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Abstract

We propose a computational model to estimate a per-
son’s attended awareness of their environment. We de-
fine “attended awareness” to be those parts of a poten-
tially dynamic scene which a person has attended to in
recent history and which they are still likely to be phys-
ically aware of. Our model takes as input scene infor-
mation in the form of a video and noisy gaze estimates,
and outputs visual saliency, a refined gaze estimate and
an estimate of the person’s attended awareness. In or-
der to test our model, we capture a new dataset with a
high-precision gaze tracker including 24.5 hours of gaze
sequences from 23 subjects attending to videos of driving
scenes. The dataset also contains third-party annotations
of the subjects’ attended awareness based on observations
of their scan path. Our results show that our model is able
to reasonably estimate attended awareness in a controlled
setting, and in the future could potentially be extended to
real egocentric driving data to help enable more effective
ahead-of-time warnings in safety systems and thereby aug-
ment driver performance. We also demonstrate our model’s
effectiveness on the tasks of saliency, gaze calibration and
denoising, using both our dataset and an existing saliency
dataset. We make our model and dataset available at
https://github.com/ToyotaResearchInstitute/att-aware/.

1. Introduction
We define “attended awareness” to be those parts of a

potentially dynamic scene which a person has attended to
in recent history and which they are still likely to be phys-
ically aware of.1 While this measure of a person’s aware-

1Attended awareness will also be referred to as awareness in the rest of
the paper for the sake of brevity.

Figure 1: Model for Attended Awareness in Driving
(MAAD) overview. Our model takes as input a video of
a scene, as seen by a person performing a task in the scene,
along with noisily registered ego-centric gaze sequences
from that person. The model estimates (i) a saliency heat
map, (ii) a refined gaze estimate, and (iii) an estimate of
the subject’s attended awareness of the scene. We evalu-
ate our model using a unique annotated dataset of third-
person estimates of a driver’s attended awareness. By ex-
plicitly estimating a person’s attended awareness from noisy
measurements of their gaze, MAAD can improve human-
machine interactions. In the driving example, such inter-
actions might include safety warnings in situations where
attended awareness is deemed insufficient.

ness is difficult to objectively measure, in certain situations
such as driving, it is possible to infer, at least to some use-
ful degree, the attended awareness of a driver. Driving in-
structors routinely assess a driver’s behavior based on their
estimated attended awareness of a given driving scene, and
provide real-time feedback to ensure safety. In the context
of human-machine interaction, inferring human attended
awareness in a given scenario is valuable for machines to
facilitate seamless interaction and effective interventions.
Human gaze information can be used by machines for this
purpose and many models have been developed to relate
scene understanding and overt attention as saliency esti-
mates [7, 10, 15, 22, 41, 42] and objectness measures [1, 6].
However, further exploration of the link between visual at-
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tention and processes of scene understanding and decision
making has been constrained by a limited ability to reason
about such cognitive processes, which is difficult in general
contexts [63, 53, 49].

In this work, we propose a model to estimate attended
awareness as a spatial heatmap. The input to our model is
a video of the scene under observation, and a noisy esti-
mate of the person’s gaze. Our model allows us to (i) com-
pute visual saliency for the scene, (ii) leverage this to refine
the noisy gaze estimate, and (iii) combine this information
over time to infer the person’s attended awareness. The con-
struction of our model is driven by axiomatic considerations
that define an image translation network from the scene im-
age to the saliency and awareness heat maps. Within a
larger human-machine interaction scenario, the model be-
comes useful as an inference engine for human awareness
enabling seamless interaction (for e.g., a person operating
a semi-autonomous car or a smart wheelchair). We adopt
a data-driven approach (as opposed to more limited-scope
analytical models [30]) to allow for scalable and more com-
prehensive modeling of attended awareness that can poten-
tially rely on supervision from multiple sources (such as re-
sulting actions/self-reporting).

Contributions 1) We propose a learned model that af-
fords estimation of attended awareness based on noisy gaze
estimates and scene video over time. 2) We further demon-
strate how the model affords saliency estimation as well
as the refinement of a noisy gaze signal. 3) We present a
new dataset that explores the gaze and perceived attended
awareness of subjects as they observe a variety of driving
and cognitive task conditions. While the dataset is captured
via a proxy hazard awareness task rather than through real
or simulated driving, it serves as a useful starting point to
study visual saliency and awareness in driving scenes.

2. Related Work
Our work builds on prior work in visual saliency esti-

mation, situational awareness, and driving-specific explo-
ration. We briefly summarize related work from these areas.

Visual saliency. Vision scientists have long sought to
model and understand the mechanisms behind our alloca-
tion of attention in a visual scene [63]. Visual salience is
a function of many factors, including the spatio-temporal
nature of the stimulus itself as well as its relationship to
neighboring stimuli and the nature of the visual system per-
ceiving it [23]. The evolution of computational approaches
to estimating visual image salience has mirrored that of
other popular computer vision problems, with largely hand-
engineered models—designed to mirror certain bottom-up
and top-down attention processes in the human visual sys-
tem (e.g. [8, 23])—giving way to supervised, data-driven
approaches (e.g. [22, 24]). Unlike image saliency, video
saliency models consider spatial as well as temporal infor-

mation to detect objects of interest in a dynamic way.
Spatio-temporal saliency estimation opens inquiry into

how processes of visual attention, situational awareness and
task-related decision making are connected. Previous at-
tempts have been made to computationally model situa-
tional awareness (see e.g. [4, 38, 59]). Our approach to
modeling situational awareness is unique in that we try to
explicitly estimate the parts of the visual scene to which a
person has attended using a spatio-temporal model for gaze
and scene understanding. The three stages of forming sit-
uational awareness consists of perception, comprehension
and projection [19] and in our work we focused primarily
on perception. We aim to model, from noisy observations
of a person’s scan path, the set of objects and scene struc-
tures which that person is likely to have attended to, and
therefore might be better able to incorporate into their fu-
ture decision-making. While we note that peripheral vision
alone can achieve visual awareness in many settings [58],
we focus on objects of fixation, since we are concerned pri-
marily with estimating when drivers fail to notice potential
driving hazards, which are known to strongly induce fixa-
tions [16].

Data-Driven Saliency Modeling and Datasets. Data-
driven approaches to image and video saliency rely on state-
of-the-art deep learning architectures: CNNs [10, 22, 41],
GANs [42] and LSTMs [3, 15, 56], and single image inputs
through to multi-stream inputs incorporating video, along
with optical flow, depth or semantic segmentation estimates
[33, 40] and even additional modalities such as audio [55].
In our work, similar to [39], we adopt a 3D CNN–based
approach, due to its simplicity and success on other video
understanding tasks such as action recognition.

While the majority of saliency datasets explore image
and video saliency under controlled viewing conditions
(e.g. [32, 37, 56]), in recent years, numerous ego-centric
video gaze datasets have been developed in which subjects
perform tasks as varied as cooking and meal preparation
[34], playing video games [8] and driving [40], in paral-
lel to developments in applications of saliency (see, e.g.
[51, 45, 11]. On the other hand in the driving domain, in-lab
data collection procedures have been extensively adopted as
they have the advantages of high accuracy, repeatability and
the ability to focus on rare scenarios such as critical situ-
ations and accidents [61, 21, 17, 2], where understanding
human perception can inform safety systems approaches.

Our dataset uses an in-lab data collection paradigm,
however it differs from prior work for several reasons.
Firstly and most notably, we capture multiple subjects ob-
serving the same visual stimuli under different cognitive
task modifiers. Our dataset therefore allows for reasoning
about the effect of different cognitive task modifiers on the
visual gaze patterns, given identical visual input. Secondly,
we provide annotations for third party estimates of a sub-
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ject’s attended awareness, based on observations of their
scan path. For this purpose, we devise a novel reproducible
annotation scheme. Finally, as our dataset is gathered using
a high precision gaze tracker with a chin rest, the precision
of the scan paths is extremely high when compared to that
of eye-glass gaze tracking ego-centric datasets such as [40].

Driving specific applications. Driving is a predomi-
nantly visual task. The first studies into driver attention and
eye scanning patterns date back over half a century [50].
Since then, certain driving behaviors have been well estab-
lished and modelled, such as the “perceptual narrowing” ef-
fect in which drivers increasingly fixate on the road ahead
as task demands increase (e.g. through greater speed, in-
creased traffic or lack of familiarity with a route) [20], or
the benefits of understanding driver attention when predict-
ing a driver’s future intent [18, 60]. However, to the best of
our knowledge, no models exist with the purpose of quanti-
tatively estimating a driver’s spatial awareness of a scene.
In recent years, works such as [40, 61] have used high-
precision gaze trackers to create video gaze datasets both in
the car and in the lab, allowing for data-driven approaches to
modelling driver attention. While we make use of the road-
facing data from [40] in our experiments, our model differs
in one key respect. Rather than estimating visual saliency
from video alone, we demonstrate how, given access to a
noisy gaze estimate of a driver it is possible to simultane-
ously estimate scene saliency, a denoised gaze signal and
an estimate of the driver’s overall awareness of the scene.

3. Method
The computational model we propose is guided by sev-

eral assumptions related to human attended awareness and
its relation to gaze patterns (Section 3.1). These assump-
tions are implemented through a mixture of explicit objec-
tives and behavioral regularizations (Section 3.3).

3.1. Assumptions and Supervisory Cues

We use several assumptions about gaze patterns and at-
tended awareness to define the priors in training our model:

• A1 Saliency: Gaze tends to focus on specific regions
[7], both object and stuff [31].

• A2 Attended awareness: People tend to become
aware of the objects they look at [52, 12]. Their at-
tention is, however, limited in its capacity.

• A3 Awareness decay: Awareness of an object can de-
crease (due to forgetting), or increase (when looking at
an object) at different rates [46].

• A4 Regularity of gaze, awareness: Gaze and aware-
ness maps should be regular and smooth unless other-
wise warranted [9, 25].

• A5 Awareness and motion: As an observer moves
through a dynamic scene, their awareness moves along
with objects and regions in the scene and exhibits tem-
poral persistence. [35, 5].

3.2. Model

We define the Model for Attended Awareness in Driving
(MAAD), shown in Figure 2, as a fully convolutional image
encoding-decoding network with shortcut links such as U-
Net [47]. Sensor images are encoded and decoded into a
latent feature map, M(x, t), from which two convolutional
modules emit the estimated gaze distribution pG(x, t), and
the awareness image MA(x, t).

The gaze distribution is normalized as a probability den-
sity function (via a softmax operator). We note that pG(x, t)
is a unified notation for gaze probability maps with and
without a noisy gaze input from an external gaze tracker. In
the absence of a noisy gaze input, pG(x, t) is a probabilistic
form of saliency. In the rest of the paper we use pG(x, t) to
denote both forms to simplify the notation. The individual
modules in the decoder are fed additional information: the
(noisy) driver gaze measurement over time in the form of
Voronoi maps, and optical flow maps [40] encoded as two
feature layers for horizontal and vertical motion.

3.3. Loss Function Design

At training time, the gaze and awareness maps are used
to compute several supervisory and regularization terms,
whose design is guided by the assumptions in Section 3.1.

3.3.1 Supervisory Terms

Gaze Prediction. We want pG to predict a subject’s gaze as
accurately as possible. This is encouraged via the primary
data term:

LG = −
∑
t

∑
x∈Xg(t)

log pG(x, t), (1)

where Xg(t) are the 2D ground truth gaze points at time t.
Perceived Awareness. We include a supervisory source

for awareness estimation. This term surrogates awareness
estimation training by a perceived awareness estimate. One
approach to obtain a perceived awareness estimate is to pro-
vide a person with the gaze estimate of the driver overlaid
on the road scene and query how aware the driver is of spe-
cific locations in the image at particular points in time. This
is further described in Section 4. The cost term reads:

LATT =
∑

(x,t)∈labeled

(MA(x, t)− LA(x, t))
2
, (2)

where the summation is over all annotated samples in loca-
tion x at time t, and LA denotes the annotated measure of
awareness in the range [0, 1] as described in Section 4.2.
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Figure 2: Model architecture. During training, our model takes as input a video sequence with associated scan paths from a
gaze tracker, along with optical flow estimates. The video sequence is processed using a 3D convolutional encoder/decoder,
and information from gaze, and optic flow is transformed and injected during the decoding stage. The model outputs two
heat maps: a gaze probability density heat map, pG, which provides a clean estimate of the noisy gaze input, and an attended
awareness heat map, MA, which provides an estimate of the driver awareness, both at the final frame of the input video
sequence. For further details, see Section 3.2.

Awareness of Attended Objects. Based on (A2), we
add a term that encourages awareness to be high when a
person is gazing at a scene location:

LAA =
∑
t

∑
x∈Xg(t)

(MA(x, t)− 1)2. (3)

3.3.2 Regularization Terms

Spatial Smoothness. Based on (A4-5), we added regularity
terms to both the awareness and gaze maps:

LS,· =

∫
|∇ϕ|2√
|∇I|2 + ϵ

dx, (4)

where ϕ is MA and pG for LS,A and LS,G respectively and
the integral is computed over all pixels. This regulariza-
tion is a variant of anisotropic diffusion [44, 43] with cross-
diffusivity based on the scene image I .

Temporal Smoothness. Based on (A3-5), we apply also
temporal regularization for awareness:

In order to make the map temporally consistent with re-
spect to the locations and not just object boundaries, we use
a smoothness / decay term based on the image optical flow:

LT =
∑
x,t

fwOF (MA(x+ vOF(x), t+ 1),MA(x, t)), (5)

fwOF(a, b) = c1((a− wOFb)+) + c2((a− wOFb)−)
2,

where vOF(x) is the optical flow computed on the input im-
ages and wOF < 1 is a weight factor that is close to 1. ()+
and ()− denote positive and negative change respectively in
awareness values when going from t to t + 1. Particularly,
fwOF(a, b) is set to be an asymmetric loss function that pe-
nalizes awareness that increases instantaneously when at-
tending to an object less compared to awareness that de-
creases rapidly via forgetting. This is accomplished by hav-
ing the forgetting term, ()−, to be quadratic.

Awareness Decay. Based on (A3), we expect the level
of awareness to decay over time, which we model via:

LDEC =
∑
x,t

(
(1− ϵDEC)MA(x, t)

−MA(x, t+ 1)

)2

, (6)

where ϵDEC is a decay factor.
Attention Capacity. Based on (A2), we expect that the

cognitive resources available to the driver do not change
over time. This assumption captures the fact that the over-
all awareness should be similar between frames on average.

LCAP =
∑
t

(∑
x

MA(x, t)−
∑
x

MA(x, t+ 1)
)2

. (7)

Block-level consistency. We denote by MA(x, t; t1) the
awareness estimate at (x, t) that is emitted based on the
training snippet started at t1, similarly for pG. We define
a consistency term [48] between consecutive estimates via
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the loss:

LCON,· =
∑
t1,t

∑
x

(
ϕ(x, t; t1)− ϕ(x, t; t1 + 1)

)2

, (8)

where ϕ is MA, pG for LCON,A,LCON,G respectively.
LCON,· helps to minimize the difference between the pre-
dictions of multiple passes of samples at the same times-
tamps through the network. The overall training loss is a
linear combination of the previously described loss terms.
See supplementary material for additional details.

3.4. Training Procedure

We trained our model using PyTorch 1.7 using NV100
GPUs. The training was carried out using video input sub-
sequences of length 4 seconds, sampled at 5Hz with frames
resized to 240×135. Our model was trained using Adam
optimizer [29] with a learning rate of 5× 10−3 and a batch
size of 4. The model weights were updated after the gra-
dients were aggregated for a fixed number of steps in order
to reduce the variance in the loss. The batch aggregation
size was set at 8. The first two layers of the encoder (kept
frozen during training) are taken from a pretrained Resnet18
implementation in Torchvision [36]. Later spatio-temporal
encoding is done by three layers of separable 3D convolu-
tion modules denoted as S3D in Figure 2 [62]. To provide
optical flow estimates, we used RAFT pre-trained on Fly-
ingChairs and FlyingThings datasets [54].

The decoder consists of stacked decoder units each of
which receives input from three sources a) side-channel in-
formation b) skip connections from the encoder layer and
c) the output of the previous decoder unit, when available.
Each decoder unit consists of two submodules: 1) The skip
connections are first processed via an S3D module whose
output is then concatenated (channel-wise) with the side-
channel information and the output of the previous decoder
unit. This concatenated input is processed by another S3D
module followed by bilinear upsampling that brings the out-
put to the proper resolution for the next decoder unit.

The decoder emits a latent map M which is subsequently
processed by two separate convolutional models to emit a
gaze probability map, pG and an awareness heatmap de-
noted as a MA. The softmax in the gaze convolutional mod-
ule ensures that the gaze probability map is a valid proba-
bility distribution. More details regarding network architec-
ture and training to be found in supplementary material.

4. Dataset Description
Our complete dataset comprises approximately 24.5

hours of gaze tracking data captured via multiple exposures
from different subjects to 6.2 hours of road-facing video
drawn from the DR(eye)VE dataset [40]. We concentrate
our gaze capture on repeated exposures of downtown (as

opposed to highway and rural) driving scenes (77%) and
daylight scenes (90%), since these contain the most diverse
visual scenarios. While the original DR(eye)VE dataset
captured and registered gaze to the road-facing video us-
ing a driver head–mounted eye tracker and feature-based
matching for homography estimation, accumulating signif-
icant measurement errors, we opted for an in-lab experi-
ment. In-lab experiment offers several advantages such as
higher accuracy and repeatability across subjects and cogni-
tive task conditions. Furthermore, models trained on in-lab
data has already been shown to be effective when tested on
in-the-wild data [61]. We measure gaze to an extremely
high precision (0.15◦ − 0.50◦ typical accuracy, 0.01◦ RMS
resolution, 0.05◦ microsaccade resolution) using a tower-
mounted SR Research EyeLink 1000 Plus tracker. A main
novelty of the dataset is that in addition to high precision
gaze, we supplement the dataset with third party annota-
tions of perceived awareness. The annotation procedure is
outlined in Section 4.2. We recruited 23 subjects (aged 20-
55), who each watched a subset of video clips with their
heads mounted in a chin-rest after a 9-point calibration pro-
cedure. The subjects all carried US driving licenses and had
at least two years of driving experience. Their primary task
was to monitor the driving scene as a safety driver might
monitor an autonomous vehicle. While not a perfect sub-
stitute for in-car driving data collection, this primary task
allowed for the capture of many of the characteristics of at-
tentive driving behavior. In order to explore the effect of the
cognitive task difference (vs. in-car data) on the gaze and
awareness estimates, subjects viewed the video under differ-
ent cognitive task modifiers, as detailed in Section 4.1 (data
collected with non-null cognitive task modifiers comprise
30% of total captured gaze data). Around 45% of video
stimuli were watched more than once, of which 11% (40
minutes) was observed by 16 or more subjects.

4.1. Cognitive Task Modifiers

Although our dataset is collected in an in-lab experi-
ment, we are still interested in subjects’ behavior under a
different task (in-car driving, engaged as well as distracted).
We therefore included in our experiments several secondary
cognitive task modifiers to artificially alter participant be-
havior in a way which might mimic certain variations in the
behavior of drivers in real conditions. We aimed at modi-
fiers that affected visual search patterns, but did not explic-
itly instruct the participants toward specific search targets.
These modifiers affect the visual patterns by either changing
the goal of visual search or by changing the scene appear-
ance. The cognitive task modifiers were as follows:

1. Null condition: The subjects were given the task of
supervising the driving of the car, looking for and flagging
possible risky events or obstacles.

2. Blurred condition: Same as 1, but stimulus videos

3430



Figure 3: What is the driver aware of? Our dataset is
unique in containing repeated views of the same driving
video by 23 subjects performing the same proxy supervi-
sory task but under different task modifiers: (i) null (green),
i.e. with no secondary condition, (ii) with blurred video
(yellow), (iii) with vertically flipped video (red), (iv) fix-
ating on the road only (dark blue), and (v) reading occa-
sional on-screen text (light blue) (see Section 4.1 for more
details). Here we overlay a sub-sampled one second gaze
history per subject for a given frame in a video sequence.
From observation of the scan paths of subjects, it is evi-
dent that some are aware and fixate strongly on the risk in
the scene (e.g. crossing vehicles or pedestrians), while oth-
ers fixate fleetingly or, due to the presence of cognitive task
modifiers, are unaware of the risk.

were blurred with a Gaussian kernel corresponding to
N deg of visual field, making scene understanding and
therefore the supervisory task harder, and affecting the vi-
sual search pattern.

3. Vertical-flip condition: Same as 1, but stimulus
videos were flipped upside down, making scene understand-
ing and therefore the supervisory task counter-intuitive, and
affecting the visual search pattern.

4. Road-only condition: Same as 1, but subjects were
asked to only fixate on road structure and not on dynamic
obstacles such as cars and people.

5. Reading-text condition: Same as 1, but stimulus
videos were overlaid with snippets of text of approximately
even length at random image locations for P seconds at an
average interval of Q seconds. Subjects were asked to read
each text snippet while supervising the driving.

4.2. Annotations

We annotated 53,983 sequences of approximately 10
seconds sampled randomly from within the data for at-
tended awareness. While inferring awareness is difficult
and subjective, and probing the subject’s working memory
directly is impossible, we devised a reproducible annota-
tion scheme to explore a third person’s estimate of a per-
son’s attended awareness. Our annotation protocol lever-
ages the fact that humans are able to develop a theory of
mind of other peoples’ mental states from cues inherent in
eye gaze [28]. While the labels provided (as in any manu-
ally annotated dataset) are imperfect and have certain limi-
tations, they are an important first step towards data-driven
modeling of awareness. Annotators watched a video snip-
pet where the subject’s gaze was marked by two circles cen-
tered at the gaze point. One circle (green) size was set to the
diameter of a person’s central foveal vision area (2 degrees)
at the viewing distance. Another circle (red) was set to a
diameter four times the foveal vision circle. At the end of
the video snippet, a random location was chosen and the
annotators were asked whether they believe the subject has
attended to that location on a scale between 1 and 5 (1-no,
definitely not aware, 5-yes, definitely aware). Three differ-
ent sampling types (object, edges, and non-objects) were
used for sampling the final location. The annotations were
linearly transformed to [0, 1] in LA and provided a super-
visory signal that the network (awareness predictor) tried
to match. Annotators were asked whether the cursor corre-
sponded to a well-defined object, whether they would ex-
pect to be aware of the location if they were driving and
how surprised they by the appearance/behavior of the high-
lighted region. The annotations had good coverage across
awareness levels and contained sufficient number of exam-
ples of both highly aware as well as unaware examples.
Figure 4 shows frames from an example annotation video.
More annotation details and statistics in supp. material.

5. Results
We now demonstrate the results from our model on sev-

eral tasks of interest such as saliency, gaze refinement and
attended awareness estimation. Our model, while applied
here to a dataset which isn’t strictly egocentric, could be
straightforwardly extended to a true egocentric setting.

5.1. Saliency

In order to confirm that our model is capable of estimat-
ing visual saliency, we trained it on the DR(eye)VE dataset
images and splits [40]. As our approach assumes individ-
ual gaze samples per frame as the primary supervisory cue,
we sampled gaze points from the fixation maps provided
in the original dataset for every frame. We generated pG,
and compared it against the ground truth gaze map. For the
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Figure 4: Annotation example. Left, center: Frames from the sequence with gaze estimates, along with the estimate of the
central foveal vision area, and a larger red circle to mark what is probably outside the central vision area. Annotators were
guided to treat these as approximations of the subject’s attended gaze. Right: Annotators were asked to say whether the
subject has attended to the red cross region and is aware of it. See the supp. mat. for additional details on the annotation.

standard measures of KL, cross-correlation and informa-
tion gain (see [40] for details), we obtained 1.734, 0.565,
and −0.0002 respectively, comparing favorably to other al-
gorithms tested on that dataset, such as [14, 57].

5.2. Gaze refinement

In the following experiments, we show how our model is
able to correct imperfect gaze estimates. In driving, driver
gaze estimates can be obtained using camera-based driver
monitoring systems (DMS). However, these estimates can
be highly noisy due to the inherent process noise introduced
during gaze tracking, or biased due to calibration errors in
the DMS [26]. Our hypothesis is that knowledge of where
the person might look in the scene can help the model re-
fine noisy and biased (miscalibrated) coarse estimates. We
describe two experiments that were conducted to address
these typical modes of failure. For all experiments herein,
we trained our model with a training dataset encompass-
ing 8 urban day-time videos from our dataset with the high-
est subject and task coverage and adopted a fixed 80%/20%
non-overlapping training/test split.

5.2.1 Gaze Denoising

For this experiment the gaze input to the gaze transform
module is corrupted by noise, mimicking imperfect knowl-
edge of a person’s gaze. We use our model to try to identify
the correct gaze point taking scene saliency into consider-
ation. We use a spatially-varying additive white Gaussian
noise model, where the input to the network xnoisy is com-
puted according to [27]:

x
(i)
noisy(t) =x

(i)
true(t) + η(i), η(i) ∼ N (0, (σ(i))2), (9)

σ(i) =max(σ(i)
n , w ∗ |x(i) − x

(i)
0 |)

where η is the additive noise and the standard deviation σ(i)

increases as we get further from the center of the image
along each coordinate x(i) ∈ {x(1), x(2)}. Our network
denoises the gaze input by leveraging scene saliency infor-
mation as encoded in the network. Fusing the noisy gaze lo-
cation allows us to surpass the capability of a pure-saliency
based model. The latter merely finds saliency image peaks

that are close to the noisy gaze location and would be the
straightforward way of incorporating saliency information.
We also compare to an approach that relates gaze to the
nearest object. In all cases we use a meanshift approach [13]
to find nearby objects or peaks, with a standard deviation
given by σn

√
(H2 +W 2), where H and W are the dimen-

sions of the map. The results are summarized in Table 1 and
demonstrate significant improvement with MAAD.

Scenario Raw OBJ SAL MAAD
σn = 0.05 15.7 62.0 25.7 18.1
σn = 0.10 28.1 55.6 25.4 19.8
σn = 0.15 40.9 53.3 24.9 21.0
σn = 0.20 51.7 53.1 24.9 22.1

Table 1: Mean absolute error (in pixels) of noisy gaze
recovery based on object attention: meanshift into nearby
objects (OBJ), meanshift according to pure saliency map
(SAL), and meanshift correction based on the MAAD gaze
map, for different noise levels. Our approach improved
upon other alternatives over a wide variety of input noise
levels, far beyond the noise level at train time (σn = 0.03).

5.2.2 Gaze Recalibration

We model imperfect calibration as an affine transformation.
For this experiment, the DMS gaze input, xnoisy, to the gaze
transform module is given by:

xnoisy(t) = Tcorrect (Tcorrupt (x)) (10)

where Tcorrect, Tcorrupt are both 2D affine transforms. We
model the correcting transform, Tcorrect, as an MLP with one
hidden layer. The corruption transform is created by adding
element-wise zero-mean Gaussian noise with standard devi-
ation σ2

n to the transformation matrix and vector of an iden-
tity transform. We show the reduction in average error after
calibration in Table 2. By leveraging saliency information,
we are able to naturally compensate for the calibration er-
rors using the model.

5.3. Driver Attended Awareness

In this experiment, we measure the model’s ability to in-
fer attended awareness. We do so by measuring the model’s
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Scenario Before After
σn = 0.1 0.23 0.13
σn = 0.2 0.58 0.16
σn = 0.3 1.12 0.33
σn = 0.5 1.23 0.59

Table 2: The error was computed as the sum of the mean-
squared error of the elements of the Tcorrect and T−1

corrupt be-
fore and after recovery from miscalibration. For each noise
level the errors were computed by averaging over eight op-
timization runs. In Figure 4 (supp. material) we show the
gaze map emitted by the model before and after recalibra-
tion with miscalibrated gaze input.

Noise level MSE, FG MSE, MAAD
σn = 0.01 0.357 0.138
σn = 0.05 0.359 0.135
σn = 0.1 0.425 0.138
σn = 0.15 0.464 0.140

Table 3: Mean squared error awareness estimates with
spatio-temporal Gaussian with optic flow (FG) and MAAD,
as a function of input gaze noise level. Our approach signif-
icantly outperforms the baseline and is robust to the noise
present in the gaze input.

agreement with annotated third person estimate of aware-
ness. We compare our approach to the following alternative
of filtered gaze (FG) using a spatio-temporal Gaussian filter.
We convolve each of the past gaze samples with a spatial
Gaussian and utilize optic flow to temporally propagate the
gaze information to the subsequent frames and aggregate
them to form an awareness estimate. The optic flow mim-
ics the subject’s notion of object permanence under motion,
and the spatial Gaussian account for subjective uncertainty
accumulated over time as well as track limitations with op-
tic flow. The results are given in Table 3.

5.4. Ablation Experiments

We performed a series of leave-one out ablations to in-
vestigate the impact of the various cost terms on the at-
tended awareness estimation task. Both LATT and LAA are
crucial for more accurate awareness estimation (Table 4).

6. Discussion and Conclusion
We have introduced a new model which uses imperfect

gaze information and visual saliency to reason about per-
ceived attended awareness within a single model. To train
and validate our model, we generated a dataset which in-
cludes both high-accuracy gaze tracks as well as third per-
son annotations for estimated attended awareness. MAAD

Ablation Awareness Estimate
LATT 0.262
LAA 0.199
LT 0.159

LCON , · 0.164
Full model 0.138

Table 4: Attended awareness estimation (mean squared er-
ror) on the test set using different ablations of MAAD. The
testing noise level was set to be σn = 0.1. More ablation
results are presented in the supplementary material.

Figure 5: Time evolution of gaze (left) and awareness
(right) under the reading-text modifier condition. Top:
The subject gazes straight ahead and is aware of the car in
front. Middle: The subject attends to text block and the
gaze map shifts accordingly. The awareness map has two
regions: one for the newly attended and the other for the
previously attended location. Bottom: As the subject con-
tinues to read the text, the gaze map is localized in the bot-
tom right, and the awareness map correctly captures how
the subject is unaware of the scene in front.

can easily be extended to work with multi-image streams or
scene graphs. Although our subjects viewed pre-collected
video stimuli as opposed to being part of a true egocentric
vision-action loop, one advantage is that we could acquire
multiple observations of the same video, enabling the study
of distributions rather than single scanpaths of attention for
any given video. Our dataset can be compared in many
ways to the related egocentric driving dataset from [40].
Extending our work and model to study subjects who are
in control of real vehicles is a topic for future work.
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fects of visual and cognitive load in real and simulated mo-
torway driving. Transportation Research Part F: Traffic Psy-
chology and Behaviour, 8(2):97–120, 2005.

[21] Jianwu Fang, Dingxin Yan, Jiahuan Qiao, and Jianru Xue.
Dada: A large-scale benchmark and model for driver at-
tention prediction in accidental scenarios. arXiv preprint
arXiv:1912.12148, 2019.

[22] Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao. Sal-
icon: Reducing the semantic gap in saliency prediction by
adapting deep neural networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 262–
270, 2015.

[23] Laurent Itti, Christof Koch, and Ernst Niebur. A model
of saliency-based visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(11):1254–1259, 1998.

[24] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
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