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Abstract

Egocentric indoor localization is an important issue for
many in-home smart technologies. Room layouts have been
used to characterize indoor scene images by a few typical
space configurations defined by boundary lines and junc-
tions, which are mostly detectable or inferable by deep
learning methods. In this paper, we study camera pose esti-
mation for egocentric indoor localization from room layouts
that is cast as a PnL (Perspective-n-Line) problem. Specifi-
cally, image outer corners (IOCs), which are the intersect-
ing points between image borders and room layout bound-
aries, are introduced to improve PnL optimization by in-
volving additional auxiliary lines in an image. This leads
to a new PnL-IOC algorithm where 3D correspondence es-
timation of IOCs are jointly solved with camera pose opti-
mization in the iterative Gauss-Newton algorithm. Exper-
iment results on both simulated and real images show the
advantages of PnL-IOC on the accuracy and robustness of
camera pose estimation over the existing PnL methods.

1. Introduction
With the recent advancement of wearable technologies,

egocentric or first-person vision has become an active topic
that has led to many useful tools [10, 28]. Room-level in-
door localization is often a fundamental step for an ego-
centric vision-based in-home assistive tool that can de-
liver location-aware assistance or support indoor navigation
[3, 32, 29, 23]. Most previous works use deep learning
methods for indoor localization that involve a large num-
ber of labeled or annotated room images. On the other
hand, because most indoor structures usually conform to
the Manhattan world assumption [8], indoor scene images
can be characterized by different room layouts defined by
a few boundary lines and junctions (also called inner cor-
ners [26]). During the past decade, indoor layout esti-
mation has emerged as an interesting and fast evolving
topic with many deep learning-based methods proposed that
show great promise and potential [21, 39, 33].

Figure 1. The six room layouts under study where the inner corners
and IOCs are colored in yellow and purple, respectively.

In this work, we are interested in indoor localization
from room layouts via camera pose estimation that involves
n correspondences between 3D reference features and their
2D projections. When features are points, this is called the
perspective-n-points (PnP) problem [22, 19, 24, 15]. When
features are lines, it becomes the PnL (Perspective-n-Line)
problem [38]. Given a room layout shown in Figure 1, there
are a few boundary lines which intersect at inner corners,
which are well defined in a layout map and whose 3D corre-
spondences in the world frame may be available with some
a priori condition (e.g., the room dimension). Therefore,
indoor localization and camera pose estimation from room
layouts can be converted to a PnL problem [38].

Of the 11 types of room layouts [21, 25], we focus on
6 of them (Figure 1) with at least three lines (the minimum
case of PnL). We propose a new PnL method by introducing
image outer corners (IOCs), the intersecting points between
image borders and layout boundaries, which are used to cre-
ate a preferable condition for the PnL solution by adding
more line correspondences. Moreover, 3D correspondence
estimation of IOCs is built in the PnL solution, leading to
the proposed PnL-IOC method that has two advantages over
existing ones: (1) It improves accuracy of camera pose es-
timation through IOCs whose 3D correspondences are ini-
tialized by solving a linear system and further optimized
along with camera pose via the iterative Gaussian-Newton
algorithm. (2) It achieves stable and robust results under
different noise levels at both the inner and outer corners.
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2. Related work
We briefly review related work in three areas: room lay-

out estimation, PnL/P3L, and recent PnL development.
Since the introduction of spatial layout estimation by

[18], room layout estimation has remained an active re-
search topic. The early works [18, 34, 11, 36, 12] solved
the room layout estimation problem using geometry-based
methods, which took advantage of vanishing points estima-
tion. With the development of deep learning, deep learning-
based methods, which are robust and accurate when han-
dling a wide range of highly challenging scenes, have been
proposed [39, 21, 25]. Furthermore, some high quality
datasets [6, 9, 41] published recently make deep learning
methods more feasible and accurate. A detailed review for
layout estimation can be found in [39].

In the PnL problem, at least three 2D/3D line corre-
spondences are needed because there are 6 DoFs for a 3D
camera pose and each line correspondence offers two con-
straints [17]. When n = 3, it is the P3L (Perspective-three-
Line) problem that plays a fundamental role in dealing with
the general PnL problem [38], because the latter is essen-
tially constructed by the former. In [13], one early analytical
method was proposed to solve the P3L problem that leads
to a closed-form solution by solving an eighth-order poly-
nomial. In [5], an algebraic P3L method was proposed that
may not be stable in the presences of noise. In [4], a spe-
cial case of P3L was addressed where three co-planar lines
intersect at a point. In [31], a unique P3L problem was
studied where three lines form a Z-shape in space. In [40],
a geometric method was proposed by introducing two inter-
mediate frames to simplify the P3L problem formulation.
However, a well-known fact about the P3L problem is that
the solution is not uniquely determined [5].

Most existing PnL studies focus on the cases where n >
3 where there are two kinds, iterative and non-iterative. The
early iterative ones [14, 7, 20] are usually computationally
costly and sensitive to initialization, and easily converge to
a local minimum [37]. For recent non-iterative ones, several
linear formulation based methods were proposed [1, 35, 30]
that are sensitive to noise and cannot deal with small line
sets (n < 6). Some non-iterative PnL methods [2, 27]
were developed to deal with small sets that may not be sta-
ble due to the underlying linearization scheme. In [40], a
non-iterative O(n) solution, named Robust PnL (RPnL),
was proposed for the cases of n ≥ 4. Based on RPnL,
the Accurate Subset-based PnL (ASPnL) method was pro-
posed in [37] that is more accurate on small line sets. How-
ever, ASPnL cannot properly deal with the case when there
are only three orthogonal lines intersecting at one junction
point, and it was modified in [38] resulting in the SRPnL
method, which can deal with the aforementioned case and
deliver high accuracy on small line sets. However, SRPnL
may struggle under more lines (n ≥ 8) and strong noise.

3. Proposed Method
3.1. Problem statement

The PnL problem is illustrated in Figure 2 where the
goal is to recover rotation Rc

w and translation t of a cam-
era from n known 3D reference lines Li = (vw

i , P
w
i ) (i =

1, 2, ..., n) along with their corresponding 2D projections on
the image plane denoted as li, where vw

i ∈ R3 is the nor-
malized vector giving the direction of the line and Pw

i ∈ R3

is any point on the line in the world coordinate frame.
Two intermediate frames are introduced into the reprojec-
tion model, the model frame and the new camera frame. The
rotation of the model frame with respect to the world frame
is Rm

w , and the rotation of the new camera frame with re-
spect to the model frame is Rn

m. The rotation of the camera
frame with respect to the new camera frame is Rc

n, where
the new camera frame can be obtained by rotating the origi-
nal camera frame with Rm

w , as Rc
n = (Rm

w )T , and similarly
Rc

w denotes the rotation of the camera frame with respect to
the world frame. The relationship among those four 3 × 3
rotation matrices can be defined as follows:

Rc
w = Rc

nR
n
mRm

w = (Rm
w )TRn

mRm
w . (1)

Figure 2. Illustration of the PnL-IOC problem.

Given a 2D line li = (si, ei), where si and ei are the
endpoints of li, its corresponding 3D line Li and the projec-
tion center O can form a projection plane Πi. The normal of
Πi can be easily achieved using the cross product of si and
ei, which can be defined as nc

i . Suppose Pw
i is any point on

Li, and by using the geometrical constraints [17] that P c
i ,

the coordinate of Pw
i in the camera coordinate frame and

P c
i = Rc

wP
w
i +t, should be perpendicular to the normal nc

i

of the plane Πi, there is a constraint

(nc
i )

T (Rc
wP

w
i + t) = 0 i = 1, 2, ..., n, (2)

which leads to an analytic solution of t [38].
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3.2. Determining initial rotation matrix

From all reference lines Li, line L0 = (vw
0 , P

w
0 )with the

longest projection length can be selected, then it is used to
calculate the corresponding normal nc

0. A new intermedi-
ate model frame [Om −Xm, Ym, Zm] can be formed from
L0 and nc

0 [37]. The origin of the model frame is matched
with the world frame, and the Y -axis of the model frame
is aligned with nc

0 to form the intermediate rotation matrix
Rm

w = [Xm, Ym, Zm]. After Rm
w is determined, the key to

calculate Rc
w is to determine Rn

m according to Eq. (1), and
Rn

m can be expressed by an Euler Angle as

Rn
m = Rot(Y, β)Rot(Z, γ)Rot(X,α), (3)

in which Rot(X,α), Rot(Y, β) and Rot(Z, γ) denote ro-
tation around the X-axis, Y -axis, and Z-axis in the model
frame, respectively. From the Euler Angle definition, α is
the angle between Z-axis and v

m

0 = Rm
wvw

0 [37]. There-
fore, if the two unknown variables β and γ are determined,
the rotation matrix Rn

m can be obtained, then Rc
w can be

calculated from Rn
m based on Eq. (1).

For determining Rot(Z, γ), another line L1 = (vw
1 , P1)

is selected, whose projection line length in 2D image plane
is the second longest, then every remaining line Lk together
with line L0 and L1 forms a 3-line subset {L0L1Lk |
k = 2, 3, ..., n-1 }, and all given lines can be divided into
n − 2 subsets. By using the P3L constraints [40], each
subset can build an eighth-order polynomial called the P3L
polynomial [38]. With the P3L polynomial, γ can be deter-
mined [37, 38], but there are at most 8 minima for the poly-
nomial, which are chosen as the candidate solutions. Af-
ter Rot(Z, γ) is determined, from Eq. (3), only Rot(Y, β)
needs to be calculated. There are two methods to identify
Rot(Y, β). One method is solving Rot(Y, β) alone, which
is for room layouts type 1, type 2, type 3 and type 4, because
the given 2D/3D line correspondences information in those
layouts is limited, only 5 or 3 line correspondences. There-
fore, the accurate Rot(Y, β) and translation vector cannot
be determined both at the same time. The second method
is determining Rot(Y, β) together with the translation vec-
tor for type 0 and type 5 room layouts. For type 0, there
are 8 line correspondences so that rotation and translation
restrict each other to yield a simultaneous result. For type
5, there are 5 line correspondences, but the experimental re-
sult shows that the second method is more suitable for type
5 and can achieve more accurate results.

3.2.1 Retrieving Rot(Y, β) via optimization

From Eq. (3) , Rn
m can be expressed as:

Rn
m = Rot(Y, β)R′ =

 u 0 v
0 1 0
−v 0 u

 r1 r2 r3r4 r5 r6
r7 r8 r9

, (4)

in which R′ = Rot(Z, γ)Rot(X,α), u = cosβ and
v = sinβ. As Li lies on the plane Πi, vm

i = Rm
wvw

i is
perpendicular to the plane normal nm

i = Rm
wnc

i . There-
fore, Rn

m needs to satisfy the constraint that

(nm
i )TRn

mvm
i = 0 i = 1, 2, ..., n. (5)

In addition, there is a constraint that u2 + v2 = 1. By
using these two constraints and denoting a new unknown
e = [u, v, 1]T , a cost function can be represented as

Eer = eTGe + λ(1− u2 − v2), (6)

in which G obtained from Eq. (5) is a known 3×3 symmet-
ric matrix, and λ is a Lagrange multiplier. The minima of
Eq. (6) can be obtained by solving the polynomial system
of its first-order optimality condition [37], then u and v can
be determined. Once u and v are determined,Rot(Y, β) can
also be identified. There will be at most 2 minima for calcu-
lating Rot(Y, β), and then up to 16 minima for determining
Rot(Z, γ) and Rot(Y, β). For each minima, a candidate
Rn

m can be determined via Eq. (4) and a candidate Rc
w can

be obtained by using Eq. (1) .

3.2.2 Solving the rotation and the translation together

As Pm
i = Rm

wP
w
i is also on the plane Πi, we have a con-

straint as

(nm
i )T (Rn

mP
m
i + tm) = 0 i = 1, 2, ..., n, (7)

where

tm = Rm
w t = [tmx tmy tmz ]T .

By substituting Eqs. (4) into (5) and (7) and stacking all
these constraints, 2n homogeneous linear equations with
parameter vector [u, v, tmx , t

m
y , t

m
z , 1] can be obtained, and

the rotation angle β and the translation vector tm can be es-
timated [37]. Then, Rn

m and Rc
w can be determined by Eqs.

(4) and (1), respectively. A few candidate solutions can be
obtained, and the room layout constraints are used to find
the suitable one.

3.3. Optimizing initial rotation matrix

A more accurate rotation matrix Rc
w can be obtained

through optimizing the initial rotational matrix. Firstly let
s = [s1 s2 s3]T be the Cayley-Gibbs-Rodriguez (CGR) pa-
rameter vector and Rc

w can be expressed using CGR param-
eterization [37] as

Rc
w =

1

H

[
1 + s21 − s22 − s23 2s1s2 − 2s3 2s1s3 + 2s2

2s1s2 + 2s3 1− s21 + s22 − s23 2s2s3 − 2s1
2s1s3 − 2s2 2s2s3 + 2s1 1− s21 − s22 + s23

]
,

(8)
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whereH = 1+s21+s22+s23. Based on this definition, a least-
squares problem with three variables can be reconstructed,
and then solved by a single Gauss-Newton step. According
to Eq. (2), the rotation and translation can be parameterized,
and form the linear system as[

A B
][ r

t

]
= 0, (9)

where r = [1, s1, s2, s3, s
2
1, s1s2, s1s3, s

2
3, s2s3, s

2
3]T .

From Eq. (9), t = −(BTB)−1BTAr and substituting t
into Eq. (9), we have

Er = 0, (10)

where E = A − (BTB)−1BTA. Finally, we obtain the
least-squares problem as follows

ε =

n∑
i=1

||Eir||2, (11)

where Ei is a 3 × 10 matrix that can be determined ahead,
and the Gauss-Newton method can be used to solve the
least-squares problem. Once the refined r is obtained, the
optimized initial Rc

w and t can be determined. Then the
camera origin in the world frame Ow

c can be evaluated based
on Rc

w and t as

Ow
c = −(Rc

w)T t, (12)

and because Ow
c must be inside the room, we can use this

constraint to obtain the final Rc
w and t from several can-

didates mentioned above. This optimization step has been
proven to drastically improve numerical precision [37].

3.4. 3D correspondence estimation of IOCs

In a given layout, IOCs are relatively easy to detect.
Then we need to evaluate the 3D correspondences of IOCs
in the world frame to get more 2D/3D line correspondences
for camera pose estimation. Specifically, two methods are
used for different layouts. For types 0, 1, 2, and 5 (n > 3),
there are at least 5 known line correspondences, which is
sufficient to determine the 3D correspondences of IOCs
only by the following constraint

(nc)TRc
wv

w = 0, (13)

in which nc is the norm of the projection plane Πi and sup-
posed to be nc

i , and vw is the direction vector of the i-th
line in world frame and supposed to be vw

i . Here, we omit
the subscript i, because they are general for every 2D/3D
correspondence, and they can be presented as

nc = [nx ny nz]T

Rc
w =

r11 r12 r13
r21 r22 r23
r31 r32 r33

.

Figure 3. Estimating 3D correspondences of IOCs for type 2 (left)
and type 3 (right).

We use the type 2 layout as an example to discuss the so-
lution process (Figure 3, left). nc can be determined by
two points that are either two IOCs or one IOC plus one
inner corner, e.g., IOC 3 and 4. The 3D correspondences
of these two points are denoted by P1 and P2, respec-
tively. Let P1 = [x1, y1, z1] and P2 = [x2, y2, z2], then
vw = P1 − P2 = [x1 − x2, y1 − y2, z1 − z2]. From Eq.
(13), we have

Cxx1 − Cxx2 + Cyy1 − Cyy2 + Czz1 − Czz2 = 0,
(14)

where

Cx = nxr11 + nyr21 + nzr31

Cy = nxr12 + nyr22 + nzr32

Cz = nxr13 + nyr23 + nzr33.

Those unknown 3D correspondences of IOCs lie on the
room layout boundaries, so there are only three different
situations about which coordinate is unknown. For room
layout type 0, type 1, type 2 and type 5, there are four IOCs
and only one coordinate is missing for the 3D correspon-
dence of each IOC. Therefore, we use a 5D vector to denote
the four unknown coordinates u = [u1, u2, u3, u4, 1]T , then
apply Eq. (14) to every IOC-contained line in the room lay-
out, we have

Cu = 0, (15)

in which C is a m × 5 matrix, generated by arranging the
the coefficients of Eq. (14) for each IOC-contained line, and
m is the number of IOC-contained lines in the room layout.
The unknown axis coordinates can be estimated by solving
the linear system in Eq. (15) with SVD method [16], and
the estimated coordinates can be further refined using the
method described in Sec. 3.5.

For types 3 and 4 (n = 3), there are only three known
line correspondences, where three lines form a same junc-
tion. In this situation, we can estimate Rc

w with the method
in Section 3.2 (i), but we cannot arrive at a unique trans-
lation vector [38, 5], and can instead only arrive at a scale
value, which results the 3D correspondences of IOCs cannot
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be determined uniquely. To get the unique value, we assume
camera height (cH) is available. The camera height yields a
constraint between Rc

w and translation t with regard to Eq.
(12), because the Y coordinate of Oc

w is the camera height,
but cH can be X or Z coordinate in the world coordinate
system. Letting t = [tx ty tz]T and from Eq. (12) we have

r12tx + r22ty + r32tz + cH = 0. (16)

Here, we use the room layout type 3 as the example to de-
scribe the solution process (Figure 3, right). Each point
Pw(the subscript is omitted) on the line Li, such as P1 or
P2, defined as Pw = [Px Py Pz]T , must satisfy the geomet-
rical constraints in Eq. (2). Therefore, we have

AxPx +AyPy +AzPz +Atxtx +Aty ty +Atz tz = 0,
(17)

where

Ax = nxr11 + nyr21 + nzr31,

Ay = nxr12 + nyr22 + nzr32,

Az = nxr13 + nyr23 + nzr33,

Atx = nx, Aty = ny, Atz = nz.

For type 3 and type 4, there are six unknown parameters in-
cluding three unknown coordinates and the translation vec-
tor for every layout. Thus, we set all the unknowns as
the parameter vector [u1, u2, u3, tx, ty, tz, 1]T and stack all
constraints in Eq. (16) and Eq. (17) for related points in
every line, to yield

A[u1, u2, u3, tx, ty, tz, 1]T = 0, (18)

in which A can be obtained by Ax, Ay , Az , Atx , Aty , Atz ,
known coordinates of 3D correspondences of IOCs and in-
ner corners in every line. The initial unknown coordinates
and translation vector can be estimated by solving the linear
system in Eq. (18) with SVD.

3.5. Camera pose optimization via IOC refinement

To further improve camera pose estimation, we need to
improve 3D correspondence estimation of IOCs. First, we
jointly refine the rotation matrix and 3D correspondence of
IOCs together, and use the refined 3D correspondences of
IOCs to re-estimate the camera pose. The pose estimation
problem is converted into a least-squares problem with three
variables related to the rotation matrixRc

w and the unknown
3D correspondences of IOCs. From Eq. (2), we have

(nc)TRc
wP

w = −(nc)T t, (19)

in which nc(nc
i ) and Pw(Pw

i ) is general for every 2D/3D
correspondence. Rc

w can be represented with the Cayley pa-
rameterization as Eq. (8). Now letting Pw = [Px, Py, Pz],
Eq. (19) can be transformed into the following matrix form

Mr = Nt, (20)

where

N = −(nc)T ,

M =



nxPx + nyPy + nzPz

2nzPy − 2nyPz

2nxPz − 2nzPx

2nyPx − 2nxPy

nxPx − nyPy − nzPz

2nyPx + 2nxPy

2nzPx + 2nxPz

nyPy − nxPx − nzPz

2nzPy + 2nyPz

nzPz − nxPx − nyPy



,

and r = [1, s1, s2, s3, s
2
1, s1s2, s1s3, s

2
3, s2s3, s

2
3]T . Here

we need to add unknown coordinates from 3D correspon-
dences of IOCs to the parameter vector. The unknown co-
ordinate is on the X-axis, Y -axis, or Z-axis, then the un-
known parameter needs to be extracted from matrix M and
added to the parameter vector. According to three different
situations, the added part is

rx = [s4, s4s2, s4s3, s4s
2
1, s4s1s2, s4s1s3, s4s

2
2, s4s

2
3]T ,

ry = [s5, s5s1, s5s3, s5s
2
1, s5s1s2, s5s

2
2, s5s2s3, s5s

2
3]T ,

or

rz = [s6, s6s1, s6s2, s6s
2
1, s6s1s3, s6s

2
2, s6s2s3, s6s

2
3]T .

We can add the unknowns vectors rx, ry , or rz to the pa-
rameter vector according to different situations. The new
parameter vector will be r̂ = [rT rTx ]T , r̂ = [rT rTy ]T or
r̂ = [rT rTz ]T , and M will become M̂ as

nyPy + nzPz

2nzPy − 2nyPz

2nxPz

−2nxPy

−nyPy − nzPz

2nxPy

2nxPz

nyPy − nzPz

2nzPy + 2nyPz

nzPz − nyPy
nx

−2nz

2ny
nx

2ny

2nz

−nx

−nx



,



nxPx + nzPz

−2nyPz

2nxPz − 2nzPx

2nyPx

nxPx − nzPz

2nyPx

2nzPx + 2nxPz

−nxPx − nzPz

2nyPz

nzPz − nxPx
ny

2nz

−2nx

−ny

2nx
ny

2nz

−ny



or



nxPx + nyPy

2nzPy

−2nzPx

2nyPx − 2nxPy

nxPx − nyPy

2nyPx + 2nxPy

2nzPx

nyPy − nxPx

2nzPy

−nxPx − nyPy
nz

−2ny

2nx

−nz

2nx

−nz

2ny
nz



.

However, for the 3D correspondences of inner corners, M
will keep same with M̂, because the coordinates of the 3D
correspondences of inner corners are given and the variables
in (19) are just r and t.The equations can be listed according
to different situations. Then (20) can be written as

M̂r̂ = Nt. (21)
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Eq. (21) is satisfied for every reference point, hence
M̂T

1

M̂T
2

...
M̂T

n

r̂ =


N1

N2

...
Nn

t⇐⇒ M̃r̂ = Ñt⇐⇒ t = Cŝ,

(22)

where C = (ÑTÑ)−1ÑTM̃, r̂ will change according to
the unknown 3D correspondences of IOCs, and we obtain
the least-squares problem as follows

ε̂ =

n∑
i=1

||(M̃− ÑC)r̂||2 =

n∑
i=1

||Er̂||2. (23)

However, this cost function is the 3rd order, and we need
to do order reduction in order to use Gauss-Newton. We
solve this problem using a relinearization technique [22].
Let s7 = s21, s8 = s1s2, s9 = s1s3, s10 = s22, s11 =
s2s3, s12 = s23. Although we introduce five more parame-
ters, we have five more equations, which allow us to reduce
the order successfully. Then we can use Gauss-Newton sim-
ilar to the one discussed in Section 3.3 to refine Rw

c and 3D
correspondences of IOCs. Afterwards, there will be more
2D/3D line correspondences which can be used to deter-
mine the rotation matrix and translation vector using the
methods in Section 3.2 and 3.3. The proposed method, re-
ferred to as PnL-IOC, is presented in Algorithm 1.

Algorithm 1: The proposed PnL-IOC method.
Input : 2D/3D line correspondence of the specific layout
Output: Rotation matrix R and translation vector t

1 Rot(X,α)← determined by the longest line
2 RzList← Rot(Z, γ) determined by P3L polynomial
3 for i← 1 to length of RzList do
4 if type 1, type 2, type 3, type 4 then
5 RyList← Rot(Y, β) determined by 3.2.1
6 for j ← 1 to length of RyList do
7 Rc

w ←the orthogonal error minimal result
8 end for
9 else

10 RyList← Rot(Y, β) determined by 3.2.2
11 for j ← 1 to length of RyList do
12 Rc

w ←the orthogonal error minimal result
13 end for
14 end if
15 end for
16 if type 0, type 1, type 2, type 5 then
17 3D correspondences of IOCs determined by Eq. (15)
18 else
19 3D correspondences of IOCs determined by Eq. (18)
20 end if
21 Refine 3D correspondences of IOCs and rotation matrix Rc

w
22 Reestimate R and t with additional refined 2D/3D line

correspondences by repeating step 1 to step 12
23 return R, t

4. Experiment results
The PnL-IOC method is evaluated on both synthetic data

and real images, and compared with leading PnL methods
listed below. All methods are implemented in MATLAB on
a MacPro with a 2.3 GHz CPU and 8GB of RAM.

∗ RPnL A non-iterative method, which works well for
both non-redundant (n ≤ 6) and redundant line corre-
spondences. However, it is not that accurate in some
cases, because it is a suboptimal method [40].

∗ LPnL-Bar-ENull A linear method, which parameter-
izes reference lines using barycentric coordinates, and
uses the null space solver to tackle the PnL problem.
This method is suitable for the cases where n > 6 [38].

∗ ASPnL A subset-based PnL method, which is im-
proved based on the RPnL method and represents the
state-of-the-art method. However, this method is not
suitable for room layout type 3 and type 4, because
the rotation and translation cannot be determined at the
same time for those two types [38].

∗ SRPnL An improved subset-based PnL method, which
is improved based on the ASPnL method and has
good performance. However, when the line correspon-
dences number is increasing, the result is worse than
that by ASPnL and RPnL [37].

4.1. Experiments with synthetic data

4.1.1 Synthetic data

Using a virtual perspective camera with image size of
640× 640 pixels and focal length of 180 pixels, the 3D ref-
erence lines are generated based on different room layout
types. For a specific room layout type, we fix the 3D corre-
spondences coordinates of inner corners in the world frame
and the initial rotation angle and translation vector, then we
randomly change the rotation angle in three different angles
in the range of [-5, 5] and translation vector in three dif-
ferent directions in the range of [-3, 3], making sure that
the generated lines can form a specific room layout. Then
we project these 3D lines onto the 2D image plane using
the ground-truth rotation Rtrue and translation ttrue. Some
randomly generated room layouts are shown in Figure 4.

The error metric is defined the same as in [37, 38, 15].
R and t denote the estimate results for rotation matrix
and translation vector, respectitively. Then rotation error
(ErrR) and translation error (Errt) will be calculated as

ErrR(deg) = max
k∈1,2,3

∠(Rtrue(:, k),R(:, k))× 180

π
,

Errt(%) =
||t− ttrue||
||ttrue||

× 100, (24)
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Figure 4. Some randomly generated room layout images.

where Rtrue(:, k) and R(:, k) are the k-th column of Rtrue

and R, respectively. ∠ represents the angle difference be-
tween Rtrue(:, k) and R(:, k). Depending on the experi-
ment, a different level of white Gaussian noise was added
to the 2D image plane.

4.1.2 Different layout results with varying noise

The experiment mainly tests the effects of noise on the ac-
curacy of all methods for every room layout. We varied the
noise deviation level δ from 1 to 10 pixels. At each noise
level, we conducted 1000 independent tests once and ran
three times, and calculated the mean and median errors of
rotation and translation. Figure 5 shows that our proposed
method yields a steady result as the noise is increased for
all room layouts, and the mean errors of rotation and trans-
lation are increased almost linearly with the noise levels.
For type 3, we find that the proposed method result is al-
most the same as the SRPnL method, because for type 3
the translation vector is a scale value if determined by the
given information. After introducing the camera height, we
can determine the unique result. However, there always ex-
ists a solution whose orthogonal error is the smallest when
the noise is added. The solution obtained is the best for
the given information. For type 3, the advantage of our
method is not obvious, but for type 4 other PnL methods do
not achieve the right rotation. Overall, only our PnL-IOC
method is robust enough for every room layout.

4.1.3 Computational efficiency

Table 1 shows the computational time with fixed δ = 2,
where we conducted 1000 tests and show the average run-
ning time in seconds (s). From the results, our proposed
method is comparable to the others, and even better than
SRPnL for some room types. Considering the high accu-
racy and robustness, our method is still competitive.

Methods Time (seconds)
type 0 type 1 type 2 type 3 type 4 type 5

ASPnL 0.0066 0.0065 0.0060 0.0072 0.0053 0.0056
LPnL-Bar-ENull 0.0038 0.0040 0.0016 N/A N/A 0.0032

RPnL 0.0027 0.0022 0.0023 N/A N/A 0.0020
SRPnL 0.0109 0.0091 0.0086 0.0437 0.0393 0.0090

PnL-IOC 0.0073 0.0122 0.0121 0.0277 0.0164 0.0177

Table 1. A comparison of the computational efficiency.

4.2. Experiments with Real Images

We also applied the aforementioned PnL algorithms on
a set of room layout images with a known 3D line model.
We collected some room layout images in the entry area of
our office. For each image, we detected the inner corners
and IOCs manually, and set 3D correspondences based on
the room dimension information, then established the line
correspondences between the image lines and the 3D line
model. We tested the compared algorithms for every room
layout type. In order to demonstrate the accuracy of the
result, we projected the 3D line model into the image and
estimate all the corresponding points reprojection error us-
ing the estimated camera pose. Figure 6 shows the type 4
and type 5 room layout results, and Table 2 shows the re-
projection error for different room types in the real world.
From Table 2, the proposed method again outperform others
quantitatively for all six layouts being tested.

Methods Reprojection error (pixels)
type 0 type 1 type 2 type 3 type 4 type 5

ASPnL 17.014 4.7613 21.723 1154.51 1154.51 50.052
LPnL-Bar-ENull 20.659 5.5603 814.60 N/A N/A 65.780

RPnL 18.308 5.6313 203.27 N/A N/A 187.72
SRPnL 600.65 4.7613 21.723 7.91e-12 2.53e+03 287.11

PnL-IOC 16.765 4.3776 6.2870 4.04e-12 8.30e-13 28.551

Table 2. Comparison of the Reprojection error for real images.

5. Conclusion
In this work, we presented a new PnL approach to ego-

centric indoor localization by camera pose estimation from
room layouts. Specifically, we have introduced IOCs to fa-
cilitate the PnL solution by adding more 2D/3D additional
line correspondences. To the best of our knowledge, this
is the first attempt to use IOCs in a room layout to solve
the PnL problem. The key idea of our method is to ini-
tialize the 3D correspondences of IOCs by solving a linear
system and to further optimize these 3D correspondences
along with camera pose via the iterative Gaussian-Newton
algorithm. The experimental results demonstrate that our
method is more accurate and robust compared with the ex-
isting PnL methods at a comparable computational load.
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Figure 5. Experimental results on the simulated data under different noise levels (δ = 1, ..., 10). From top to bottom: the mean/median
rotation errors and the mean/median translation errors. From left to right, the results for type 0, type 1, type 2, type 3, type 4, type 5.

Figure 6. Camera pose estimation from real world images using our method and other PnL methods. The first row results are for type 4
room layout and the second row for type 5 layout, where RepErr is the reprojection error.
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