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Abstract

Vision transformers have attracted much attention from
computer vision researchers as they are not restricted to
the spatial inductive bias of ConvNets. However, al-
though Transformer-based backbones have achieved much
progress on ImageNet classification, it is still unclear
whether the learned representations are as transferable as
or even more transferable than ConvNets’ features. To ad-
dress this point, we systematically investigate the transfer
learning ability of ConvNets and vision transformers in 15
single-task and multi-task performance evaluations. We
observe consistent advantages of Transformer-based back-
bones on 13 downstream tasks (out of 15), including but
not limited to fine-grained classification, scene recognition
(classification, segmentation and depth estimation), open-
domain classification, face recognition, etc. More specif-
ically, we find that two ViT models heavily rely on whole
network fine-tuning to achieve performance gains while
Swin Transformer does not have such a requirement. More-
over, vision transformers behave more robustly in multi-task
learning, i.e., bringing more improvements when managing
mutually beneficial tasks and reducing performance losses
when tackling irrelevant tasks. We hope our discoveries can
facilitate the exploration and exploitation of vision trans-
formers in the future.

1. Introduction

Ever since AlexNet [9] was introduced for ImageNet
classification [3], convolutional neural networks (i.e., Con-
vNets) have become the de-facto choice in computer vi-
sion related applications. Over the past decade, researchers
have made great efforts to improve the performance of Con-
vNets, including but not restricted to increasing the network
depth with small convolutional kernels [19] and residual
connections [6], embedding aggregated multi-branch archi-
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Figure 1: Overview of our investigation procedure. We ask pre-
trained ConvNet and Transformer models to have close top-1 er-
ror rates on ImageNet classification. The pre-trained weights are
then transferred to 15 downstream tasks (i.e., 10 single-task and 5
multi-task duties), to evaluate the transferability of learned repre-
sentations.

tectures [20, 26] and automatically searching for neural ar-
chitectures [28]. Nonetheless, the fundamental constraint of
ConvNets, i.e., the inductive bias assumption towards local
spatial structures, still remains, making ConvNets naturally
disadvantageous in modeling long-range dependencies that
are necessary for conducting logical reasoning.

On the other hand, inspired by the attention mechanism
[1], Transformers [22] remove convolutional and recurrent
operations and solely rely on self-attention to model global
dependencies between input and output. Meanwhile, com-
pared to atypical recurrent models, Transformers greatly
improve the training efficiency by allowing for large-scale
parallelization. Based on above characteristics, Transform-
ers have been the default model choice in various applica-
tions of natural language processing (NLP). In light of the
successes that Transformers have achieved, many efforts
have been made to extend Transformers to the computer
vision field (i.e., building Vision Transformer), where pre-
training a general-purpose Transformer-based visual back-
bone is one of the most promising directions and thus at-
tracts much attention of the community. Vision Trans-
former (ViT) [4] showed that Transformers can be ex-
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tended to images to produce competitive ImageNet clas-
sification results in comparison to ResNet series [6]. Re-
cently, Liu et al. [11] proposed a hierarchical architecture,
Swin Transformer, whose representation is computed with
shifted windows. Swin Transformer reduces the quadratic
computational complexity (with respect to image size) to
linear, which promises higher training and inference effi-
ciency. However, although Transformers have achieved re-
sults comparable to those of ConvNets on image classifica-
tion, it is still unclear whether Transformers are able to pro-
vide equally transferable representations as ConvNets under
the setting of transfer learning.

In this paper, we aim to investigate the transferability
of the feature representations of both ConvNets and Trans-
formers on a variety of downstream datasets following a
schema of pre-training first, fine-tuning next. Note that the
scope of fine-tuning could be either the whole network or
the last fully-connected layer (refer to linear evaluation pro-
tocol in Sec. 3.6). Figure 1 provides an overview of our
investigation procedure. Specifically, we first pick two pre-
trained ConvNet and Transformer based models, respec-
tively, and require them to have similar top-1 error rates
on ImageNet classification. The idea behind is that the
accuracy of ImageNet-based pre-training has been shown
to have a strong correlation with the accuracy of down-
stream fine-tuning [8]. Close top-1 errors indicate that the
two pre-trained models should presumably have compara-
ble transfer learning performance. Otherwise, if two pre-
trained models have quite different performance on Im-
ageNet, the comparison of their fine-tuning performance
would be unfair and meaningless as they ought to have
some performance differences in transfer learning. Next,
we further optimize the pre-trained weights in the fine-
tuning stage and evaluate the improved representations on
15 downstream tasks. Different from [27, 17, 17] that eval-
uate ConvNet’s features on single tasks, we conduct both
single-task and multi-task learning for more extensive eval-
uation. The chosen downstream tasks cover a variety of
recognition problems, including fine-grained classification
(Flower102 and CUB200), indoor scene classification (In-
door67), scene segmentation and depth estimation (NYU
Depth V2), in-domain (Caltech101) and open-domain clas-
sification (WikiArt and COVID-19).

There are three aspects in our findings. First,
transformer-based backbones are more advantageous than
ConvNets when transfer learning is performed on down-
stream data that have large domain gaps with ImageNet,
including but not restricted to fine-grained classification,
scene recognition (i.e., classification, segmentation and
depth estimation), open-domain classification and face
recognition. We believe the above observation provides
a strong evidence that Transformer-based backbones pro-
duce more generalizable and transferable representations

Type Model IN (acc.) ↑ Params. Ave. rank ↓

ConvNet R-101×3 84.4 (4) 388M 2.5R-152×4 85.4 (1) 937M

Transformer
ViT-B/16 84.0 (5) 86M

3.0ViT-L/16 85.2 (2) 307M
Swin-B 85.2 (2) 88M

Table 1: Involved pre-trained models. /16 denotes the 16×16 in-
put patch size. All models are pre-trained on ImageNet-21k and
tested on ImageNet-1k. IN is an abbreviation for ImageNet. We
display the top-1 accuracy and corresponding performance rank
(in a descending order) on Image-1k. For two groups of models
(i.e., ConvNet-based and Transformer-based), we present their av-
erage ranks, respectively. ↑ denotes the higher the better while ↓
stands for the opposite.

than ConvNet-based models. Second, we observe that the
performance advantages (over ConvNets) of two ViT back-
bones are largely due to whole network fine-tuning, whereas
Swin-B does not have such a requirement. Last but not the
least, it appears that vision transformers are more robust
in multi-task evaluation. More specifically, Transformer-
based backbones bring larger improvements when multiple
tasks are complementary, while producing smaller perfor-
mance drops when tasks cannot benefit each other. We be-
lieve these advantages can be attributed to two strengths of
vision transformers. First of all, they are naturally not con-
fined to the local inductive bias of ConvNets and thus have
the ability to capture long-range dependencies. Second,
Transformer-based backbones often have much fewer net-
work parameters compared to ConvNets with similar pre-
training performance on ImageNet, which would reduce the
risk of overfitting when they are transferred to small-scale
downstream datasets. When comparing Swin Transformer
with two ViT models, we believe the pyramidal feature hier-
archy in Swin-B produces more transferable visual features
during the pre-training stage and reduces its dependency on
whole network fine-tuning.

2. Pre-trained models to be evaluated

There are 5 different pre-trained models that serve as
backbones in our experiments, as displayed in Table 1. For
ConvNet-based backbones, we choose to use deep residual
networks [6] that are among the most effective deep neu-
ral networks with hand-crafted architectures. R-101×3 and
R-152×4 are 3× and 4× wider ResNet-101 and ResNet-
152, respectively, which are pre-trained with carefully se-
lected strategies [7]. For Transformer-based backbones, we
pick ViT-B/16, ViT-L/16 and Swin-B, which are all rep-
resentative vision transformer backbones. ViT-B/16 and
ViT-L/16 comprises alternating layers of multi-head self-
attention (MSA) and multi-layer perceptron (MLP) blocks:
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Model Flower102 (acc.) ↑ CUB200 (acc.) ↑ Ave. rank ↓
R-101×3 98.4 (5) 87.5 (5) 4.3R-152×4 98.9 (4) 88.6 (3)
ViT-B/16 99.2 (3) 88.3 (4)

2.2ViT-L/16 99.4 (2) 88.9 (2)
Swin-B 99.8 (1) 89.9 (1)

Table 2: Results on fine-grained classification. ↑ denotes the
higher the better while ↓ stands for the opposite.

z′l+1 = MSA(LN(zl)) + zl,

zl+1 = MLP(LN(z′l+1)) + z′l+1,
(1)

where l denotes the layer index and zl stands for the in-
put of layer. Swin Transformer improves ViT by replacing
layers of MSA and MLP with window-based and shifted-
window-based multi-head self-attention (i.e., W-MSA and
SW-MSA) with two MLP blocks, which can dramatically
reduce the computational complexity:

z̃′l+1 = W-MSA(LN(zl)) + zl,

zl+1 = MLP(LN(z̃′l+1)) + z̃′l+1,

z̃′l+2 = SW-MSA(LN(zl+1)) + zl+1,

zl+2 = MLP(LN(z̃′l+2)) + z̃′l+2.

(2)

From Table 1, we can see that the average performance
rank (on ImageNet-1k) of ConvNet-based models is higher
than that of Transformer-based. According to the compre-
hensive investigation in [8], ConvNet-based models would
probably achieve better (at least comparable) transfer learn-
ing results than Transformer-based networks.

3. Single-task evaluation
We include 10 tasks in single-task evaluation, which con-

sists of a range of topics, such as fine-grained classification,
scene recognition, in-domain and open-domain classifica-
tion, etc. The goal is to extensively evaluate the transferring
ability of representations of both ConvNet and Transformer.
In the following, we go through different tasks one-by-one.
For each experiment, we repeat it for 3 times and report the
average results.

3.1. Fine-grained classification

Flower102 [17]. This dataset consists of 102 flower cate-
gories that are commonly occurring in UK. Each category
contains 40 to 258 images. There are two main challenges
of Flower102: i) large similarity between classes and ii)
large variation within classes.

CUB200 [23]. 200 bird species and 11,788 images are in-
cluded in this dataset. The names of species were obtained
using an online bird species guide and organized by scien-
tific classification (order, family, genus, species). Flicker

Image Search engine is used to acquire bird pictures, which
are then filtered by human annotators. There are two ver-
sions of CUB200 [24, 23] and we use the latest version [23].

Implementation details. Here we present training and test-
ing strategies of fine-grained classification. Other tasks in
this paper may share similar hyper-parameters, where we
will clarify the differences of implementation. We con-
ducted all experiments using PyTorch [14].

• Data split: For Flower102, we randomly select 80%
images as the training set. The rest 20% data are evenly
divided into validation and test sets. For CUB200, we
directly use the official test set. 10% images are ran-
domly selected from the official training set to build
the validation set, while the rest training images form
the training set.

• Network architecture: We append a classification head
after each backbone, before which we add a dropout
layer (p=0.2).

• Optimizer: Adam is used as the default optimizer,
where β1 is set to 0.9 and β2 is set to 0.999. We set
weight decay to 1e-6.

• Learning rate: The initial learning rate is 1e-4 and is
decayed by a factor of 2 each time the validation loss
stops decreasing after 3 epochs.

• Augmentation strategies: We use random crop, ran-
dom rotation (-30 degrees to 30 degrees) and random
horizontal flip. The input image size is 224×224.

• Batch size and training time: The training batch size is
32. We stop the training procedure when the validation
loss stops decreasing for up to 10 epochs.

• Loss function: We directly use the cross entropy loss.

• Other techniques: We use the label smoothing strat-
egy, where the smoothing rate is set to 0.1. During
the fine-tuning stage, we first freeze the whole back-
bone and conduct warm-up for 200 training iterations
using a small learning rate (1e-6). Then, we fine-tune
the whole network using the initial learning rate (i.e.,
1e-4).

Results. We present the experimental results in Table
2. Somewhat surprisingly, we discover that Transformer-
based backbones hold observable advantages over Con-
vNets, where the average rank of all 3 vision transform-
ers is much higher than that of 2 ConvNet-based back-
bones. In contrast with the higher average rank that Con-
vNets have achieved on ImageNet classification (refer to Ta-
ble 1), these outstanding results on Flower102 and CUB200
reflect the great discriminative and transferring abilities of
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Model Indoor67 (acc.) ↑ NYU segmentation (mIoU) ↑ NYU depth estimation (RMSE) ↓ Ave. rank ↓
R-101×3 84.3 (5) 52.2 (5) 0.387 (5) 4.2R-152×4 85.7 (2) 53.1 (4) 0.382 (4)
ViT-B/16 85.1 (4) 53.2 (3) 0.368 (3)

2.2ViT-L/16 85.5 (3) 53.4 (2) 0.360 (2)
Swin-B 87.6 (1) 54.1 (1) 0.358 (1)

Table 3: Results on scene recognition. mIoU and RMSE (Root Mean Square Error) are used as the evaluation metrics for segmentation
and depth estimation tasks, respectively.

transformer-based representations in capturing small differ-
ences. More specifically, Swin-B and ViT-L/16 are two
best performing backbones on both datasets. ViT-B/16 that
achieves the lowest top-1 accuracy on ImageNet-1k pro-
duces comparable results with R-152×4 that maintains the
highest top-1 accuracy in Table 1. These phenomena again
verify the advantages of Transformer when dealing with
fine-grained classification problems.

3.2. Scene recognition

Indoor67 [15]. This database contains 67 indoor scene
categories, and a total of 15,620 images. The number of
images varies across categories, but each category includes
at least 100 pictures. All images are collected using
online image search engines and some of them come from
LabelMe dataset. A minimum resolution of 200 pixels in
the smallest axis is guaranteed.

NYU Depth V2 [18]. The dataset comprises rich annota-
tions of both semantic segmentation and depth estimation
for 35,064 distinct objects that are collected from 3 differ-
ent US cities using Kinect. All 1,449 images are divided
into 40 scene classes and a dense per-pixel labeling is
conducted.

Implementation details. Most details of making experi-
ments on Indoor67 are similar to those of Flower102 and
CUB200. In the following, we mainly introduce how to
implement indoor semantic segmentation and depth estima-
tion.

• Data split: For Indoor67, we use the official test list
while randomly split 10% data from the training list
to build the validation set. The rest 90% training
data form the training set. For NYU Depth V2 (i.e.,
both segmentation and depth estimation tasks), we ran-
domly select 80% images as the training set. The vali-
dation and test sets include 10% data, respectively.

• Network architecture: For indoor scene segmentation,
we directly make use of the segmentation head of
UPerNet [25] and append it after ConvNet or Trans-
former backbones. As for depth estimation, we modify
the segmentation head to predict depth values.

• Optimizer: We use AdamW [12], where β1 is set to
0.9, β2 is set to 0.999 and weight decay is set to 1e-6.

• Learning rate: For both tasks, the initial learning rate is
6e-5 and we employ a polynomial learning rate decay
strategy where the power value is set to 0.9.

• Augmentation strategies: For semantic segmentation,
we use random crop and random horizontal flip. We
also apply a variety of photometric distortion, includ-
ing but not limited to random brightness, random con-
trast, random saturation, etc. The input image size is
512×512. For depth estimation, only random crop and
random horizontal flip are applied, and the input size
384×384.

• Batch size and training time: The training batch size
is 8. The training procedure for each model lasts for
20,000 iterations.

• Loss function: For semantic segmentation, we apply
the cross entropy loss (weight=1) and deep supervision
loss (weight=0.4). For depth estimation, we employ
the scale-and shift-invariant trimmed loss (weight=1)
that operates on an inverse depth representation [16]
and gradient-matching loss [10] (weight=1).

• Other techniques: We conduct warm-up for 1,500
training iterations using a small learning rate (1e-6).
Then, we fine-tune the whole network using the initial
learning rate (i.e., 6e-5).

Results. Table 3 displays the experimental results of 3 tasks
on scene recognition. Again, Transformer-based backbones
prominently outperform ConvNet-based models in the aver-
age rank. Moreover, all 3 Transformer-based backbones oc-
cupy the top 3 positions on both indoor scene segmentation
and depth estimation tasks. Considering recognizing scenes
is a quite challenging task that requires strong reasoning
ability to understand the relationship between objects and
scenes, the obvious improvements brought by vision trans-
formers demonstrate their advantages of mastering com-
plex situations. Besides, we can also observe that Swin-
B achieve the best performance on all 3 scene recognition
tasks, suggesting the potential of producing high-quality
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Model WikiArt (acc.) ↑ COVID-19 (acc.) ↑ Ave. rank ↓
R-101×3 66.2 (5) 80.6 (5) 4.5R-152×4 66.4 (4) 81.2 (4)
ViT-B/16 67.4 (3) 81.7 (3)

2.0ViT-L/16 68.4 (2) 82.1 (2)
Swin-B 71.0 (1) 82.6 (1)

Table 4: Results on open-domain classification.

transferable representations using efficient Transformer-
based backbones.

3.3. Open-domain classification

WikiArt [21]. This database has a collection of more
than 80,000 fine-art paintings from more than 1,000 artists,
ranging from the 15-th century to modern times. All images
are collected from https://www.wikiart.org/ and
can be divided into 27 different styles.

COVID-19 Image Data Collection [2]. More than 700
pneumonia cases with chest X-rays are involved, which
were built to improve the identification of COVID-19.
These X-rays come from over 400 people from 26 coun-
tries. In this dataset, we mainly focus on distinguishing
COVID-19 from other disease/normal images.

Implementation details. We implement classification net-
works on WikiArt and COVID-19 Image Data Collection
using the same training strategies applied to Flower102 and
CUB200. Specifically, in the task of COVID-19 classifica-
tion, we build the training set using images from Australia
and America. X-rays from Africa form the validation set
while the remaining images are included in the test set.

Results. The results on open-domain classification are
shown in Table 4, from which we can find similar phe-
nomena that have been observed on fine-grained classifica-
tion and scene recognition. Again and again, Transformer-
based backbones surpass ConvNet-based models by large
margins. More importantly, we can see that all 3 vision
transformers occupy the top 3 places on both WikiArt and
COVID-19 as what they have done on tasks of indoor scene
segmentation and depth estimation. Considering the images
of WikiArt and COVID-19 are not included in ImageNet,
the improvements offered by Transformer-based represen-
tations provide strong evidences for their great transfer-
ability. In addition, we can see that Swin-B again be-
comes the winner on open-domain classification, verifying
its representations are more transferable and generalizable
than those of ViT-L/16 (with the same top-1 accuracy on
ImageNet-1k classification).

3.4. In-domain classification

Caltech101 [5]. This dataset consists of 9,146 images,
which are acquired by searching names of 101 categories

Model Caltech101 (acc.) ↑ Ave. rank

R-101×3 96.8 (2) 2.5R-152×4 96.7 (3)
ViT-B/16 96.7 (3)

3.0ViT-L/16 96.5 (5)
Swin-B 97.7 (1)

Table 5: Results on in-domain classification.

Model FG-NET (MAE) ↓ Ave. rank ↓
R-101×3 3.6 (3) 4.0R-152×4 4.7 (5)
ViT-B/16 3.5 (2)

2.3ViT-L/16 4.5 (4)
Swin-B 3.0 (1)

Table 6: Results on face recognition (i.e., facial age estimation).
MAE is defined as the average of the absolute errors between the
estimated ages and the ground truth ages.

Model CUB200 ↑ Indoor67 ↑ WikiArt ↑ Ave. rank ↓
R-101×3 84.7 (2) 83.7 (4) 53.3 (3) 3.0R-152×4 75.2 (5) 85.6 (2) 53.9 (2)
ViT-B/16 79.5 (4) 81.8 (5) 47.3 (4)

3.0ViT-L/16 80.1 (3) 84.1 (3) 46.4 (5)
Swin-B 87.1 (1) 86.3 (1) 54.2 (1)

Table 7: Linear classification protocol. The evaluation metric is
mean accuracy.

Model Oxford5k (mAP) ↑ Ave. rank ↓
R-101×3 60.7 (1) 2.0R-152×4 59.6 (3)
ViT-B/16 58.2 (4)

3.7ViT-L/16 57.7 (5)
Swin-B 59.9 (2)

Table 8: Results on unsupervised image retrieval. mAP stands for
mean average precision.

using Google Image Search engine and filtering out
irrelevant search results. Each category contains 40 to 800
pictures and most of them have about 50 images. The size
of each image is roughly 300 x 200 pixels.

Implementation details. We simply employ the same
training strategies on Flower102 and CUB200.

Results. It is not surprising to find ConvNet-based back-
bones achieve a higher average rank on in-domain classi-
fication as some classes and images of Caltech101 overlap
with those in ImageNet. If we compare the average ranks in
Table 5 with those in Table 1, it is obvious that the they are
similar and quite consistent. In other words, we can draw a
conclusion that better ImageNet performance often lead to
better results on Caltech101 as the backbones have the abil-
ity to memorize seen images and recognize similar classes.

3.5. Face recognition

FG-NET1. FG-NET consists of 1,002 color or gray facial
images of more than 50 individuals with large variations in

1https://yanweifu.github.io/FG_NET_data/
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Model NYU segmentation (mIoU) NYU depth estimation (RMSE) Ave. rank ↓Perf. ↑ Ave. Imp. ↑ / Drop ↓ Perf. ↓ Ave. Imp. ↑ / Drop ↓
R-101×3 52.4 (5) 0.3 0.381 (5) 0.005 4.5R-152×4 53.5 (4) 0.379 (4)
ViT-B/16 53.9 (3)

0.4
0.359 (3)

0.007 2.0ViT-L/16 53.8 (2) 0.352 (2)
Swin-B 54.5 (1) 0.355 (1)

Table 9: Multi-task learning on scene segmentation and depth estimation. Perf. and Imp. are abbreviations for performance and
improvement, respectively. The green/red color denotes the relative improvement/drop in performance using multi-task learning over using
single datasets.

Model Indoor67 (acc.) Caltech101 (acc.) Ave. rank ↓Perf. ↑ Ave. Imp. ↑ / Drop ↓ Perf. ↑ Ave. Imp. ↑ / Drop ↓
R-101×3 82.4 (5) 2.2 95.9 (5) 0.8 4.3R-152×4 83.2 (3) 96.0 (4)
ViT-B/16 83.7 (2)

1.8
96.9 (3)

0.1 3.3ViT-L/16 82.9 (4) 97.0 (2)
Swin-B 86.3 (1) 97.4 (1)

Table 10: Multi-task classification on scenes and generic objects. The green/red color denotes the relative improvement/drop in perfor-
mance using multi-task learning over using single datasets.

pose, expression and lighting. For each subject, there are
more than ten images ranging from age 0 to age 69.

Implementation details. We discuss some specific details
about the experiment on FG-Net as follows. For other de-
tails, we simply follow the operations on Flower102 and
CUB200.

• Data split: We randomly choose 5 individuals and 3
individuals to build the test and validation sets, respec-
tively. The remaining images are used for training.

• Augmentation strategies: Common augmentation
methods like random crop and random horizontal flip
are adopted. Besides, we also employ random affine,
where the rotation degree is randomly chosen between
-10 degrees and 10 degrees and a shear operation (be-
tween -12 degrees and 12 degrees) parallel to the x-
axis is also applied. The input size is 224×224.

• Loss function: We use two loss functions: mean
variance loss [13] (weight=1) and cross entropy loss
(weight=1).

Results. Since ImageNet pre-training does not contain
many face images, the performance on face recognition can
somewhat reflect the transferring and generalization abil-
ities of representations (like the problem of open-domain
classification). As shown in Table 6, vision transformers
again achieve a higher average rank than ConvNet-based
backbones, demonstrating Transformers are more capable
of tackling open-domain problems that are more practical
and applicable for real-world applications. Another inter-
esting phenomenon is that bigger models like R-152×4 and
ViT-L/16 are outperformed by R-101×3 and ViT-B/16, re-
spectively, while Swin-B still takes the first place. Such ob-
servations imply that efficient models (with fewer param-

eters) are more suitable for face recognition tasks as they
reduce the risking of overfitting.

3.6. Linear evaluation protocol

In this section, we first perform linear classification
using ConvNet- and Transformer-based pre-trained feature
representations directly by freezing the backbone and
training a supervised linear classification head (i.e., a
fully-connected layer followed by softmax) on CUB200,
Indoor67 and WikiArt, respectively. In addition, we also
conduct unsupervised image retrieval using pre-trained
feature representations from each backbone directly.

Implementation details. In linear classification, we
train the classifier on the global average pooling features for
ConvNet-based backbones and Swin-B. All training details
are similar to those of fine-tuning. In unsupervised image
retrieval, we first resize each input image to 256×256, after
which we apply center crop to generate a central patch
whose size is 224×224. Next, we forward each central
patch to the backbone network and apply L2 normalization
to its extracted feature representation. The evaluation
metric is mean average precision (mAP).

Results. Table 7 reports the results of linear classification.
Somewhat surprisingly, ConvNet-based backbones achieve
a comparable average rank with that of vision transform-
ers. More specifically, it seems that ViT-B/16 and ViT-L/16
lack the ability to provide as transferable representations as
they did in fine-tuning. Nonetheless, Swin-B still achieves
first places on all 3 datasets, again verifying the effective-
ness of feature pyramids. In contrast to the fine-tuning im-
provements of vision transformers on 3 datasets (presented
in Tables 2, 3 and 4), experimental results in Table 7 imply
that Transformer-based backbones are more advantageous
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Model Caltech101 (acc.) WikiArt (acc.) Ave. rank ↓
Perf. ↑ Ave. Imp. ↑ / Drop ↓ Perf. ↑ Ave. Imp. ↑ / Drop ↓

R-101×3 90.6 (4) 6.7 66.1 (5) 0.1 4.5R-152×4 89.6 (5) 66.3 (4)
ViT-B/16 95.6 (2)

2.1
67.6 (3)

0.1 2.0ViT-L/16 92.9 (3) 67.8 (2)
Swin-B 96.1 (1) 71.6 (1)

Table 11: Multi-task classification on art styles and generic objects. Color green/red denotes the relative improvement/drop over single-
task training.

Model NYU segmentation (mIoU) Indoor67 (acc.) Ave. rank ↓
Perf. ↑ Ave. Imp. ↑ / Drop ↓ Perf. ↑ Ave. Imp. ↑ / Drop ↓

R-101×3 52.0 (5) 0.3 82.5 (5) 2.1 4.5R-152×4 52.8 (4) 83.4 (4)
ViT-B/16 53.2 (3)

0.1
83.7 (3)

1.3 2.0ViT-L/16 53.5 (2) 84.2 (2)
Swin-B 53.8 (1) 86.5 (1)

Table 12: Multi-task learning on scene segmentation and classification. Color green/red denotes the relative improvement/drop over
single-task training.

in fine-tuning than ConvNet-based models. From Table 8,
we can see that ConvNet-based backbones have more ad-
vantages on the task of unsupervised image retrieval. The
underlying reason might be that images in Oxford5 are very
similar to those from ImageNet where R-101×3 and R-
152×4 produce better classification performance. On the
other hand, we notice that Swin-B exhibits much better re-
trieval results than ViT-B/16 and ViT-L/16. Since Swin-B
employs a pyramidal hierarchy scheme to learn visual rep-
resentations as ConvNets, we think it could be beneficial to
learn features for image retrieval in a hierarchical manner
using vision transformers.

4. Multi-task evaluation

In this section, we evaluate ConvNet- and Transformer-
based backbones on 6 multi-task learning problems. Apart
from exact experimental results and corresponding perfor-
mance ranks, we also present relative performance improve-
ment/drop over single-task learning. Note that we do not
strictly require that the individual tasks in each multi-task
problem are beneficial to each other (i.e., providing im-
provements over single tasks). Instead, our goal is to inves-
tigate which type of models would better handle the prob-
lem of multi-task learning, which is quite necessary and ap-
plicable in real-world applications. Similar to single-task
evaluation, we repeat each experiment for 3 times and re-
port the average results.

4.1. Scene segmentation and depth estimation

In this setting, each image is associated with segmen-
tation labels and depth values, both of which are acquired
from NYU Depth V2 dataset.

Implementation details. We include two heads in UPer-
Net, where the original segmentation head is used for scene

segmentation and depth prediction head is responsible for
depth estimation. For loss functions, we sum up those used
in single-task training with equal weights (weight=1). We
resize each image to 384×384 and the training batch size
is 8. For other details, we directly follow those used in
single-task learning.

Results. From Table 9, we can draw a conclusion that scene
segmentation and depth estimation are beneficial to each
other because the multi-task learning leads to better perfor-
mance on both tasks over single-task learning. In compar-
ison to ConvNet-based models, vision transformers utilize
complementary information hidden in two tasks more effec-
tively, which can be verified by the larger improvements on
both tasks (i.e., 0.4 vs. 0.3 on segmentation and 0.007 vs.
0.005 on depth estimation). Not surprisingly, Transformer-
based backbones again hold a higher average performance
rank than ConvNet-based models.

4.2. Scene and in-domain classification

We perform multi-task classification on a combination
of scene and in-domain classification datasets, where each
image comes from either Indoor67 or Caltech101, as shown
in Table 10.

Implementation details. Images from Indoor67 and
Caltech101 are randomly shuffled to build a mixed dataset.
During the training stage, we append two classification
heads to the backbone, each with a dropout layer (p=0.2).
To distinguish images from Indoor67 and those from
Caltech101, we add a pre-classification head whose output
size is 1. We apply cross entropy loss to train both clas-
sification and pre-classification heads. For inference, we
take two steps to make predictions. For each test input, we
first decide whether it belongs to Indoor67 or Caltech101
according to the output of the pre-classification head (after
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Model NYU segmentation (mIoU) WikiArt (acc.) Ave. rank ↓
Perf. ↑ Ave. Imp. ↑ / Drop ↓ Perf. ↑ Ave. Imp. ↑ / Drop ↓

R-101×3 50.9 (3) 3.3 65.7 (5) 0.4 4.3R-152×4 47.8 (5) 66.1 (4)
ViT-B/16 51.7 (2)

2.3
67.1 (3)

0.5 2.2ViT-L/16 49.2 (4) 67.3 (2)
Swin-B 52.8 (1) 70.8 (1)

Table 13: Multi-task learning on scene segmentation and open-domain classification. Colors grey, green and red denote the performance
ranks, relative performance improvement and drop, respectively.

the sigmoid function). Then, we compute mean accuracy
on each dataset, respectively. For other training and
inference details, we follow the operations on Flower102
and CUB200.

Results. From Table 10, we can see that Transformer-
based backbones still maintain observable advantages (i.e.,
higher performance rank) over ConvNets in the problem
of scene and in-domain classification. Specifically, Swin-
B again takes the first places on both Indoor67 and Cal-
tech101, demonstrating its capability to deal with scene and
in-domain classification, simultaneously. It is not surpris-
ing to find that the results on either dataset are slightly
lower than those trained on each dataset solely, showing that
Indoor67 and Caltech101 are not beneficial to each other.
Besides, we find that Transformer-based backbones suffer
from smaller performance drops on Indoor67 and perform
on-par with single-task classification on Caltech101 using
multi-task learning. In comparison, ConvNet-based models
suffer from larger performance drops on both datasets.

4.3. Open-domain and in-domain classification

In this part, we replace the scene dataset (i.e., Indoor67)
with WikiArt to investigate multi-task learning on a
combination of open-domain and in-domain classification
problems. Experimental results are presented in Table 11.

Implementation details. We directly refer to the details on
scene and in-domain classification (refer to Sec. 4.2).

Results. From Table 11, we can see that Transformer-
based backbones outperform ConvNet-based models by
large margins in multi-task learning for both art style
and generic object recognition. It is understandable that
conducting multi-task training using both Caltech101 and
WikiArt does not boost the performance over single-task
training as the involved images come from two dramatically
different domains and thus require different representations
towards the goal of recognition. Nonetheless, Transformer-
based backbones can still greatly reduce the performance
drop by nearly 5 percents on Caltech101, compared to Con-
vNets, again verifying the ability of vision transformers in
dealing with two non-related tasks.

4.4. Scene segmentation with different classification
problems

We investigate the possibility of incorporating scene
segmentation into scene classification and open-domain
classification, respectively. Experimental results are given
in Tables 12 and 13.

Implementation details. For network architecture, we use
UPerNet to carry out segmentation. To perform classifica-
tion tasks at the same time, we replace the fully-connected
layers for ImageNet pre-training with classification heads
for different classification tasks. Specifically, for ConvNet-
based backbones and Swin-B, we add classification heads
on global average pooling features in their last layers
(i.e., right before the upsampling layer in the bottleneck
of UPerNet). The initial learning rate is 1e-4, and we
follow the operations in single-task scene segmentation to
decrease learning rate and conduct warm-up. The number
of training iterations is 20,000. The input size is 384×384.
We employ random crop and random horizontal flip as
default augmentation strategies.

Results. It is observable that Transformer-based backbones
maintain consistent and significant advantages (i.e., higher
average performance ranks) over ConvNets in all combi-
nations. Besides, we can still find that it is hard to con-
duct multi-task learning on top of segmentation and dif-
ferent classification problems even when the incorporated
classification problem is closely related to scenes (i.e., In-
door67). Nonetheless, vision transformers are more resis-
tant to tasks that are hard to combine than ConvNets, which
implies that Transformer may be a better choice than Con-
vNet when dealing with unknown multi-task problems.

5. Conclusion

We found that Transformer-based backbones provide
more transferable representations than ConvNets for fine-
tuning, especially when the downstream tasks come from
domains very different from ImageNet, which is used for
pre-training. Meanwhile, vision transformers are more ro-
bust in multi-task learning, where they achieve larger im-
provements and suffer from smaller performance losses.
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