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Abstract

In this paper we present a new approach for pupil seg-
mentation. It can be computed and trained very efficiently,
making it ideal for online use for high speed eye trackers
as well as for energy saving pupil detection in mobile
eye tracking. The approach is inspired by the BORE and
CBF algorithms and generalizes the binary comparison by
Haar features. Since these features are intrinsically very
susceptible to noise and fluctuating light conditions, we
combine them with conditional pupil shape probabilities. In
addition, we also rank each feature according to its impor-
tance in determining the pupil shape. Another advantage
of our method is the use of statistical learning, which is
very efficient and can even be used online. https:
//atreus.informatik.uni-tuebingen.
de/seafile/d/8e2ab8c3fdd444e1a135/?p=
%2FStatsPupil&mode=list.

1. Introduction

The plethora of image based eye tracking [6] appli-
cations has continued to rise in recent years. The most
important areas of application are currently driver mon-
itoring [2], virtual reality [43], augmented reality [47],
medicine [8, 7, 1], market research [43, 49], remote sup-
port [51], human computer interaction [9, 39], supportive
explanation models for computer vision models [60], and
many more.

Those diverse application areas bring different image
based challenges [26, 19, 28, 27, 18] and challenging re-
source restrictions [12, 15, 10] as well as different types of
gaze estimation like appearance based approaches [61, 62].

Some of these image based challenges are changing illumi-
nation conditions, reflections on glasses, make up, record-
ing errors, and high off axial pupil positions. In addition,
the diversity of people using eye tracking devices also rise
new challenges like deformed pupils [26, 19, 25, 24] which
occurs after eye surgery [5].

Other challenges in eye tracking are different record-
ing techniques like RGB and NIR imaging. While NIR
is mostly used in head mounted [28] eye trackers, RGB
imaging is still used in remote [16] eye tracking and es-
pecially web cam based eye tracking [48]. Due to the cur-
rent situation with the Covid pandemic, web cam based eye
tracking becomes more and more important for market re-
search [48, 43] and scientific studies [48].

Nowadays, the gaze signal alone is also no longer suffi-
cient, as the eye provides a variety of other sources of in-
formation. These are pupil response to cognitive load [4],
pupil shape for eyeball regression [11], and eyelids to de-
termine a person’s fatigue [22, 21, 23]. The cognitive load
is very interesting for the detection of mental disorders [46]
or ranking a persons performance capability [40]. Eye ball
regression is used to improve the robustness of eye track-
ers against drifts of the device and to improve the accu-
racy [52]. The fatigue detection of a person is important
for critical applications like driving [58], flying [45], flight
surveillance [42], and many more.

Due to the progress in eye tracker technology so far, mo-
bile applications [37], long-term studies [55], high speed
eye tracking for fundamental research [31], and the con-
sumer market such as computer games [35] are becoming
more and more important. For this it is necessary that the
algorithms can be used as resource saving and robust as pos-
sible [15, 10, 12] to consume as little energy as possible in
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mobile applications [37], to guarantee the real-time capabil-
ity in high speed eye tracking [31], and not to waste com-
puting capacity which is needed for computer games [44].

In this paper we present a resource-saving approach,
which is inspired by CBF [15] and BORE [10]. Our ap-
proach was developed with the main features of cheap ex-
ecution and easy training. The features used are Haar fea-
tures [56] which can be computed very efficiently. Another
important feature of our algorithm is the possibility of on-
line learning and therefore, the usage together with deep
neural networks (DNN). The combination with DNNs re-
duces the resource consumption and detection time of the
pupil ellipse.

Contributions of this work to the state of the art are:
• Our approach is the first to use ellipse parameter con-

ditional probability distributions for ellipse selection.
This avoids unnecessary checks of ellipse points, as is
the case in CBF [15] and BORE [10].

• Compared to BORE [10] and CBF [15] we use index
tables whereby each feature has to be evaluated only
once. This further reduces resource consumption and,
in combination with the precomputed indexes already
presented in CBF [15] and BORE [10], further speeds
up the detection process.

• Our approach is simply trained on the occurrence
statistics. This procedure is much more resource ef-
ficient than the unsupervised learning and evaluation
of all possible combinations as done in BORE [10]. It
is also much faster than the random combination eval-
uation used in CBF [15].

• Our approach can be trained online and therefore be
used to speed up the pupil detection of large DNNs.

2. Related work
Since pupil detection has evolved in different directions,

we divide the related work into three areas. These are classi-
cal computer vision approaches, deep neural networks, and
resource saving machine learning approaches.

2.1. Classical Computer Vision Approaches

In the field of pupil detection and exact pupil center de-
termination, the first major breakthrough came with the use
of edge images [53]. Previously, adaptive thresholds were
used [29]. A major disadvantage of edge images are their
susceptibility to noise and motion blur. Therefore, edge fil-
tering methods were introduced [26, 19, 27], which sup-
press noise and pass only relevant edge segments. In ad-
dition to this, angular integral projection function [19] and
also blob detection [26] were used. Another improvement
in pupil shape reconstruction was the evaluation of individ-
ual segments [34]. Alternative to edge detection, the ra-
dial symmetry transform was used to detect the pupil cen-
ter [41].

2.2. Deep Neural Networks

With the advent of convolutions in neural networks and
the success in the field of image processing, these CNNs
were also used for pupil detection and segmentation. The
first window-based approach was PupilNet [24, 25], run-
ning in real time on a single CPU core only. Later, large
residual networks were also used [20] and puplished to-
gether with huge annotated datasets as well as generative
adversarial networks [13] were used. The first U-Net with
interconnections was poposed with DeepVOG [59]. New
loss formulations regarding the pupil shape were suggested
in [3]. Additional to those loss formulations an L1 loss con-
nected to the central part of a fully connected convolutional
network was proposed in [36].

2.3. Resource Saving Machine Learning

The first real-time machine learning methods combined
with simple features were introduced by PupilNet [24, 25]
and continued BORE [10] and CBF [15]. BORE [10] is
capable of non-supervised learning and self-optimization.
CBF [15], on the other hand, uses random ferns and pixel
comparisons to determine the center of the pupil. Also
the supervised decent method (SDM) was used for the re-
gression of the pupil center in remote images [38]. How-
ever, this has the disadvantage of being highly dependent
on the mean shape, which we will show in our later eval-
uation in combination with landmarks for segmentation on
head mounted images. Another approach was created using
the teacher, student training method [12, 17]. These tiny
CNNs [12, 17] are very robust and were successfully used
across datasets. In addition, they learn to evaluate the accu-
racy and give therefore a validity of the pupil ellipse [17].

The approach presented by us is also to be classified in
this category. This is due on the one hand to the fact that our
approach uses statistical learning and on the other hand to
the resource-saving use of our method. In addition to these
properties, our approach can also be trained very fast and
resource-saving.

3. Method
Our approach uses statistical learning which needs to in-

spect each training sample only three times to create a de-
tector. The first step for training our detector is to create
the search area (x, y tuples) and the ellipses expected there
(eli). This gives us the set EL which stores all ellipses eli
for each position x, y. Reformulated as a conditional prob-
ability distribution EL corresponds to the probability P of
ellipse eli under the condition to be centered at position x, y
and thus Equation 1.

EL = P (eli|x, y) (1)

To calculate EL, we need one pass of the training data.
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Figure 1. We introduce tiny Haar features which follow elliptical
shapes for pupil segmentation. Together with a detection area,
a shape conditioned probability distribution as well as statistical
feature weighting.

In the second step, we reduce EL to speed up our detector
and reduce over fitting. For this, we represent each ellipse as
eight landmarks (See Figure 1) and round them to integers.
For reduction, all ellipses with the same landmark distances
are combined into one ellipse with a maximum deviation of
one pixel per landmark. This gives us the reduced condi-
tional probability distribution ÊL.

The next step is to create our feature extractors from the
landmarks. For this we use Haar features. Instead of com-
puting the area differences in the integral images, we use
the difference of pixels in downscaled images. In the sec-
ond pass of the training set, for each ellipse in ÊL we store
all occurrences of the eight differences dj . Since the set of
eight differences to each ellipse is very large, we want to
reduce it. To reduce this set, we compute the best five dif-
ference sets dj for each positive probability in ÊL, noting
here that one dj are eight differences one for each landmark.
For this we use the mean shift clustering with a maximum
of five clusters. Reformulated as a conditional probability
distribution, we thus have positive probabilities for five dif-
ference sets dj under the condition of the probability of an
ellipse at some position (ÊL = P (êli|x, y)) and thus Equa-
tion 2.

D = (dj |P (êli|x, y)) (2)

In the last run, the individual differences or landmarks
are now weighted with respect to their robustness. These
feature weights fj are computed in the third run of the train-
ing set. For this we use the difference set dj with the min-
imum distance of the landmark differences and weight fj
positively if the sign matches and negatively if the sign dif-
fers. Based on this we statistically weight the reliability of
each feature. After the pass each feature fj is normalized
to sum to one and to form a probability distribution. This
gives us a similar conditional probability distribution as for
the difference sets and thus Equation 3.

F = (fj |P (êli|x, y)) (3)

To use the detector, the landmark differences to the el-
lipses must be calculated at all possible positions. Then the
minimum difference to the difference sets dj is calculated
and the deviation is weighted by the feature weights fj .
The final ellipse and position is then the global minimum
and described in Equation 4.

argmin
P (êli|x,y))

(argmin
j

8∑
LM=1

abs(dj(LM)−d̃(LM))∗fj(LM))

(4)
In Equation 4 LM are the Haar features, dj is the differ-

ence set, d̃ is the set of differences in the input image for el-
lipse êli at position x, y and fj is the corresponding feature
weight. Overall Equation 4 searchs for the minimum differ-
ence of the eight landmark positions in the entire input im-
age. If there are multiple equally good positions we use the
conditional probability distribution ÊL to select the most
probable ellipse and position. While this already provides a
very efficient detector, further optimizations are necessary
like the precalculation of all indexes in the image, as it was
already presented for BORE [10] and CBF [15]. Also, all
differences are indexed to calculate differences at each po-
sition only once.

Since these conditional probabilities and occurrence
statistics are easily extensible as well as online data can be
added, this learning approach is able to learn in parallel to
other approaches like DNNs. Thus, it is possible to use a
DNN for detection and learn the statistics online. Once our
approach has learned some examples, it can be used before
the DNN, saving resources, energie, and computation time.
To update our statistics online we weighted new data based
on the number of data already used to compute the statis-
tics. This is similar to the use of moving averages but with
the simplification that we only have to remember how many
data samples were used to compute the current statistical
values.

4. Evaluation of our approach trained offline

The data used for the offline training evaluation are the
segmented pupils of [20]. The dataset consists of two files
”p1 image.mp4” and ”p2 image.mp4” with an image reso-
lution of 192 × 144. The first file contains data taken in a
driving simulator and the second file contains images from
real world driving. Because of this there are no reflections
or strong light fluctuations in the data of the first file, so it
contains much simpler images. Therefore, we decided to
use the first file with more than 500,000 frames as the train-
ing dataset. The second file with more than 350.000 frames
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Figure 2. The cumulative intersection over union results for multiple approaches on the left. On the right is the cumulative euclidean pupil
distance error for multiple approaches.

Figure 3. The mean euclidean pixel distance mapped to 10 × 10 cells on the image space. Higher values or brighter colors are a worse
results. We have limited the maximum error to 10 pixels for a uniform display of the color scaling.

and the much more challenging images is used as the eval-
uation dataset.

For the data augmentation, we used up to 20% random
noise, as well as reflections with an intensity up to 20%,
where the reflections are calculated from randomly selected
images. Also, we randomly changed the contrast of the im-
age in the range of -40 to 40. In addition, we shifted the
image randomly in a range of -10 to 10 pixels as well as
we used zooming with a random factor in the range of 0.8
to 1.2. For the TinyCNNs [12], this was done online dur-
ing training. For all other approaches, the data augmenta-
tion was computed in advance resulting in five images from
each frame. Of course, the image could also occur without

augmentation.

Since we trained our approach once with the real data
(”p1 image.mp4” for the driving simulator recordings) and
once with the simulator data, we also give here the details
for our approach. First, we used the simulator of [11] and
inverted the images so that the pupil is dark. Then we se-
lected the data based on the pupil ellipse, which matched
the pupil ellipses in the normal training set. For the data
augmentation, we used the same approaches as for the train-
ing on the real data except for adjusting the contrast of the
background and the pupil of the simulated images. Here we
used the differences from the training set first to adjust the
contrast.
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Figure 4. The mean intersection over union mapped to 10× 10 cells on the image space. Higher values or brighter colors are better results.
Please note that although the maximum is 1, the color scaling for all plots is not uniform with respect to the maximum. The minimum, on
the other hand, is uniform at zero for all plots.

Table 1. Runtime for training and execution of the evaluated approaches on more than 2.500.000 images (5 augmented versions of each
image) with data augmentation. The execution time was always evaluated with a single CPU core.

Method Training time (h) Execution (ms) Note

TinyCNN S1 40 (With GPU) 3.7 With teacher network training.
TinyCNN S2 40 (With GPU) 3.7 With teacher network training.
TinyCNN L1 44 (With GPU) 7.9 With teacher network training.
TinyCNN L2 42 (With GPU) 5.8 With teacher network training.

SDM (HOG+SVM) 17 4.2 With parameter grid search.
BORE 8 1.1 Grid search for optimal pupil sizes.
ElSe 0 6.6 No training necessary.

Proposed 1 0.9

The hardware used for training and running the final
models consists of an Intel i5-4570 CPU running at 3.2
GHz. The system has 16GB of DDR4 memory and an
NVIDIA 1050 TI with 4GB of GDDR5 memory. The GPU
was only used for training the TinyCNNs [12]. All runtime
analyses were performed on one CPU core.

For a comparison with the state of the art, we use ElSe
as a representative of edge-based approaches, BORE as a
resource saving alternative, the TinyCNNs pre-trained on
LPW [54] and provided by the authors as well as two
newly trained TinyCNNs on the presented training data, and
SDM [57] for landmark detection also as a resource saving
alternative.

Figure 2 on the left shows the cumulative mean intersec-
tion over union. This metric holds the information about

the segmentation quality. On the right side of Figure 2 is
the cumulative euclidean pupil center pixel error which is
important for the gaze estimation accuracy. As can be seen
on both plots in Figure 2, SDM and BORE perform worse.
BORE cannot handle the reflections very well as can be seen
especially in Figure 3 where a high mean pupil center error
is present nearly everywhere on the image space. For SDM
this is different since the method performs well in the near
area of the mean shape (Figure 3). The best performance
regarding a cumulative pupil center error of zero has ElSe
(Figure 2 right). It is also reaches the highest values for
the cumulative intersection over union for a value of 0.9
(Figure 2 left). Apart from this the TinyCNNs and the pro-
posed approach are more robust and reaching nearly 90% at
a pixel error of two (Figure 2 right). After the pixel error of
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Figure 5. The cumulative euclidean distance error (top) and mean intersection over union (bottom) for the dataset [20] (left) and [14]
(right). The dashed lines are the results of our approach in combination with the DNN model.

Figure 6. Consecutive detections of our approach (top) and the amount of learned samples (bottom) over the online learning experiment
for the dataset [20] (left) and [14] (right). The width of the distribution in both plots corresponds to the occurance.
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Figure 7. Distribution plots of the execution time per model in combination with the proposed approach (top) and the execution time of
our approach alone without as wisker plot (bottom) on a single CPU core. The execution times in the textboxes in the two top plots are the
runtimes of each model without the proposed approach on a single CPU core.

two, our approch is outperformed by the TinyCNNs but our
approach needs only a fraction of computation time (See
Table 1). For the segmentation quality, our approach keeps
up with the TinyCNNs whereas the newly trained ones per-
form significantly better (Figure 2 left). This is due to the
reduction of possible ellipses as described in the method
section. In addition, it can be seen in Figure 2 that our ap-
proach trained on the simulated data performs only slightly
worse compared to the one trained on the real data.

If Figure 3 and Figure 4 are compared for each approach,
it can be seen that ElSe has a lot of invalid detections over
the entire image space (Figure 3). This stems from heavy
reflections which make edge detection not applicable. In
Figure 4 on the other hand, ElSe has a good average seg-
mentation quality over the image space with the exception
of the upper right area where occlusions by the eyelid oc-
curred. Another important information is the clear center
bias which can be seen for SDM by comparing Figure 3
and Figure 4. Looking now at our approach and the TinyC-
NNs, we notice that they have good coverage of the entire
image space (Figure 3 and Figure 4). In terms of segmen-
tation, however, our approach is significantly worse in the
outer areas (Figure 4).

Table 1 shows the training time in hours as well as the ex-
ecution time in milliseconds on a single CPU core. As can
be seen, our approach outperforms the other approaches in
terms of execution time. For the training time ElSe is the
fastest approach due to it has not to be trained. Combining

the detection, segmentation, training time, and execution
time results we think the proposed approach is a valuable
contribution to the eye tracking community.

4.1. Evaluation of the online learning

For online learning and application, we used the same
dataset as for offline evaluation with the same training and
test split [20]. Additionally, we used the segmented pupils
provided with [14] for the LPW [54] images. This dataset
consists of 66 videos from different individuals with an av-
erage length of 2000 frames. In this dataset, each video
contains different challenges making it less optimal for our
approach which can be seen in our results. For training and
testing, we made a 50% to 50% split based on the videos and
used each split once for training and once for evaluation.
The training parameters for all networks and the data aug-
mentation are the same as in the offline evaluation. To show
the combination of our approach with different DNNs, we
used the models ResNet-18 [30], ResNet-34 [30], ResNet-
50 [30], MobileNetv1 [33], MobileNetv2 [50], and Mo-
bileNetv3 [32]. For all following plots the left side cor-
responds to the [20] dataset and the right plots to the dataset
from [14].

Figure 5 shows the cumulative Euclidean error in the up-
per plots and the mean intersection over union (mIoU) in
the two lower plots. The left side shows the results for the
[20] data and the right side shows the results for the [14]
dataset. The dashed lines are the results in combination with
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Figure 8. Training time per sample for each model of the proposed approach on a single CPU core.

our approach and the solid lines are the results of the mod-
els alone. The first thing to notice is that the [14] dataset
is slightly more challenging. Additionally, it can be seen
that our approach makes the results slightly less accurate.
This is especially true for the segmentation results (mIoU).
In contrast, our approach requires only one CPU core with
a runtime below one millisecond (See Figure 7).

Figure 8 shows in the top two plots the distribution of the
number of continuously detected pupils of our approach and
in the bottom two plots the growing size of the learned sta-
tistical model. The membership with respect to the datasets
is [20] on the left and [14] on the right. Comparing the top
two plots, we can directly see that on the left side 10 times
more images were detected in one sequence from our ap-
proach. This is because the dataset on the left ([20]) consists
of multiple continuous long-term recordings and the dataset
on the right ([14]) consists of small individual videos. This
also leads to a larger statistical model as can be seen in the
bottom two plots by the scaling of the y-axis.

Figure 7 shows the execution time of the models together
with our approach in the upper plots. As can be seen, in
the case of the dataset with the driving data from long-term
recordings (Plot on the left), the DNN needs to be executed
only very rarely (Single points above the flat distributions
on the bottom). This shows the effectiveness of our ap-
proach. On the right, one can see the combined run times
for the dataset with the 66 short videos. Here we also see
that our approach drastically reduces the runtime, but the
DNN must be run more often because new videos always
contain new pupil positions and shapes. In the bottom two
plots in Figure 7, the execution time of the presented ap-
proach alone can be seen. This is below one millisecond in
almost all cases.

Figure 8 shows the required time of our approach to learn
a new pupil ellipse. Since this only involves updating the
statistics and moving the clusters, the execution time is rel-
atively constant and very resource efficient as well as very
fast to perform. In Figure 8 it can also be seen very clearly
that the training of our approach does not depend on the
model or the accuracy of the extracted pupil ellipse.

5. Limitations

While the presented approach with Haar features in com-
bination with statistical learning has a very low training
time and a very low runtime and can also be trained on
simulated data, this approach of course also has disadvan-
tages. The first disadvantage is the search area. This means
that no pupils or ellipses can be found outside this area. Of
course, this limitation can be easily circumvented by arbi-
trarily extending the search area, but this has a negative im-
pact on both the detection rate and the runtime. Another
disadvantage of the presented approach, is the statistic it-
self, which in the case of feature weighting weights frequent
occurrences of valid features higher. This means that large
datasets of similar images lead to features that are weighted
more important than others. This results in an overfitting
to these images. Also, the presented approach only recog-
nizes shapes which are present in the training data. This is
because unknown shapes are not sampled and have no prob-
ability of occurrence. This can be easily fixed by simulated
data, data manipulation or the combination with DNNs as
shown in the second part of our evaluation.

6. Conclusion

In this work, we have presented a new approach to ef-
ficiently train and segment pupils. While it is not able to
segment pupils as accurately as, for example, edge-based
approaches, it is comparatively robust and very efficient to
compute. In addition, we showed that our approach can
be trained online and used together with different DNN
models. This allows to save energy, since no GPU/TPU is
needed for our approach. This allows longer recordings to
be made. If a user has already used the device for a longer
period of time, as is the case for the data from [20] (Left
Plots), the DNN only needs to be used sporadically.
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