspectives, and scene differences, com-
pared with traditional tracking across multiple static cam-
eras. However, sharing information between on-road ve-
hicles is beneficial for a global and accurate perception of
the driving environment. We believe in the future develop-
ment of autonomous driving and the construction of smart
roads, information will be more mixed. The information
from coordinated mining will be shared and give insights
into path planning, obstacles avoidance, and so on. Conse-
quently, systematic understanding of visual data collected
from different moving cameras becomes highly demand-
ing, which brings computer vision to our daily life more
and more closely.

To sum up, in view of the limitations of the existing
tracking frameworks and related visual sources, in this pa-
per, multi-source video data are introduced and we study the
key technologies involved in multiple pedestrian tracking
by coordinated mining of multiple moving cameras. The
contributions of this work are as follows.

(1) We propose a multi-target and multi-moving cam-
era dataset, called “DHU-MTMMC”, which is collected for
multiple object tracking across different moving cameras. It
bridges the gap between the increasing need for correlating
moving vehicles on the road and lacking of such a dataset
in the community.

(2) We carry out a joint object detection and embedding
extraction, and use the Hungarian algorithm for single cam-
era based tracking. We explore to use the Jonker Volgenant
algorithm for tracklets assignment across cameras. It is sim-
ple but effective for association.

(3) A detailed comparison of single camera tracking
based algorithms is presented to pave the way for our in-
vestigation of the more challenging multi-camera based so-
lutions.

The rest of the paper is organized as follows. Section
2 gives a brief survey on the related work. In Section 3,
the details of our proposed dataset is provided. Section 4
depicts the methodologies used in the proposed framework.
The experimental results are shown in Section 5, followed
by the conclusion in Section 6.

2. Related Work
In the recent past, the computer vision community has

witnessed a tremendous development in object tracking,
which can be pretty challenging especially with multiple
objects involved. In this section, we will give a literature
review in this field from the aspects of single camera based
and multiple camera based datasets and methods for multi-
ple object tracking.

2.1. Single Camera

It’s meaningful to improve the performance on multiple
objects tracking under single cameras. There are a vari-
ety of scenarios which are based on the tracking results, for
example, crowd counting, flow analysis, and anomaly de-
tection on highway or within a building. These tasks are
highly coupled and interconnected, based on the detection
and tracking. PETS dataset [12] is an early benchmark for
multiple object tracking, targeted primarily at surveillance
applications. It consists of several subsets, including people
tracking.

Nowadays, MOTChallenge [8], offering a collection of
datasets, has been a basis for the fair evaluation of multi-
ple object tracking (MOT) algorithms. Abundant pioneer
works have been proposed to improve the tracking perfor-
mance [37, 40], and MOT dataset provides a public recog-
nized platform for fair comparison. Recently, the KITTI
benchmark [13] has been introduced to solve several hot
topics in autonomous driving, such as odometry, object
detection and orientation estimation, as well as tracking.
Drones equipped with cameras have also been deployed
to a wide range of applications, including aerial photog-
raphy, delivery, and surveillance. The VisDrone challenge
[42] has presented a benchmark for various important com-
puter vision tasks, including detection, single-object track-
ing, multi-object tracking, and crowd counting.

These datasets have provided a convenience for re-
searchers to develop their algorithms. There are several di-
rections for tracking approaches. The most used methods
are based on tracking-by-detection schemes [38, 6, 22, 19],
i.e., we first detect objects, based on which we extract the
corresponding features and then do the tracking. Previously,
color and texture information are leveraged to discover the
potential objects. Traditional feature extraction methods
like color histograms, HOG, and LBP are utilized for de-
scribing the objects. Recently, people gradually choose to
use deep learning based methods like Faster R-CNN [30]
and YOLO [4] for object detection, followed by a step of
extracting deep convolutional neural network (CNN) fea-
tures for representation. As far as the representations are
available, the tracking among adjacent frames can be solved
benefiting from the similarity or motion information. Some
researchers treat this problem as a graph model [32], where
each detection is regarded as a node, and the correlation val-
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ues constitute the edges among nodes. The tracking prob-
lem is solved by minimizing the total cost. Similarly, some
researchers [36] propose to use tracklets as nodes and fo-
cus on the long-term tracking using graph-based model. In
these above mentioned approaches, detection and embed-
ding are separately dealt with, resulting in high computation
complexity and redundancy. Some researchers [37, 5] pro-
pose joint detection and embedding workflows which can
save the computation resources and lift the efficiency to a
large extent, because the parameters can be reused both on
detection and embedding. In this paper, we also follow their
ideas, and carry out the detection and embedding in a single
forward pass.

There are also some work which tries to output track-
ing results directly, e.g., Recurrent neural network (RNN)
-based tracking [28]. However, the relevance for two far-
away detections is almost lost, thus, the performance of
RNN-based methods usually degrades in the long run. Fe-
ichtenhofer et al. [11] proposes simultaneous detection and
tracking, using a multi-task objective for frame-based ob-
ject detection and across-frame track regression and link
the frame level detections based on across-frame tracklets to
produce high accuracy detections at the video level. How-
ever, huge training data is needed for this kind of end-to-end
tracking frameworks. Kang et al. [17] proposes a Tublet
proposal network by using the object detection in the first
frame to align a tube sequence. The result will not be satis-
fied when the objects exhibit a relatively large motion in the
images, e.g., in highway scenarios.

2.2. Multiple Cameras

Benefiting from the vast advancement from single cam-
era based tracking, people try to pursue a better perfor-
mance in multi-camera scenarios. Nowadays, a vast num-
ber of cameras has been observed in traffic hubs and shop-
ping centers. An automated MTMC tracking will be helpful
through analyzing video streams taken by multiple cameras.
Ristani et al. [31] propose a DukeMTMCT benchmark, a
large-scale tracking dataset with 2.8k identities though no
longer publicly available. They also design a method [32]
based on correlation clustering. Learning good correlations
is proven to make training simpler and less expensive. AI
City Challenges [29] pave the way to get actionable insights
derived from data captured by sensors in transportation. It
performs vehicle re-identification based on vehicle crops
from multiple cameras placed at multiple intersections. It
also tracks vehicles across multiple cameras both at a sin-
gle intersection and across multiple intersections. Spatial-
temporal relations between cameras are informative to be
considered [23, 35]. Due to the movement of vehicles usu-
ally follow certain driving patterns based on road structures
and traffic rules, Hsu et al. [15] group them into limited
numbers of trajectories, and propose the trajectory-based

camera link models for multi-camera tracking of vehicles.
With a reliable camera link model, the candidate set for
matching becomes much smaller. As a result, the accuracy
of across camera association can be significantly improved.
Styles et al. [33] propose a dataset of multi-camera pedes-
trian trajectories from a network of 15 synchronized cam-
eras set up indoors and forecast the future trajectory of an
object across multiple non-overlapping camera views. Mar-
roquin et al. [25] also introduce an indoor multi-camera
multi-space dataset.

The aforementioned datasets are all under the settings
of multiple static cameras. Interestingly, there has been
rather limited work on the standardization of multiple tar-
get tracking across moving cameras. It can be much more
challenging when carrying out the tracking under the set-
tings of multiple moving cameras. Lee et al. [21] propose
a framework to track on-road pedestrians across multiple
driving recorders. Though the idea is similar to ours, but
the dataset is not publicly available and we believe the deep
learning based detection and embedding can boost their per-
formances to a large extent. A public dataset is helpful to
advance the state-of-the-art in the respective research fields.
In the future, we are going to release the dataset. More-
over, we will keep enlarging the dataset to increase the dif-
ficulty by including more sequences filmed from different
road types, with different weather/lighting conditions, and
far more crowded scenarios. With this benchmark we would
like to pave the way towards a more mature multi-target
tracking system under multiple moving cameras.

3. Dataset

To the best of our knowledge, there is no public dataset
for object tracking under multiple moving cameras. Pre-
vious datasets for cross camera tracking are mostly based
on the static cameras. Figure 1 shows an overview of our
proposed dataset, DHU-MTMMC, aiming at multi-target
multi-moving camera tracking.

Figure 1. Overview of the proposed dataset: DHU-MTMMC. Dif-
ferent colors in the left represent different drives on the road to
record videos. Snapshot images in the right show exampled differ-
ent road scenarios.
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Table 1. Configurations of the devices

Device Type Resolution fps

1 Iphone 6S 1920 × 1080 30
2 Iphone 11 1920 × 1080 30
3 Iphone 8 1920 × 1080 30
4 Oppo Reno3 1920 × 1080 30

To collect the dataset, we have leveraged the cell phones
due to its high resolution. We can also install other soft-
ware like “SensorLog” in the cell phone to record Global
Positioning System (GPS) locations as references. The con-
figurations of the devices are shown in Table 1. The images
are captured at the resolution of 1920 × 1080 and a frame
rate of 30 fps. We fix each cell phone with a car. Then
several cars carrying the cameras are driven within a cam-
pus to record live videos. Several different driving cases are
considered, as is shown in Figure 2. Two vehicles may (a)
move towards each other or (b) move in the same direction
one-by-one. Three vehicles have an overlapping view, as
is shown in Figure 2(c). Note that, the precise timestamp
for the videos can be resolved through analyzing the video
streams. The recorded videos are pre-sychronized.

Figure 2. Different driving cases considered during the data col-
lection. Some possible exampled pedestrian movements in green
color are also shown.

As shown in Figure1, multiple drives from different ve-
hicles are carried out in the campus. The trajectories are
plotted based on the GPS cues. The cameras mounted on
the cars observe plenty of pedestrians on the road. We have
selected 6 scenes from all the drives, denoted as A, B, C, D,
E, and F. Each scene covers the interaction from two or three
cameras on different cars. We have manually annotated the
pedestrians appeared in the videos as ground truth, follow-
ing the same format with MOT dataset. Some of the se-
quences include crowded pedestrian crossings, making the
dataset quite challenging. Since the vehicles move in a rel-
atively slow speed when recording data, thus we annotate
the videos at a frame rate of 5 fps to reduce redundancy and
keep enough disparity among adjacent frames. We show
the basic statistic information of these scenes in Table 2.

Table 2. Overview of the datasets
Sequence Device Length Tracks Boxes Density

A-I 2 14s 4 171 1.9
A-II 1 52s 3 299 1.15
B-I 2 17s 23 837 7.27
B-II 1 21s 34 1041 9.91
C-I 2 9s 6 99 2.2
C-II 1 16s 16 880 11
D-I 2 84s 28 1262 3
D-II 1 86s 33 1598 3.7
E-I 2 30s 7 590 3.9
E-II 4 30s 2 148 0.98
E-III 3 25s 7 738 5.9
F-I 2 14s 5 186 2.65
F-II 4 12s 8 337 5.61
F-III 3 12s 4 185 3.08

For example, scene A contains two sequences of A-I and
A-II captured by Device 1 and 2 from two cars. The video
lengths for these two video sequences are 14s and 56s, re-
spectively. Sequence A-I contains 4 tracks with 171 boxes,
while A-II has 3 tracks with 299 boxes. The column of
“Density” represents the average of the number of pedes-
trian per image.

Different scenarios are considered to demonstrate the
performance of the proposed method. Due to the light re-
flection, the images can be pretty different under different
video sources (we refer the readers to check with Figure
5 in Section V). In scene A, two vehicles move towards
each other, thus, these two cameras have overlapping views
for a while. Especially, a girl in yellow color is observed
by two cameras at some time, then, she disappears in the
first camera and later comes back in the field of view of the
same camera. In scene B, two vehicles move one-by-one
along the same direction, thus, pedestrians may walk out
of the field of view of one camera and then enter into the
other camera’s field of view. In scene C and D, the vehi-
cle turns around a corner, that is, pedestrians are likely to
appear again in the camera’s field of view after leaving it
for a while. In scene E and F, three cameras have overlap-
ping views, i.e., some people are simultaneously observed
by these cameras.

4. Method

The whole workflow for the multi-target multi-moving
camera (MTMMC) tracking is shown in Figure 3, which
is composed of three parts, including joint detection and
embedding (JDE), single camera based tracking, and multi-
camera based tracking.
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Figure 3. The workflow of MTMMC tracking, composed of three main parts: joint detection and embedding, single camera based tracking,
and multi-camera based tracking.

4.1. Joint Detection and Embedding

The mainstream of most tracking algorithms lies in
“tracking-by-detection”, i.e., detection and embedding are
usually treated as two independent steps. To improve the
efficiency of tracking systems, in this paper we explore the
joint detection and embedding procedures, which are ex-
pected to simultaneously give the location and appearance
information of objects in a single forward pass. We have
adapted the framework proposed in [37] to accomplish this
task.

Feature Pyramid Network (FPN) [24] is employed to
make the predictions from different scales. The objects in
our dataset varies a lot regarding the scale. A better detec-
tion result is expected with FPN, a top-down architecture
with skip connections for building high-level semantic fea-
ture maps at multiple scales. The prediction heads contain
three components, i.e., one for box classification, one for
box regression, and the other is for the embedding.

The detection branch evolves from the standard RPN
proposed in [30]. Since the targets in our case is pedes-
trian, the aspect ratio is set as 1:3 due to common prior.
The objective function of detection has two parts, cross-
entropy loss for the foreground/background classification,
and smooth-L1 loss for the bounding box regression.

To embed the feature for each target, we benefit from the
metric learning and aim to learn a mapping from images to
a compact Euclidean space where distances directly corre-
spond to a measure of pedestrian similarity. Here, cross-
entropy loss is applied for object identity classification in
the same manner as [37, 5], which employs learnable class-
wise weights as proxies of class instances rather than using
the embeddings of instances directly. The purpose of this
step is to minimize the distance between the same target in
different frames, and maximizes the distance between dif-
ferent identities either in the same frame or different frames.
The cross entropy loss for embedding branch is defined as

Equation 1.

L = −log
ef

⊥g+

ef⊥g+ +
∑

i e
f⊥g− , (1)

where f⊥ denotes the embedding of the anchor, while g+

and g− represent the class-wise weight of the positive class
(to which the anchor instance belongs) and weights of neg-
ative classes.

In summary, JDE will output predicted bounding boxes
and appearance embeddings. The JDE module is treated as
a multi-task learning problem. An automatic loss balanc-
ing scheme [18] is adopted by employing task-independent
uncertainty. The learning objective function is written as,

Ltotal =

N∑
i

∑
j=α,β,γ

1

2
(
1

es
i
j

Li
j + sij), (2)

where N is number of the prediction heads based on FPN
layers. sij are learnable parameters, representing the task-
dependent uncertainty values. The joint objective depicts a
weighted sum from every scale and every prediction com-
ponent.

4.2. Single Camera based Online Association

In most cases, the objects move straightly on the road.
The Kalman Filter (KF) is adopted to approximate the rela-
tive movements and infer the potential location of previous
tracklets in the current frame. The wrong assignment can
be excluded when an unconsistency is observed.

When the object detections and embedding features are
available through JDE, a following tracking algorithm is
needed to associate the same identities among consecutive
frames. The problem is intuitive to be formulated using a
bipartite graph for every two adjacent frames. We denote
the detections as Dt and the corresponding feature embed-
ding as f t at frame t. The motion state in KF is denoted by
m. The i-th object of Dt

i ∈ Dt in frame t is expected to be
matched with a live track Dt−1

j ∈ Dt−1 in frame t−1. The
Hungarian method [20] finds a perfect matching such that
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the cost meets some criterion. Considering both appearance
information and motion information, we define the match-
ing cost between the j-th track and the i-th detection as,

C = λd1(fj , f
t
i ) + (1− λ)d2(mj ,m

t
i), (3)

where d1(·, ·) is a distance measure of Euclidean distance
and d2(·, ·) represents Mahalanobis distance. Every em-
bedding and motion condition of the observations will be
compared to a pool of previous existing tracks. The two
matches of j-th track and i-th detection will be rejected if
the cost value is over a threshold of φ1.

The motion state of all matched tracklets are updated by
KF. We assume f t is the embeddings of the tracklet at frame
t, and it can be updated following,

f t = ηf t−1 + (1− η)f̃ , (4)

where f̃ indicates the embedding of the assigned observa-
tion in frame t. η is a weight for balancing the historical and
the current embeddings.

4.3. Multi-Camera based Tracking

Through the single camera based tracking, we obtain the
tracklets in each camera, i.e., the same pedestrians in dif-
ferent frames have been linked together. The averaged em-
bedding features for the same identity in a tracklet is cal-
culated to generate a clip-level feature. Different tracklets
will be described by the clip-level features. Due to the
diversities of viewing perspectives and camera devices, a
target’s color-channel image intensities extracted from one
camera are normally different from those of the other cam-
era. But the JDE module can learn the deep features well
based on large-scale training data. With the single camera
based tracking result available, we model the multi-camera
based tracking as a linear assignment problem. The fields
of views of different cameras may be overlapping or non-
overlapping. The tracklet in camera a may have a match in
camera b or not, as is shown in Figure 3. The problem is
solved by Jonker-Volgenant algorithm [16]. The cost func-
tion is defined as,

C = d(
1

T1

T1∑
t=1

f t
i ,

1

T2

T2∑
t=1

f t
j ), (5)

where d(·, ·) is a distance measure of Euclidean distance
between the i-th tracklet (T1 frames) in the first camera and
j-th tracklet (T2 frames) in the other camera. It’s important
to choose a proper threshold to suppress the mismatches.
If C is too large, the two tracklets will not be associated
together. We use φ2 to determine the association threshold.

5. Experiments
5.1. Experimental Settings

We have taken advantage of the pretrained model from
[37] for the JDE task. The DarkNet-53 is implemented as
the backbone network. Six datasets (ETH dataset, CityPer-
sons, CalTech, MOT-16, CUHK-SYSU, and PRW dataset)
regarding pedestrian detection, MOT, and person search
have been put together to form a large-scale training set, re-
sulting in better performance on detection accuracy. Rich
images under different conditions of lighting, occlusion,
weather, and viewing perspectives ensure a good general-
ization ability of the model.

Though we have performed Hungarian algorithm and KF
for single camera based tracking, which are also the main
approaches used in Wang et al. [37], we have several differ-
ent implementations in the details. For example, an obser-
vation that is not assigned to any existing tracklets is initial-
ized as a new tracklet, rather than waiting for accumulating
two consecutive frames; when a track is re-found, we up-
date the track’s current location in time; and etc.

Here, we give the parameter settings. The N equals 3
in Equation 2, denoting three scales downsampled as, 1/8,
1/16, and 1/32 in FPN layers. As for updating the feature
embedding of a tracklet, the momentum term of η is also
set as 0.9, to fully consider the influence both from previ-
ous frames and the current frame. As for the cost functions
in Section 4.2 and Section 4.3, we set the threshold of φ1

as 0.8 and φ2 as 1.0. The two parameters are empirically
chosen according to the observations based on the data dis-
tribution. Besides, we define λ = 0.98 to balance the two
parts of appearance and motion costs.

To make a comparison for different tracking method, we
have also test other methods of Tracktor and DeepSort, im-
plemented based on MMTracking [7].

5.2. Evaluation Metrics

We have used CLEAR-MOT metrics for evaluations [3].
In the multi-camera setting, the scores are computed based
on the concatenated videos from all cameras which are in
concern. The ground truth for the pedestrians are labeled
with a consistent global ID across different cameras in each
scene. We mainly use IDF1, IDP, IDR to evaluate the per-
formance for multi-camera tracking. These ID measures
describe how well the tracker recognizes who is where re-
gardless of where or why mistakes occur. IDF1 measures
the ratio of correctly identified detections over the aver-
age number of ground-truth and computed detections. A
high IDF1 score is obtained when the correct multi-camera
pedestrians are discovered, accurately tracked within each
video, and labeled with a consistent ID across all videos in
the dataset. IDP is the fraction of predicted detections that
are correctly identified, while IDR is the fraction of true ob-
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jects that are correctly detected. IDF1 is widely used as the
principal measure for ranking MTMC trackers in the com-
munity [29]. To evaluate the performance for single-camera
tracking, we also report MOTA [3], which accounts for all
object configuration errors made by the tracker, false posi-
tives, misses, mismatches, over all frames.

5.3. Results

To implicitly show the performance of feature embed-
ding module through JDE, we use t-Distributed Stochastic
Neighbor Embedding (t-SNE) [14] to visualize the high-
dimensional data by giving each datapoint a location in a
two-dimensional map. The sequences in scene B and D are
shown in Figure 4, from which we can see that the points
with the same color tend to be grouped together. It means
that the embedding module does give the discriminative fea-
ture for each unique identity.

Figure 4. Visualization of feature embedding for different identi-
ties using t-SNE. The same color represents the same pedestrian
in different frames.

We report the single camera based tracking result in Ta-
ble 3. The overall IDF1, IDP, IDR, and MOTA are 66.5%,
73.1%, 60.8%, and 62.3%. We also observe some fluctua-
tions among different sequences for these values. The re-
sults in D-I, D-II, A-II, B-I, and B-II are relatively more
stable, either due to longer time duration or larger number
of instances. The metrics are not good in A-I and F-III,
these two sequences contain less tracks in relatively short
time periods.

The multiple camera based tracking result is reported
in Table 4. Scene B and D contains more instances than
the others, the IDF1 values are 59.6% and 56.5%, respec-
tively. These two scenes are also more crowded compared
with others. The experimental results demonstrate the effec-
tiveness of our proposed workflow for multiple pedestrian
tracking across multiple moving cameras. We also show

Table 3. Results of single camera tracking

Sequence IDF1↑ IDP↑ IDR↑ MOTA↑
A-I 38.1% 57.8% 28.1% 15.2%
A-II 62.0% 58.6% 65.9% 74.6%
B-I 72.0% 76.8% 67.9% 76.1%
B-II 60.8% 65.4% 56.9% 76.8%
C-I 69.5% 87.7% 57.6% 61.6%
C-II 65.1% 70.9% 60.1% 61.8%
D-I 65.3% 72.6% 59.4% 57.6%
D-II 56.5% 64.4% 50.3% 49.5%
E-I 79.1% 94.8% 67.8% 64.7%
E-II 85.0% 80.6% 89.9% 68.2%
E-III 91.2% 98.4% 85.0% 83.6%
F-I 70.2% 77.8% 64.0% 48.4%
F-II 74.1% 77.9% 63.8% 48.1%
F-III 28.7% 32.2% 25.9% 29.2%

OVERALL 66.5% 73.1% 60.8% 62.3%

Table 4. Results of multiple cameras tracking

Scene IDF1↑ IDP↑ IDR↑
A 48.7% 51.6% 46.0%
B 59.6% 63.8% 55.9%
C 60.9% 67.2% 55.7%
D 56.5% 63.7% 50.8%
E 63.3% 69.8% 57.9%
F 48.8% 52.9% 43.2%

OVERALL 57.8% 63.6% 52.8%

the detected and tracked results in different scenes under
different cameras in Figure 5. Specially, two cross-camera
tracked pedestrians obtained through the tracking scheme
described in Section IV are shown in Figure 6, where the
bounding boxes are cropped from the videos and resized
to the same size for better visualization. We can see that,
though the color brightness can be different under differ-
ent cameras, our proposed baseline can still accomplish the
tracking across the moving cameras.

As is known to all, an effective module on single cam-
era tracking usually leads to a better performance of multi-
camera based tracking. Thus, it is necessary to exploit an
approach which runs fast and tracks robustly. We compare
the JDE module used in our proposed workflow with two
other well-recognized works, i.e., DeepSort [38] and Track-
tor [2]. Tracktor realizes multi-object tracking only with
an object detector. It operates on the regression of the ob-
ject detector, trying to align already existing track bounding
boxes in frame t − 1 to the object’s new position at frame
t. DeepSort learns a deep association metric and establish
measurement-to-track associations using nearest neighbor
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Figure 5. Exampled video frames from different sequences in
Scene B, D, E, and F. The color brightness of devices is slightly
different. The tracked boxes are also drawn in the images.

Figure 6. The same pedestrian in different cameras being assigned
to the same identity through multi-camera based tracking method-
ology. Two examples from Scene B (two cameras) and E (three
cameras) are given.

queries in visual appearance space. The results are reported
in Table 5. Though Tracktor and DeepSort are also light
modules which can run fast, but the performances are not
as good as JDE employed in our framework. The embed-
ding in the JDE trained by cross entropy loss are more dis-
criminative for tracking different individuals. Besides, it
is worthwhile to note that the proposed MTMMC tracking
system provides a general solution for coordination among
multiple moving cameras. It can adopt any newer and more
powerful single camera tracking algorithm, whenever it is

Table 5. Comparisons of single-camera tracking methods

Sequence Deepsort Tracktor
IDF1 MOTA IDF1 MOTA

A-I 5.6% -1.8% 15.9% 4.7%
A-II 25.8% 0.3% 35.6% -17.1%
B-I 22.2% 23.3% 51.1% 53.8%
B-II 21.6% 15.8% 53.0% 51.7%
C-I 37.4% 19.2% 46.4% 39.4%
C-II 22.3% 23.4% 35.5% 33.2%
D-I 38.2% 23.5% 54.9% 36.5%
D-II 25.1% 10.0% 51.9% 26.0%
E-I 56.9% 56.1% 71.9% 58.0%
E-II 94.5% 89.2% 95.8% 91.9%
E-III 64.0% 75.1% 88.0% 78.6%
F-I 20.4% 11.3% 59.5% 33.9%
F-II 43.7% 25.8% 67.5% 38.0%
F-III 13.2% 18.4% 50.7% 29.7%

OVERALL 33.2% 26.3% 55.5% 41.3%

available.

6. Conclusion

In this paper, we explore the coordinated mining of dif-
ferent moving cameras for multi-pedestrian tracking on the
road. Due to the lack of such publicly available dataset,
we have collected a dataset, called “DHU-MTMMC”, with
multiple moving cameras enrolled in. The dataset contains
several driving conditions for looking into different scenar-
ios, both overlapping and non-overlapping camera views
have been considered. We hope that the dataset will offer
an opportunity for the researchers who are interested in this
task. Besides, we also propose an MTMMC tracking sys-
tem as a baseline to handle the multiple pedestrian track-
ing problem under different moving cameras. It consists of
three stages: 1) joint detection and embedding, 2) single
camera based tracking, and 3) multi-camera based tracking.
The tracking is much challenging with the rapid changes
of fields of views of the cameras, when the vehicles carry-
ing the visual sensors are moving. Our proposed method
achieves an overall IDF1 score of 57.8% on the proposed
dataset. In the future, we will continuously keep enlarging
the dataset and improving the tracking performance.
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