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Abstract

State-of-the-Art (SoTA) deep learning-based ap-
proaches to detect anomalies in surveillance videos utilize
limited temporal information, including basic information
from motion, e.g., optical flow computed between consecu-
tive frames. In this paper, we compliment the SoTA methods
by including long-range dependencies from trajectories for
anomaly detection. To achieve that, we first created trajec-
tories by running a tracker on two SoTA datasets, namely
Avenue and Shanghai-Tech. We propose a prediction-based
anomaly detection method using trajectories based on So-
cial GANs, also called in this paper as temporal-based
anomaly detection. Then, we hypothesize that late fusion
of the result of this temporal-based anomaly detection sys-
tem with spatial-based anomaly detection systems produces
SoTA results. We verify this hypothesis on two spatial-based
anomaly detection systems. We show that both cases pro-
duce results better than baseline spatial-based systems, in-
dicating the usefulness of the temporal information com-
ing from the trajectories for anomaly detection. We observe
that the proposed approach depicts the maximum improve-
ment in micro-level Area-Under-the-Curve (AUC) by 4.1%
on CUHK Avenue and 3.4% on Shanghai-Tech over one of
the baseline method. We also show a high performance on
cross-data evaluation, where we learn the weights to com-
bine spatial and temporal information on Shanghai-Tech
and perform evaluation on CUHK Avenue and vice-versa.

1. Introduction

Video anomaly detection is a sub-domain of behavior un-
derstanding, where anomalies for applications such as theft
detection, traffic light jumping, and fighting, etc. are getting
increasingly relevant with the accessibility and proliferation
of video surveillance. There are multiple challenges associ-
ated with anomaly detection including the vague definition
of anomalous behavior, i.e., anomaly changes with the con-
text. An example to illustrate the context can be that driv-
ing a vehicle on a pedestrian street is considered anomalous
while it is normal in the context of a road. Additionally,
by definition anomalies are rare to anticipate, which conse-
quently leads to the failure of supervised learning methods
due to imbalanced datasets.

Therefore, unsupervised and weakly supervised anomaly
detection approaches have recently gained interest. Com-
mon examples are reconstruction [13] and prediction
[19] based anomaly detection. Reconstruction-based
anomaly detection systems reconstruct the current frame
and prediction-based ones predict the future frame. If
the reconstruction/prediction error is low, the current/future
frame is normal, otherwise abnormal. State-of-the-Art
deep learning approaches for anomaly detection are only
trained for normal events, with the hypothesis that the
reconstruction/prediction error for anomalous frames is
high. However, neural networks sometimes learn to re-
construct/predict even anomalous frames with low errors.
This reduces the discriminative power of the neural net-
work to classify a frame as abnormal or normal. To over-
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come this drawback, memory-augmented auto-encoders
[30, 10] are proposed. The memory-augmented auto-
encoders [30, 10] contain an extra memory module along
with a prediction/reconstruction-based network. The mem-
ory module learns to cluster the normal events in the train-
ing data and finally uses a one-class classification approach
to identify the anomalies. It basically creates a prototype
for each normal event in the training data and prevents the
network from generalizing for abnormal events. Despite
the great achievements of SoTA methods in anomaly de-
tection, still, there is room for improvements. SoTA ap-
proaches are mostly using spatial information for anomaly
detection and utilizing temporal information has been lim-
ited to gradient or optical flow computed between consecu-
tive frames. Obtaining the optical flow for large datasets is
a time-consuming and computationally expensive process.
This is the reason that most anomaly detection systems uti-
lizing optical flow extract this from only two frames [9].
The object’s trajectories, which implicitly include the his-
tory of motion [31] are better choices and are also compu-
tationally efficient. However, contextual anomalies such as
walking in restricted zones and behavioral anomalies such
as dancing or jumping are not captured by using only trajec-
tories. Therefore, we need an appropriate balance of spatial
and temporal information for robust anomaly detection.

In this paper, we hypothesize that fusing temporal
anomaly detection scores (based on trajectories) with spa-
tial anomaly detection scores (based on SoTA methods) in-
creases the accuracy of these systems, regardless of the net-
work architecture used for spatial anomaly detection. To
encode the long-range dependencies for the video anomaly
detection, we use these trajectories to detect the anoma-
lies using our proposed temporal network based on Social
Generative Adversarial Networks (Social GANs) [12]. We
implicitly consider social interaction among different ob-
jects in the scene during anomaly detection using trajecto-
ries because of the presence of social pooling layer in So-
cial GANs [12]. We verify our hypothesis by using dif-
ferent baselines, i.e., prediction-based system of Liu et al.
[19] and memory-based system of Park et al. [30] for our
spatial network. The prediction-based system of Liu et al.
[19] predicts a future frame from the past four frames by
minimizing intensity, gradient, and flow loss. However,
the memory-based system of Park et al. [30] incorporates
additional memory modules for both prediction-based and
reconstruction-based anomaly detection. For the inclusion
of temporal information from trajectories, we learn a score
level fusion of anomaly detection scores obtained from the
temporal and spatial networks.

We verify that there is improvement in frame-level AUC
(a commonly used metric for video anomaly detection)
for each baseline by using the complementary information
from trajectories. There is an improvement of 1.7% on

CUHK Avenue [21] and 1.8% on Shanghai-Tech [19] for
Liu et al. [19]. The inclusion of trajectories in Park et al.
[30] shows an improvement of 4.1% on CUHK Avenue
[21] and 3.3% on Shanghai-Tech [19] for reconstruction-
based and an improvement of 0.1% on CUHK Avenue [21]
and 3.3% on Shanghai-Tech [19] for prediction-based ap-
proaches. We also perform some additional experiments on
cross-database generalization, where we learn parameters
on Shanghai-Tech [19] and use them to evaluate CUHK Av-
enue [21] or vice-versa. We observe an overall increase in
performance even in-case of cross-databases experiments,
i.e., from CUHK Avenue [21] to Shanghai-Tech [19] have
an improvement of 0.7% and from Shanghai-Tech [19] to
CUHK Avenue [21] have an improvement of 1.8% in the
AUC over the baseline by Li et al. [19]. The late fusion of
spatial and temporal information makes our approach appli-
cable to any SoTA anomaly detection method.

2. Related Work
Systems to deal with the task of video anomaly detection

are getting complex with the evolution of complex anoma-
lies and new datasets. The methods use for video anomaly
detections are broadly classified into two categories namely
spatial-based and temporal-based anomaly detection.

2.1. Anomaly Detection Using Spatial Cues

Anomaly detection systems utilizing spatial informa-
tion can be further classified into four sub-categories: Re-
construction, Prediction, Hybrid and Object-centric ap-
proaches. Reconstruction-based approaches seek to learn
normalcy, where the expectation is that anomalous activity
will have a large reconstruction error, comparing the input
with its reconstruction. This approach has shown promise
due to the era of deep learning and specifically the con-
volutional autoencoder (CAE) and the generative adversar-
ial network (GAN) [11]. The work of Hasan et al. [13]
is the first example of applying CAE and comparing it to
hand-crafted features like Histograms of Oriented Gradients
(HOG) and Histograms of Optical Flows (HOF), showing
the potential of learned representations. Similar approach
is seen using GANs [32, 29]. Prediction-based approaches
argue that anomalous actions are naturally harder to predict.
This approach is pioneered by Liu et al. [19], using a sliding
time window to predict the future frame. The future predic-
tion is then compared to the actual input. This is further ex-
panded by Rodrigues et al. [33] using multiple timescales.
Hybrid approaches [37] [27] [34] are combining both the
reconstruction and prediction aspects. To avail the success
of deep learning-based object-detection, few anomaly de-
tection approaches such as [15, 9, 8] incorporates anomaly
score based on object detection rather than on frame-level.

Training unsupervised methods for a complex task such
as anomaly detection is challenging due to limited guidance
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during learning, compared to supervised learning. There are
some methods that are adding some prior information to the
above approaches for improving accuracy. A common ap-
proach to aid in the learning is to use pre-trained systems
to impose what is already known and learned, either in the
form of optical flow [9], object detectors [32, 15, 36], skele-
tons [27], or memory augmentation [10, 30]. The downside
of many of these methods is the limited use of contextual
information. In recent years, memory-augmentation net-
works that are using external memory to extend the capabil-
ities of the neural network are used, e.g., Gong. et al. [10]
proposed a memory-augmented deep autoencoder, where
rather than reconstructing the frame directly, the represen-
tation obtained from the encoder part is used for querying
the most relevant information out of the memory for recon-
struction. These types of networks mitigated the issue that
abnormal frames can also be reconstructed with a small er-
ror.

2.2. Anomaly Detection Using Temporal Cues

SoTA anomaly detection approaches are mostly using
spatial cues, while taking only limited temporal information
into consideration. For example, Liu et al. [19] use optical
flow between consecutive frames, Ionescu et al. [15] use
backward gradient between the previous and current frame
and forward gradient between current and next frame. Later,
Georgescu et al. [9] verified that optical flow is better to
capture motion in the context of anomaly detection, so they
replaced forward and backward gradient in Ionescu et al.
[15] by forward and backward optical flow.

There are limited approaches such as Morias et al. [27]
and Rodrigue et al. [33] including trajectory for anomaly
detection. Morias et al. [27] uses a skeleton-based repre-
sentation of trajectories, which needs additional annotations
for gaits in human body. To further expand this work, Ro-
drigue et al. [33] also uses pose-based trajectories but ex-
tracted features at multiple scales. The limitation of posed-
based trajectories is that they are only applicable for human
anomalies, and non-human anomalies such as vehicles on
the pedestrian street or unattended luggage cannot be de-
tected.

Some examples of anomaly detection using trajectories
on traffic and old datasets include [3, 4], which are based on
the clustering of trajectories using hand-crafted features and
distance measures between the trajectories. In this case, the
clusters with small support are anomalous. Some other sta-
tistical approaches use for anomaly detection include prob-
abilistic modeling and learning of normal trajectories, e.g.,
[28] applied Hidden Markov Model followed by K-Mean
clustering. A rule-based classifier implemented by [18] ap-
plies different rules at multiple granularities to classify each
data-point as normal or abnormal. In [17], a Bayesian net-
work is used to model the underlying distribution. Some ini-

tial deep learning-based approaches such as [24], and [35]
still rely on designing the input features in the training set.
Some years later, more sophisticated approaches such as
using a fully automated LSTM auto-encoder are proposed
[2, 16]. Approach by Bouritsas et al. [2] and Ji et al. are
applicable even for non-human anomalies, but they are not
performing well on large scale anomaly datasets such as
Shanghai-Tech [19]. These methods do not include any so-
cial interaction for anomaly detection using trajectories.

There exist some research using social interaction for tra-
jectory prediction. Some examples are Gupta et al. [12]
and Alahi et al. [1]. The basic architecture of both ap-
proaches includes a single LSTM for each trajectory fol-
lowed by a social pooling layer to model the interaction.
Social GAN [12] however encouraged diverse prediction by
including variety loss, which leads to the prediction of near
to real trajectories. In this paper, we propose a novel method
for prediction-based anomaly detection using trajectories.
Our architecture is mainly motivated by Social GANs [12],
where we classify the socially possible trajectories to nor-
mal or abnormal based on their prediction error. We then
show that this prediction-based anomaly detection system
utilizing temporal information in form of trajectories can
complement spatial-based anomaly detection sytems, re-
sulting in SoTA performance on two benchmark datasets.
To the best of our knowledge, none of the previous works
for anomaly detection on surveillance datasets explored the
inclusion of socially acceptable trajectories generated via
tracker as an additional cue.

3. Proposed System
The block diagram of the proposed system is shown in

Figure 1. The main idea of our proposed approach is to uti-
lize social interaction embedded in trajectories to develop
a temporal-based anomaly detection system and then use
that to complement SoTA spatial-based anomaly detection
systems. To achieve this, our proposed system contains
two branches, i.e., the spatial branch, which detects the
anomalies by mostly using image features, and the temporal
branch, which detects the anomalies using trajectories.
In this paper, we use two different SoTA methods for our
spatial branch, i.e., Liu et al. [19] and Park et al. [30], which
produce spatial anomaly detection scores. Section 3.2 con-
tains a detailed description of the spatial baseline methods
used in our approach. The input to the temporal branch are
trajectories, obtained by running tracker [25] on CUHK Av-
enue [21] and Shanghai-Tech [19]. The generated trajecto-
ries are provided as input to the prediction-based anomaly
detection network, which also incorporates the features in-
volved with social interaction among the different trajec-
tories. The proposed prediction-based anomaly detection
is based on Social GANs [12] and is described in section
3.1. Once we have anomaly score estimated from both spa-
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Figure 1. Proposed system for anomaly detection. It contains spatial and temporal branch, respectively. Weighted combination of spatial
and temporal anomaly detection is used to generate the final anomaly score.

tial and temporal branches, a weighted score-level fusion is
performed to generate the final scores.

3.1. Temporal Branch

We propose a method based on Social GAN [12] to de-
tect anomalous trajectories. The generator (GSGAN ) net-
work is an LSTM based encoder-decoder, where one LSTM
is used for predicting a single trajectory. The prediction of
human trajectories in a crowded scene also depends on so-
cial interaction among different human beings. Therefore,
GSGAN contains a social pooling module to encode this in-
teraction. The discriminator (DSGAN ) is a LSTM encoder
network that classifies the output trajectories as real or fake
and encourages the generator to predict socially possible
trajectories.

The input to the generator (GSGAN ) network is a fixed
number of past tracklets from the generated trajectories,
which in turn further generates a fixed number of future
tracklets. Attention-gated tracker [25] is used to generate
the trajectories on CUHK Avenue [21] and Shanghai-Tech
[19] datasets. The objective function used for predicting fu-
ture trajectory is the combination of average displacement
error (ADE), final displacement error (FDE), and variety
loss. ADE is computed as l2 distance between the predicted
and actual points in the future trajectory, FDE is the devia-
tion in the final position with respect to ground-truth (GT),
and variety loss is added to mitigate the redundancy in the
predicted trajectories. To transform the trajectory prediction
network for anomaly detection, i.e., detecting socially un-
acceptable trajectories, we compute the total error (TE) by
combining ADE and FDE for each tracklet. The tracklet is
finally classified as normal or anomalous based on the Total

Error (TE), which is also called here as temporal anomaly
detection score:

TE(t) = ADE(t) + FDE(t), (1)

Ssgan(t) =
TE(Tt, T̂t)−mint TE(Tt, T̂t)

maxt TE(Tt, T̂t)−mint TE(Tt, T̂t)
, (2)

where, T and T̂ are actual and predicted trajectory, re-
spectively, and Ssgan(t) is the normalized score obtained
from social GANs for each tracklet t. We later combine
the normalcy scores from temporal and spatial branches.
Therefore, we update the total error (Ssgan(t)) obtained
from social GAN (Equation 2) to obtain the normalcy score
(Stemporal), which is also called the temporal network out-
put in this work:

Stemporal(t) = (1− Ssgan(t)), (3)

3.2. Spatial Branch

To show that the proposed temporal-based anomaly de-
tection system using trajectories can improve the perfor-
mance of different spatial-based anomaly detection sys-
tems, we use two different networks in different experi-
ments in the spatial branch of our proposed system. These
are future frame prediction-based by Liu et al. [19] and
memory-based reconstruction/prediction by Park et al. [30].
The prediction-based by Liu et al. [19] proposed a GAN
based method, where generator network aims to generate
realistic future frames and discriminator module aims to
discriminate between real and generated future frames. Fi-
nally, the generated future frame is classified as abnormal or
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normal based on its quality. The generated normal frames
have better quality in comparison to the abnormal frames.
This network uses minimal temporal information in the
form of optical flow between consecutive frames and op-
timizes for intensity, gradient, and flow loss. The memory-
augmented anomaly detection by Park et al. [30] contains
an additional memory module which records prototypical
pattern of normal data. The memory module is included
with both prediction and reconstruction based anomaly de-
tection networks. Park et al. [30] uses convolutional auto-
encoders for both reconstruction and prediction networks.
It optimizes both prediction/reconstruction auto-encoders
by minimizing prediction/reconstruction, compactness, and
separateness loss. The compactness loss encourages the
query to the nearest item in the memory and the separate-
ness loss encourages the discriminative power of the mem-
ory items. Peak Signal to Noise Ratio (PSNR) by Mathieu
et al. [26], a commonly used method for image quality as-
sessment, is used for evaluating the predicted/reconstructed
frames in both cases:

PSNR(I, Î) = 10 log10
[maxÎ ]

2

1
N

∑N
i=0(Ii − Îi)2

, (4)

where, I is actual and Î is predicted/reconstructed frame.
Higher PSNR of the predicted frame increases the probabil-
ity of it being normal. Then the PSNR score calculated for
each frame in a video to generate the spatial anomaly detec-
tion score (5) [19]:

Sspatial(t) =
PSNR(It, Ît)−mint PSNR(It, Ît)

maxt PSNR(It, Ît)−mint PSNR(It, Ît)
,

(5)
where, Sspatial(t) is the normalized score for tth frame,

It and Ît are actual and predicted/reconstructed frame, re-
spectively, for tracklet t. .

3.3. Parameter Learning

We propose a parameter learning approach to fuse the
information from spatial branch and temporal branch at the
score level. Thus, we learn two parameters, one for each
score vector. The fusion is defined as follows:

STotal(t) = F(αSspatial(t) + βStemporal(t)), (6)

where α and β are the parameters that we learn to weigh
the contribution of spatial network output (Sspatial) and
temporal network output (Stemporal), respectively. F is the
activation function which is Sigmoid in our case. To form
the learning problem, we minimize the binary cross-entropy
loss function.

4. Experiments and Results
This section contains details of the evaluation metric,

datasets and implementation used in our experiments. The
later part of this section also contains quantitative and qual-
itative results documenting the performance of the intro-
duced temporal-based anomaly detection system using the
socially unacceptable trajectories, and its contribution to the
proposed system when used with spatial-based anomaly de-
tection systems.

4.1. Evaluation Metrics

The proposed system is evaluated using Receiver Op-
eration Characteristic (ROC) [6] obtained by changing the
normality threshold, i.e., fused scores obtained from spatial
and temporal network in our case. Area Under the Curve
(AUC) is a cumulative measure of accuracy for all possible
normality thresholds and used for the accuracy evaluation.
A higher value of AUC indicates a better system.

4.2. Datasets

We used two publicly available datasets namely CUHK
Avenue [21] and Shanghai-Tech [19] for the training of the
baseline models. CUHK Avenue [21] contains 16 training
and 21 testing videos with a total of 47 anomalous events.
The anomalous events in this dataset are loitering, running,
and throwing objects. Shanghai-Tech [19] contains 330
training and 107 test videos with 130 abnormal events. The
anomalous events are snatching, chasing, running, fighting,
cyclist and vehicles on pedestrian street.

To train the temporal anomaly detection network, trajec-
tory datasets are generated by providing training and test-
ing images from CUHK Avenue [21] and Shanghai-Tech
[19] to the attention-gated tracker of Madan et al. [25].
The tracking results contain the coordinates of the bounding
box along with the object (Identification) ID. The obtained
results are converted to a trajectory dataset by converting
bounding box coordinates to the center location. Each cen-
ter position along with the associated ID represents a single
tracklet. Object positions associated with the same ID are
joined together to form a single trajectory.

4.3. Training and Testing the Proposed System

The baseline architectures of [30, 19] are trained for 15
epochs each on Nvidia RTX 2080 Ti GPU on Shanghai-
Tech [19] dataset, which took ∼12hrs to complete. We use
pre-trained models for CUHK Avenue [21] dataset. Tempo-
ral network is trained for 200 epochs individually for each
dataset with a batch size of 64 on Nvidia RTX 2080 Ti GPU,
which took ∼2hrs to complete the training.

At the testing time, we obtain the score vectors from each
spatial and temporal branch of our proposed system, which
are provided as input to our paramater learning scheme. The
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Figure 2. Illustrating the anomalies detected by our strategy on avenue dataset. This includes mostly individual anomalies such as throwing
bag (left), throwing paper (middle) and running (right).

Figure 3. Illustrating the anomalies detected by our strategy on Shanghai-Tech [19] dataset, involving social interaction such as fighting
(left), chasing (middle), and snatching (right).

Method CUHK Avenue(%) Shanghai-Tech(%)
Hasan et al. [14] 80.0 60.9

Del et al. [5] 78.3 -
Luo et al. [22] 77.0 -

Hinami et al. [22] 80.9 -
Lu et al. [22] 80.9 -

Ionescu et al. [23] 80.6 -
Luo et al. [23] 81.7 68.0
Liu et al. [20] 84.4 -

Ours (Temporal Only: SGAN) 65.0 69.7
Spatial Only: Liu et. al. [19] 85.1 72.8

Ours (Spatial: Liu et. al., Temporal: SGAN) 86.8 74.6
Spatial Only: Park et. al. - Pred [30] 88.5 70.5

Ours (Spatial: Park et. al. - Pred., Temporal: SGAN) 88.6 73.8
Spatial Only: Park et. al. - Reconst [30] 82.8 69.8

Ours (Spatial: Park et. al. - Reconst., Temporal: SGAN) 86.9 73.2

Table 1. Comparing the frame-level AUC score (in %) of the proposed system with the SoTA approaches and their corresponding spatial
anomaly detection branch. Higher frame-level AUC indicate the better performance.

learned parameters are used to weigh the spatial and tempo-
ral anomaly scores to generate the final scores. We per-

formed micro-level evaluation, as done in [9, 30], where we
concatenate all the sequence and learned the parameters for
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Figure 4. An example of an anomaly sequence ”walking in wrong
direction and throwing bag”, from sequence 6 in CUHK Avenue
[19], is not detected by the baseline method but it is detected when
complemented with trajectory information using the proposed sys-
tem.

the entire dataset.

4.4. Qualitative results

Figure 2 and 3 illustrate visual results on CUHK Avenue
[21] and Shanghai-Tech [19] datasets. CUHK Avenue [21]
mostly contains individual anomalies, which includes lim-
ited social interaction, but our proposed combination still
improved the anomaly detection by considering individual
trajectories. On the other hand, anomalies in Shanghai-
Tech [19] involve small groups interaction such as snatch-
ing, fighting. Figure 3 depicts that the proposed combina-
tion detected anomalies like fighting, chasing, and snatch-
ing, all of which involve interaction between two people.
Thus, our method improves anomaly detection not only in
the case of social interaction, but also involving individual
trajectories.

As an illustration of a corrected case, Figure 4 shows an
anomaly corresponding to a person moving back and forth
to pick-up the bag. This anomaly remains undetected by the
baseline method, i.e., Liu et al. [19]. However, it is detected
by the proposed system. The reason is that continuous back
and forth motion is considered as an unacceptable social
trajectory.

4.5. Quantitative Results

As depicted in Table 1, the AUC score on CUHK Avenue
[21] and Shanghai-Tech [19] using only temporal branch
are 65.0% and 69.7%, respectively. It can be observed from
these results that trajectories alone are unable to generate
competitive results against SoTA methods. The trajectories
used in our experiments are constructed using center point,
which do not contain much information about the spatial
and appearance features of the different objects. Therefore,
anomaly detection by simply using these trajectories gener-
ate lower AUC scores compared to SoTA. However, when

fused with spatial information, as illustrated in Figure 1,
temporal information generated by socially acceptable tra-
jectories contributes in increasing the performance of SoTA
spatial-based anomaly detection systems by a large margin,
as shown in Table 1.

It can be observed from the results shown in Table 1 that
the proposed system outperforms listed SoTA approaches
including our baseline architecture by Liu et al. [19] on
CUHK Avenue [21] by 3.4% and on Shanghai-Tech [19]
by 1.8%. It outperforms the baseline architecture by Park et
al. [30] in both forms of 1) reconstruction-based: CUHK
Avenue [21] by 4.1% and Shanghai-Tech [19] by 3.3%
and 2) prediction-based: CUHK Avenue [21] by 0.1% and
Shanghai-Tech [19] by 3.4%. It can be observed from Ta-
ble 1 that the information from trajectories is compliment-
ing the baseline architectures irrespective of the underlying
network architecture in the spatial branch of our proposed
system. We didn’t compare our results against other SoTA
approaches, like [32, 15, 36] in this table as they use addi-
tional prior knowledge in form of object-detection, which
could be included in our system as future work.

Furthermore, the proposed approach does not optimize
the feature space with any additional supervision. Some ap-
proaches such as Geogescu et al. [9] and Feng et al. [7] use
additional supervision with pseudo labels to improve the la-
tent features, enhancing accuracy of anomaly detection. On
the other hand, our approach learns an accurate fusion of
temporal and spatial scores without modifying the underly-
ing feature space through additional supervision. Weakly
supervised approach by Geogescu et al. [9] has an AUC
of 92.3% on CUHK Avenue [21] and 82.7% on Shanghai-
Tech [19]. Weakly supervised approach of Feng et al. [7]
has an AUC of 94.3% on Shanghai-Tech [19]. Comparing
with weakly supervised approaches, we observed that our
approach has competitive results while having less supervi-
sion.

4.6. Cross-data Evaluation Results

We also verified that learning parameters on a source
dataset and testing them on a target dataset with simi-
lar anomalies also improves the overall score. We used
prediction-based anomaly detection by Liu et al. as the
baseline for this experiment. It can be observed from Table
2 that the AUC on Shanghai-Tech [19], i.e., 73.1% is better
than the baseline, i.e., 72.4% by 0.7% and CUHK Avenue
[21], i.e., 86.9% is better than baseline, i.e., 85.1% by 1.8%.

Baseline Proposed
Dataset AUC(%) Train → Test AUC(%)

CUHK Avenue 85.1 Shanghai-Tech → CUHK Avenue 86.9
Shanghai-Tech 72.4 CUHK Avenue → ShanghaiTech 73.1

Table 2. Cross-data experiments depicting that the learned param-
eters on one dataset improves the scores on another.
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5. Conclusion

In this paper we hypothesize that temporal information
obtained from socially unacceptable trajectories can be used
for developing a temporal-based anomaly detection sys-
tem. Then, we further hypothesize that such a temporal-
based anomaly detection system can contribute to improv-
ing the performance of SoTA spatial-based anomaly detec-
tion systems. To verify these, we propose a system with
two branches (one for the spatial and one for the temporal
domain) that fuses the results of the two domains at score
level. We verify that socially unacceptable trajectories pro-
vide discriminative information to identify anomalies in real
world surveillance datasets, for two different spatial-based
systems employed in the spatial branch of our system. We
plan as future work to evaluate different temporal and spa-
tial anomaly detection models in both branches of the pro-
posed scheme and analyze for their complementarity. We
also plan to incorporate the prior knowledge from object
detection or skeleton for anomaly detection.
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