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Abstract

Our goal is to predict the camera wearer’s location and
pose in his/her environment based on what’s captured by
the camera wearer’s first-person wearable camera. Toward
this goal, we first collect a new dataset in which the camera
wearer performs various activities (e.g., opening a fridge,
reading a book) in different scenes with time-synchronized
first-person and stationary third-person cameras. We then
propose a novel deep network architecture, which takes as
input the first-person video frames and empty third-person
scene image (without the camera wearer) to predict the lo-
cation and pose of the camera wearer. We explore and com-
pare our approach with several intuitive baselines and show
initial promising results on this novel, challenging problem.

1. Introduction

Consider Fig. 1 (left). We are given two sets of images:
the first image is an indoor-scene taken from a stationary
camera, and the second set of images is one taken from a
first-person wearable camera within the same scene. As hu-
mans, we can easily imagine that the camera wearer, given
the first person view, would be sitting on the chair in front of
the laptop; Fig. 1 (right). The goal of this paper is to create
a model with this capability; i.e., predict the possible loca-
tion and pose of the camera-wearer based on the first-person
view and corresponding empty (without the camera-wearer)
third-person scene image.

While there have been prior work [28, 70] which pre-
dict the pose of the camera-wearer using only first-person
videos, we argue that it is important to contextualize the
pose conditioned on the environment. Specifically, the
scene that the camera wearer is operating in, and the ob-
jects that make up the scene, constrain the types of actions

First person framesScene frame
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Figure 1. Our model takes first-person frames and a third-person
scene frame as input and predicts the pose and location of the cam-
era wearer capturing the first-person video. For example, by look-
ing at the laptop we can predict that the camera wearer is in the
sitting position on the chair next to the laptop.

(poses) that the camera wearer can have. This idea of affor-
dances [23] itself is not new, but predicting the specific lo-
cation and pose of the camera wearer in the scene based on
the first-person view has not been studied previously. Fan
et al. [16] use synchronized first and third-person views to
identify the camera wearer in the third-person frame. But in
their case, the camera wearer is visible in the third-person
frame whereas in our setting the third-person frame does
not contain the camera wearer.

We envision several real-world applications of our prob-
lem setting, particularly for law enforcement settings where
only body-mounted cameras are available. In such cases,
being able to infer the pose and location of the camera
wearer with respect to a particular scene (whose image can
be taken separately) can be critical for surveillance and
monitoring purposes. Similarly, augmented and virtual real-
ity (AR/VR) applications can be facilitated by knowing the
location and pose of the camera wearer in the scene. For ex-
ample, we could use the first-person view of the camera on
AR glasses and third-person scene image to create a “Smart
Room” application, in which the inferred camera wearer’s
location and pose in the room can be used to determine e.g.,
which light to be turned on, adjust the temperature, or noti-
fication to be shown.

Main idea. Our key idea is to learn semantic corre-
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spondences between what’s captured in the first person se-
quence of frames (i.e., the movement of the camera-wearer
plus what s/he sees) and the objects present in the third-
person scene. During training, we have access to synchro-
nized first-person and third-person videos (where the cam-
era wearer is visible in the third person view). The third-
person videos provide the ground-truth pose and location
of the camera wearer in the scene to train our model. Our
model takes first-person frames and a third-person scene
image as input, learns visual and contextual similarities be-
tween the two sets of images, and predicts the location and
pose of the camera wearer in the scene. Our setting is prac-
tical for real-world settings as it is convenient to obtain an
empty scene image; e.g., for a home AR/VR application, we
can take a picture of the room-of-interest once, and using
the first-person video, we can predict the pose and location
of the person in the room.

Although this problem can be ill-posed in some cases
e.g., the third-person scene may only capture the back of a
laptop whereas the first-person view may capture the front,
the model can still succeed if the correspondences learned
between the views are at a semantic level (e.g., that the lap-
top from both views are the same by taking cues from sur-
rounding objects, as well as by learning what a laptop looks
like from any viewpoint). Similarly, if the camera wearer
looks at something that is not present in the scene e.g., s/he
comes into the scene with a laptop, the model can still suc-
ceed by learning that laptops are usually used sitting down
on a desk or couch.

Contributions. Our work has three main contributions.
1) We propose the new problem of predicting the location
and pose of the camera wearer in a third-person scene si-
multaneously. To the best of our knowledge, we are the first
to tackle this problem. 2) We propose a novel deep net-
work architecture which learns semantic correspondences
between the first and third-person views to perform this
task. Our quantitative and qualitative results show better
performance compared to meaningful baselines.

2. Related Work
First-person (egocentric) vision. Analyzing images cap-
tured from a wearable camera has been widely studied for
video summarization [35, 41, 62, 68, 43, 6], human ac-
tion recognition/prediction [18, 19, 11, 37, 2, 56, 42, 53],
future motion prediction and planning [55, 57, 46, 65, 3],
saliency [58, 4, 5, 49, 71, 22, 8, 52]. Our work goes beyond
the first-person view to find semantic correspondences in
the third-person scene to predict the camera wearer’s loca-
tion and pose.

Particularly relevant are works that estimate 3D human
body pose from first-person cameras [28, 69]. Unlike these
approaches, our work incorporates environmental context
from the third-person scene, and further requires the lo-

calization of the camera wearer in addition to estimating
his/her pose.

Visual odometry estimates the location and orientation
of an agent based on the images captured by mounted cam-
eras. Most work are feature-based, which extract features
from keypoints of the image [32, 30, 7, 59], appearance-
based, which compare images directly [50, 24, 9], or a hy-
brid of the two [20, 48, 40, 51]. Our task is different in that
it requires predicting the location and pose of a human cam-
era wearer, which can be much more complex. In addition,
our model has the potential to predict the location and pose
of the camera wearer in a scene that is related but differ-
ent from the exact scene in which the camera wearer was
in (e.g., predicting the possible location/pose in a different
kitchen scene). This is in contrast to the conventional visual
odometry/SLAM [13] setting where the localization must
be done in the same scene.

Visual affordances and person location prediction. The
study of visual affordances [23], i.e., how an object can be
used, is also related. Previous work utilize videos/images
from the third-person view to learn human affordances for
scene layout understanding [26, 21], human action/pose
prediction [64, 61, 66, 33, 29, 34, 47], and object under-
standing [25, 31, 12, 44]. Often these methods require the
human to be visible in the input. Also, there has been
work [60, 36, 72] to directly predict the location of the per-
son in the scene with the correct pose. However, these pre-
dictions are generic for the entire scene as they are made
independent of current first-person view. In contrast, in our
setting, the model never sees the camera wearer in the third-
person view, and focus on the novel task of predicting the
location and pose of the camera wearer in the third-person
view based on the first-person view.

Joint first person and third person visual learning.
This area has been studied for view synthesis [14], learn-
ing shared visual representations [54], and video summa-
rization [15]. Others identify the camera wearer location in
the third-person view by combining motion and appearance
cues from only the first person view [1, 16, 63, 67]. The
localization in our task is much more challenging because
the camera wearer is never visible in the third person view.
To our knowledge, our proposed task of simultaneous lo-
calization of the camera wearer in the third-person frame
and predicting the human pose has never been done in this
setting.

3. Approach
Our goal is to learn a model that can accurately infer

the camera wearer’s location and pose within a scene, given
a first-person view of the camera wearer. We supply two
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Figure 2. Model architecture. For the task of pose and location prediction, our approach takes an input consisting of a sequence of first-
person frames (i.e. as seen by the camera wearer) Iego, and a third-person scene image (i.e. an image of the scene where Iego was taken
without the camera wearer) Iscene. The scene image based location prediction branch learns the semantics of the input scene for predicting
the possible locations for each pose. A sequence of Iego frames are fed into the TSM model [38] to perform pose classification. Finally,
we concatenate the feature maps from these two branches, and jointly process them to infer the specific pose and location of the camera
wearer within Iscene.

inputs to the model: (1) the aforementioned first-person
frames, hereafter termed Iego, and (2) an image of a scene
containing no human, hence named Iscene. During training,
we have access to the synchronized first-person and third-
person videos as well as Iscene image where these videos
were taken. Since the camera wearer is visible in the third-
person video, we can obtain the exact pose and location of
the camera wearer in the Iscene corresponding to each Iego
taken from the first-person video. Using this information as
ground-truth, we can train a network which takes semantic
features of the Iscene and Iego pair as input to predict the
camera-wearer’s pose and location in Iscene. During train-
ing, the network will learn correspondences between Iego
and Iscene to make these predictions.

3.1. Network architecture

Fig. 2 shows our network architecture. The location pre-
diction module (top) takes as input the scene image Iscene
while the pose prediction module (bottom) takes as input the
first-person frames Iego. Their processed features are con-
catenated and jointly processed (middle) to produce pose
probabilities for each location in the scene. Intuitively, the
model must see both the scene image and the first-person
frame features together in order to learn semantic corre-
spondences to determine the precise location and pose of
the camera wearer.

In order to ensure that the location prediction module fo-
cuses on location prediction based on Iscene, and the pose
prediction module focuses on pose prediction based on Iego,
we perform multi-task learning. Specifically, we force the

location prediction module to predict all observed (ground-
truth) locations of the camera wearer, independent of Iego,
while we force the pose prediction module to predict the
corresponding ground-truth pose, independent of Iscene. In
this way, we can prevent the model from taking an unde-
sirable shortcut, e.g., by using only the scene features to
predict both location and pose. Ultimately, the Iscene fea-
tures should encode that e.g., the locations near the chair
and couch are more likely to contain a person in a sitting
pose, independent of what’s seen in the first-person frames.
Similarly, Iego features should encode that e.g., the camera
wearer is in the sitting pose if the Iego frames have down-
ward motion and have a laptop in it, independent of what’s
seen in the third-person scene image. These features can
then be combined to encode the specific location and pose
of the camera wearer. In the ensuing sections, we describe
each of the modules in more detail.

3.2. Third-person scene image based location pre-
diction

As described earlier, the goal of this stage is to make the
features corresponding to Iscene capture location informa-
tion for each pose. To this end, we train the network to
predict all locations visited by the camera wearer in Iscene
by only taking Iscene features as input. During training,
we have access to the third person video corresponding to
Iscene. Hence, we know all the ground-truth locations and
poses of the camera wearer within Iscene to train this mod-
ule. Once trained, Iscene features will contain location spe-
cific information for each pose. For example, the Iscene
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features would encode that the person is more likely to be
closer to the chair when she is in a sitting pose whereas for
the standing pose there is a higher chance that she is on the
floor region.

In order to train this module, we first divide Iscene into
a G×G grid. Then, we create a ground-truth label map of
size M × G × G, where M is the total number of poses.
The ground-truth label pci for grid position i is set to 1 if
the camera wearer visits location i with pose c, otherwise
it is set to 0. For location prediction, we provide Iscene
as input to a fully convolutional network to get M binary
predictions of size G × G for each pose. We use binary
predictions since the camera wearer could have been at the
same location in multiple poses (at different times), and also
because she may not have visited a particular location at all.
Specifically, we train using the binary cross-entropy loss,
one for each pose, between the true label pci and prediction
p̂ci :

Lscene = −
G×G∑
i=1

M∑
c=1

pci log (p̂
c
i ) + (1− pci ) log (1− p̂ci ).

(1)

After training, this module can predict all possible loca-
tions for each pose given a scene image. However, it cannot
provide the exact location of the camera wearer as it was not
conditioned on Iego. For example, it can predict chairs and
sofas as possible locations for the sitting pose in the scene,
but it needs to see the content of Iego to know the exact
chair or sofa on which the camera wearer is sitting. Hence,
these scene location features will need to be combined with
first-person pose features, which we describe later.

3.3. First-person view based pose recognition

Next, we train the features corresponding to the first-
person frames Iego to capture pose information. We use
Temporal Shift Module (TSM) [38] as the backbone for this
module, which takes a sequence of first-person frames Iego
as input and uses both the temporal and visual content of
the frames to predict the pose. For example, if there is a
fast downward motion and the floor region is visible, then
the person is more likely to be in the bending pose. We
train this module using the cross-entropy loss between the
predicted pose probability q̂ and ground-truth pose label q:

Lego = −
M∑
c=1

qc log (q̂c), (2)

where M is the total number of poses. We obtain the
ground-truth pose q using the corresponding third-person
video in which the camera wearer is visible. We cluster the
human poses into M canonical poses (like sitting, bending,

and standing) and treat pose prediction as a M -way classi-
fication problem. More details are available in the imple-
mentation details.

3.4. Joint location and pose prediction

Thus far, Iscene and Iego were fed in isolation to pre-
dict the location and pose probabilities respectively. How-
ever, for the final location and pose prediction of the cam-
era wearer, it is critical that the network see both Iscene and
Iego features together. By seeing only Iscene, the network
can learn all the possible locations a person can be present
in for a given pose, but it cannot know the exact location un-
less it also sees Iego. Similarly, the network can infer pose
by looking only at Iego, but it can be even more confident
in its pose prediction by also seeing Iscene. For example,
if Iego contains a book on a table, it is very likely that the
camera wearer is in a sitting pose. But if Iscene shows that
there is a chair near the table with the book, then it can be
even more confident that the person is in the sitting pose.

To model this, we concatenate the location features com-
puted from the scene image Iscene with the pose features
computed from the first-person frames Iego, and feed the
combined feature into a joint prediction module to predict
the location and pose of the camera wearer conditioned on
both inputs; see Figure 2. More specifically, the prediction
of this joint module is of size (M + 1)×G×G, where x̂c

i

indicates the probability of the camera wearer being in pose
c at grid location i. The M + 1’th pose class indicates the
background class (camera wearer not being present). We
find that modulating this joint probability with the scene
based location probability and first-person pose probability
to be helpful, as they can serve as additional constraints and
attention to guide the final prediction. Therefore, the final
prediction ẑci for each grid location and pose is:1

ẑci = p̂ci ∗ q̂c ∗ x̂c
i . (3)

We train this joint module by applying the cross-entropy
loss between the prediction ẑci and ground-truth mask zci at
each grid location:

Ljoint = −
G×G∑
i=1

M+1∑
c=1

zci log (ẑ
c
i ), (4)

where the ground-truth zci is 1 if the camera wearer was
present at location i in pose c (which can be determined
based on the corresponding third person video), otherwise
for all other locations the background class is 1; i.e., there is
only one ground-truth pose and location for a given Iscene
and Iego pair.

1As we do not have the location and pose prediction corresponding to
the background class for p̂i and q̂, we simply set their background class
probabilities to 1.
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Our final loss combines all three losses:

L = λ1Lscene + λ2Lego + λ3Ljoint, (5)

where λ1 = 1, λ2 = 1, and λ3 = 1.
During testing, we provide first-person frames (Iego) and

scene image (Iscene) as input to our model, which predicts
the pose and location of the camera-wearer in the scene.

4. Experiments
In this section, we first describe our new dataset, imple-

mentation details, and evaluation metrics. We then discuss
quantitative and qualitative results.

4.1. Synchronized First and Third Person Video
Dataset

We collected a new real-world video dataset by hiring
workers through Amazon Mechanic Turk (AMT). Turkers
recorded a first-person video and a third-person video si-
multaneously. In each case, the worker used a stationary
camera to record the third-person scene video and wore
a head-mounted camera to record first-person video. We
asked the workers to clap at the beginning, which we used
to synchronize the two videos.

During each pair of recordings, the worker changed their
location and pose several times in accordance with one
of the scripts from Charades-Ego [54]. Recordings lasted
approximately one minute. We selected 162 scripts from
Charades-Ego, each set in one of 6 types of indoor scenes:
bedroom, kitchen, laundry room, living room, home office,
and dining room. We collected a total of 235 videos with
80 different environments (different indoor rooms). For
each third-person frame, we use AlphaPose [17] to auto-
matically identify the cameara wearer’s location and pose.
Subsequently, we exclude frames that contained no human
figures or human figures whose pose AlphaPose identified
with only poor confidence.

To create pose annotations for our dataset, we cluster the
pose skeletons from our training set into 7 clusters. Out
of 7 clusters, 4 clusters belong to sitting pose in different
orientations, 2 clusters belong to bending in different ori-
entations, and 1 cluster belongs to standing. For the third-
person view, we know the orientation of the pose (e.g., left-
facing or right-facing). However, for the first-person view,
it is hard to know the orientation; we therefore only predict
the pose probability for sitting, bending, and standing with-
out considering the orientation, and repeat the probabilities
across the different orientations to obtain values for all 7
poses. We calculate the bounding boxes of these 2D skele-
tons obtained using AlphaPose, and then use its center for
the location ground-truth. We divide the scene image Iscene
into a grid of size 13× 13, and the grid location in which a
person’s center lies is the ground-truth.

Methods Pose-balanced Location-balanced
1×GT box 2×GT box 1×GT box 2×GT box

Random 5.25% 24.26% 8.46% 25.91%
cGaus (µ:6,σ2:4) 8.90% 27.94% 11.21% 30.48%
cGaus (µ:6,σ2:2) 16.61% 43.59% 13.09% 36.29%
Saliency 6.76% 34.76% 15.47% 43.34%
Ours-SceneOnly 18.74% 41.03% 10.86% 34.40%
Ours 23.67% 53.57% 19.10% 47.08%

Table 1. Localization accuracy. Our approach outperforms the
baselines for camera wearer localization.

4.2. Implementation details

Evaluation split. From our dataset, we use 187 videos for
training and the remaining 48 videos for testing. We ensure
that the environments of the test images are distinct from
those that appear in training images, though the 6 scene cat-
egories are common to both.

Training details. We first train the scene image based lo-
cation prediction module and first-person view based pose
prediction module, and then combine them together to train
the final location and pose prediction module. We find this
leads to more stable training. For the first-person pose pre-
diction branch, we use TSM [38] pre-trained on the Epic-
kitchen dataset [10]. For Iego, we use a sequence of 64
frames which is around 2 seconds. For the scene image lo-
cation prediction branch, we load the backbone of MaskR-
CNN [27] pre-trained on MS COCO [39]. We have M = 7
poses and G = 13 grid resolution. For the Lego and
Ljoint losses, we balance the weights of each class accord-
ing to their frequency. We use SGD with 0.0001 and 0.9 as
learning rate and momentum, respectively. The network is
trained for 6 epochs with a batch size of 8. We also apply
random horizontal flipping and crop as data augmentation.

4.3. Pose prediction results

We first evaluate pose prediction on novel test scenes not
seen during training. This is a really challenging task as we
need to infer the pose from first-person view and scene im-
age without actually seeing the person. For our prediction,
we choose the pose with maximum probability across all
13 × 13 grid locations of our final branch. We obtain ac-
curacy of 46.52% accuracy for the pose prediction which is
significantly better than random prediction over three poses
(33.33%).

4.4. Location prediction results

Next, we evaluate the localization task on novel test
scenes not seen during training. We consider the localiza-
tion task to be successful if the model’s predicted center
location falls within the ground-truth bounding box of the
person. Given the difficulty of this task, we also evaluate
with the ground-truth box increased by 2x. Also, since our
test data is not uniformly distributed across pose and loca-
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tion, we average the test accuracies for each pose (Pose-
balanced) and 13× 13 grid locations (Location-balanced).

For our model’s prediction, we choose the location
which has the highest pose probability across all the poses
in our final branch conditioned on both Iego and Iscene.
We evaluate our model’s performance against the following
baselines.

• Random prediction (Random) We randomly sample
a coordinate in the image space (13 × 13) as our pre-
diction.

• Predicting center gaussian (cGaus) We sample an
image coordinate from a Gaussian distribution cen-
tered at the image center with variance 2 and 4 in both
x and y coordinates (assuming image size is 13× 13).

• Saliency-based location prediction (Saliency) In or-
der to demonstrate the difference between our task and
saliency prediction, we use a popular saliency predic-
tor [45] to perform location prediction. We consider
the location with the highest saliency value as the pre-
dicted location of the camera wearer. This baseline,
unlike our approach, does not rely on Iego, and always
predicts the same location for a given Iscene.

• Location-branch-Only: In this baseline, we only
train the third-person scene based location prediction
branch and choose the location with the highest prob-
ability across all poses as the prediction. This is sim-
ilar to the Saliency baseline, but the key difference is
that Saliency is a generic saliency detector whereas this
baseline is trained on our data for location prediction.

Table 1 shows the results. Our approach yields the best
localization performance, outperforming the best baseline
by 4.93% in the pose-balanced evaluation metric for 1x
ground-truth box. The center Gaussian baseline (cGaus)
outperforms random prediction (Random) as there is a cen-
ter bias; i.e., the camera wearer tends to be near the center
of the scene for multiple different activities. The saliency
baseline (Saliency) can only identify generic salient regions
in the scene like a chair, couch, and bed without consider-
ing where humans can be (i.e., affordances), and thus per-
forms poorly. Finally, the Location-branch-Only baseline
performs worse than our full approach. This baseline can-
not specify the exact location of the camera wearer as it
only relies on the scene image and does not use the first-
person view Iego, and hence does not know where the cam-
era wearer is looking in the scene.

4.5. Joint pose and location prediction results

Finally, we evaluate joint pose and location prediction.
Since this is a new problem with no existing methods, we
compare to different variants of our model:

Methods Pose-balanced Location-balanced
1×GT box 2×GT box 1×GT box 2×GT box

Ours-SingleBranch 10.64% 20.24% 6.88% 14.81%
Ours-NoModulation 11.16% 19.26% 8.02% 13.27%
Ours 12.87% 26.89% 11.34% 22.99%

Table 2. Joint pose and location prediction. Our full approach
produces the best results, which demonstrates the importance and
complementarity of each component.

Figure 3. Location prediction for each pose based only on the
scene image Iscene. In each column, we show the predicted lo-
cations corresponding to each pose. We can see that for poses
associated with sitting, regions like chair and sofa get highlighted,
whereas for standing, the floor region gets highlighted.

• Ours-SingleBranch: We only apply Ljoint, and re-
move Lscene and Lego. In other words, we train a single
branch which takes Iscene and Iego as input.

• Ours-NoModulation: We also train a version in
which we do not modulate the final location and pose
probabilities with the probabilities of the location and
pose branches; i.e use x̂ instead ẑ for Ljoint. We still
have separate modules for scene based location pre-
diction and first-person frames based pose prediction,
but we do not use their output to constraint our final
location and pose prediction.

Table 2 shows the results. For a prediction to be cor-
rect, it has to match both pose and location according to
our previous location and pose evaluation criteria. The
Ours-SingleBranch baseline performs worse than our full
model, which shows the importance of multi-task learning
and training location prediction module only conditioned
on Iscene and pose prediction module conditioned only on
Iego, as described in Section 3.1. The Ours-NoModulation
baseline also performs worse, which shows the importance
of using the output of the other two branches as to guide
the final prediction. Our full model gives the best perfor-
mance compared to the baselines showing the importance
and complementarity of each component of our approach.

In addition, we analyze the variation in location predic-
tion. We find the average standard deviation of the x and
y coordinates for each test video to be 0.94 and 0.64 for
Ours-SingleBranch and Ours-NoModulation, respectively.
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First-PersonScene Prediction Ground Truth

Figure 4. Successful Predictions. In each row, we show the third person scene image (Iscene), center frame of the first-person frame
sequence (Iego), our model’s location and pose prediction, and ground-truth showing actual camera wearer in the scene.
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First-PersonScene Prediction Ground Truth

Figure 5. Failure cases. We show cases where our model fails to
predict correct location and pose for the camera wearer.

First-PersonScene Prediction Ground Truth First-PersonScene Prediction

Figure 6. Left: Prediction results when the third-person scene
image remains the same but corresponding first-person frames
change. Given the same third-person scene image, our model’s
predictions change when the first-person frames change. Right:
Prediction results when the first-person image remains the same
but corresponding third-person scene image changes. Our ap-
proach can sometimes predict reasonable pose and location even
when the first-person image is not taken in the scene image.

Our approach has a higher standard deviation of 1.11, which
indicates that it is less biased towards a single location and
has more variation in its prediction.

4.6. Qualitative results

First, in Fig. 3, we show the location predictions cor-
responding to each pose using our model when condi-
tioned only on Iscene (we draw a bounding box of fixed
size 2×3 around the predicted center in the 13×13 image
grid). We can see our model makes meaningful predic-
tions. For example, in the second row, the chair region
gets highlighted for the sitting pose with the correct orienta-
tion which matches the chair’s orientation. Whereas for the

standing pose, the floor region gets highlighted in all three
rows.

Next, in Fig. 4, we show successful pose + location pre-
dictions of our model. The first two columns show the two
inputs to the network: the scene image Iscene and its corre-
sponding first-person Iego frame (the center frame from the
frame sequence is shown). In the third column, we show
our predicted location and pose of the camera wearer. In
the last column, we show the ground-truth with the camera
wearer in the scene image. In the first row, our model pre-
dicts that the person would be in a sitting pose on the chair,
likely by using the table in Iego as a cue. In the fifth row,
interestingly, the model correctly predicts that the person is
bending near the bed, likely because there is a box in Iego
on the bed and the model is able to find the corresponding
box in the scene image. In Fig. 5, we show common failure
cases of our approach. In the last row, the direction of the
camera wearer’s gaze puts the content of Iego completely
outside of Iscene, therefore our model gets confused about
the pose and location. In the second last row, our model
gets confused about the sitting location as there are multi-
ple possible locations for the sitting.

We also show our prediction results for multiple in-
stances of Iego corresponding to the same Iscene in Fig. 6
(left). In the first example, when the camera wearer in Iego
is looking at the right side of the kitchen at an angle, our
approach predicted that the person was in a bending pose
on the right side. When Iego changes to the other side of the
kitchen, our prediction changes accordingly. These results
show that our approach takes Iego’s first-person informa-
tion into consideration in its predictions. Finally, in Fig. 6
(right), we show predictions on semantically-related third-
person scene images (Iscene) which do not correspond to
Iego; i.e., the Iego was not taken in the Iscene. Even with-
out having direct correspondence between Iego and Iscene,
our model can sometimes make reasonable predictions. In
these four cases, it predicts the person to be close to the ta-
ble as the table is visible in the Iego image. In the second
and third rows, our model predicts that the person is sitting
on the chair close to the table, which is reasonable given the
Iego image.

5. Conclusion
In this paper, we presented the novel task of predicting

the camera wearer’s location in the third-person scene im-
age by looking at the first-person frames. We collected a
new dataset for this task, and proposed an intuitive network
architecture. We obtained initial promising results, but ad-
mittedly, failures are common as this is a very challeng-
ing task. Nonetheless, we hope that this work will motivate
other researchers to pursue research in this direction.
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