
MAAD: A Model and Dataset for “Attended Awareness” in Driving -
Supplementary Material

In this supplementary material, we provide more details
regarding the network modules, annotation dataset collec-
tion procedures and statistics, additional visualizations of
network capabilities, and results from ablation experiments.

1. Model details
1.1. Network Architecture

1.1.1 Encoder Structure

The encoder consists of 5 stacked layers of 2 different types
of spatio-temporal convolutional modules. The first two
layers (denoted as a ‘layer1’ and ‘layer2’) are taken from
a pretrained ResNet18 structure. The weights of these two
layers are frozen during training. The remaining 3 lay-
ers of the encoder (denoted as ‘S3D 1’, ‘S3D 2’, ‘S3D 3’)
are separable 3D convolutional (S3D) modules. Each S3D
module consists of two separate 3D convolutions, one for
spatial and the other for temporal processing. Detailed
structure of the separable convolutional encoder modules
are shown in Table 1. The output of ‘S3D 3’ undergoes a
3D convolution post-processing step in order to reduce the
number of features from 512 to 128. The output of this post-
processing step is then fed into the first decoder unit (DU5)
of the decoder along with the side-channel information.

1.1.2 Gaze Transform Module

The gaze transform module consists of a single layer MLP
whose output is encoded as a multi-channel Voronoi map
which then is provided as a side channel input to the decoder
units. The number of gaze points used per frame (for super-
vision as well as the side channel information) is fixed to be
3. The side-channel gaze input was corrupted by a spatially
varying zero mean Gaussian white noise with σ = 0.0347,
to account for the uncertainty due to both the foveal center
location and eye tracker error; both treated as two Gaus-
sian independent sources. Each Voronoi channel encodes
a particular distance related feature, such as dx, dy, dx2,
dy2, dxdy,

√
dx2 + dy2. Additionally, we also provide a

bit to encode whether a particular instance of the gaze in-
put is dropped out (as a result of the dropout applied during
training) and also whether the gaze value is a valid input or

Encoder S3D ID Structure
S3D 1 S3D(in=128, out=256)
S3D 2 S3D(in=256, out=512)
S3D 3 S3D(in=512, out=512)

Table 1. Detailed structure of the 3D convolution modules used in
the Decoder Units. The spatial Conv3d in the encoder S3D mod-
ules uses kernel size of 1×3×3 and a stride length of 1. Similarly,
the Conv3D responsible for temporal processing relies on a ker-
nel of 3×1×1. A replication pad of size 1 is applied to the input
before being processed by each of the Conv3D modules.

not (to indicate NaNs that occur in the gaze data primarily
due to eye blinks and tracker error). The total number of
channels for the gaze side information is 8.

1.1.3 Optic Flow Module

The optic flow is provided as a 2-channel input, where the
channels encode the flow in the horizontal and vertical di-
rection respectively. We apply an adaptive average pool op-
erator on the optic flow input to match the resolution of the
decoder unit.

1.1.4 Decoder Unit

Each Decoder Unit (DU) can receive up to three sources of
input, 1) the skip connections from the encoder, 2) the side
channel information (gaze information, and optic flow) and
3) the output of the previous decoder unit, when available.

All S3D modules (for skip modules as well as side-
channel+previous output modules) in each of the Decoder
Unit uses a S3D unit with a kernel size of 1×3×3 for spa-
tial and 3×1×1 for temporal processing. The input to each
of the spatial and the temporal modules in the S3D uses a
replication pad of size 1. An InstanceNorm3D and a ReLU
nonlinearity is applied after the spatial and temporal pro-
cessing.

The output of the skip connection module is concate-
nated channel-wise to the side-channel information and the
output of the previous decoder unit. The concatenated input
is processed by another S3D module finally undergoes a bi-
linear upsampling to match the resolution size of the next
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Decoder Unit Id Skip Module Concatenated Module
DU5 NA S3D(in=266, out=128)
DU4 NA S3D(in=138, out=64)
DU3 NA S3D(in=74, out=32)
DU2 S3D(in=128, out=128) S3D(in=170, out=16)
DU1 S3D(in=64, out=64) S3D(in=90, out=16)

Table 2. Detailed structure of the S3D convolution modules used in the Decoder Units. The spatial Conv3d in the S3D modules uses
kernel size of 1×3×3 and a stride length of 1. Similarly, the Conv3D responsible for temporal processing relies on a kernel of 3×1×1.
A replication pad of size 1 is applied to the skip connection input to ensure that the output can be concatenated channel-wise to the other
side-channel input and the previous decoder unit output.

decoder unit. The output of last decoder unit (DU1) un-
dergoes a final bilinear upsampling stage to match the res-
olution of the size of model input (240×135). The detailed
structure of all the decoder units in the decoder is presented
in Table 2.

The total number of channels from the side information
is 10 (Voronoi gaze maps=8, and optic flow=2). In general,
the following relationship holds for the feature sizes:

n
concat,DU(l)
in = n

skip,DU(l)
out + n

concat,DU(l+1)
out + 10

where nin and nout are the number of input and output fea-
tures respectively and l ∈ [1, 2] denotes the decoder unit id.
For DU5, nin = nencoder,postprocout + 10.

1.1.5 Gaze and Awareness Convolutional Modules

The output of the decoder is processed using a Conv2D with
kernel operator of size 5×5 and 6 output features to gener-
ate a feature map M . The 1D gaze heatmap (pG) is pro-
duced from M by a Conv1D operator with a kernel size of
1 followed by softmax operator to ensure that the heatmap
is a valid probability distribution. Likewise, the awareness
heatmap (MA) is generated from M by another Conv1D
operator with a kernel size of 1 followed by a sigmoid oper-
ator to ensure that each pixel value remains between 0 and
1. Note that, the awareness map is NOT a probability dis-
tribution.

1.2. Cost Weights and Parameters

Table 3 contains all the parameters and coefficients used
for model training. These coefficients were chosen so that
the relative magnitudes of the different supervisory terms
were comparable. The regularization terms are roughly an
order of magnitude lower than the supervisory cues. The
gaze and awareness supervision costs are computed only on
valid gaze points (gaze points that are not NaNs).

2. Annotation Dataset Details
Table 4 shows the breakdown of the labelled set. Table 5

contains information regarding the time of the day and the

αG 1.2
αATT 12.0
αAA 1.0
αS-A 100.0
αS-G 5× 1010

αT 600.0
αDEC 1.5× 106

αCAP 0.01
αCON-G 1× 107

αCON-A 10.0
wOF 0.5
εDEC 0.2

Table 3. Cost term coefficients and parameters used for training.

Modifier Num. annotations Mean awareness

Null 16,366 0.719
Blurred 8,346 0.657
Flipped 8,311 0.674

Road-only 9,665 0.542
Reading-text 11,295 0.593

Table 4. Number of annotations and mean awareness from anno-
tations grouped according to cognitive task modifier. Annotations
reflect the variability in awareness of locations under certain cog-
nitive modifiers, including conditions where we expect reduced
awareness of annotated locations (e.g. reading text and road-only
conditions).

weather condition for all the 8 video sequences (from the
Dr(Eye)ve dataset) we used for MAAD model training.

We randomly sampled approximately 10s clips from
these 8 videos from within the data we collected for third-
party attended awareness annotation. The gaze data was
overlaid on the video clip and in the last frame of the clip
a random location was chosen and marked with a red cross.
This random location was chosen equi-probably from ob-
jects, edges or anywhere in the image. After the annotators
watched the video, they were asked whether they believed
the subject had attended to the location marked with the red
cross. More specifically, the annotators answered the fol-

2



Figure 1. Annotator response distribution. Very few awareness labels were truly unsure (probably due to the explicit definition of the
questions).

VIDEO ID Time Weather
VID06 Morning Sunny
VID07 Evening Rainy
VID10 Evening Rainy
VID11 Evening Cloudy
VID26 Morning Rainy
VID35 Morning Cloudy
VID53 Evening Cloudy
VID60 Morning Cloudy

Table 5. Time of the day and the weather condition for each of the
videos (from the Dr(Eye)ve dataset) used for MAAD training. All
driving sequences occur in an urban (downtown) setting.

lowing questions:

• Do you think the driver is aware of the object/area?
(red cross; must be near the green circle at some point
in the video, not being near at the end of the video is
fine, if it is close and moving along with the object, we
want a human judgment of someone who has the extra
knowledge and is focusing on this) a) Yes, definitely
aware b) Yes, probably aware c) Very unsure d) No,
probably not aware e) No, definitely not aware

• Is the red cursor on a well-defined object such as a
car or person? (not well defined: exit, piece of road,
something you cannot put a boundary around. If it is
part of an object, then it is still well defined. For ex-
ample, building is not well defined because its a large
area and cannot be separated from the ground) a) Yes
b) No c) Unsure.

• If you are driving and are concentrated on driving,
would you expect to be aware of this object? (red
cross. Based on everything you see in the video) a)
Yes, definitely b) Yes, possibly c) No, probably d) No,
definitely e) I don’t know.

• Were you surprised by the behavior or appearance of
the highlighted object/region in the video? (red cross;
jumped suddenly, didnt expect to see it, didnt see it
coming, near accidents) a) Yes, very b) Yes, a little c)
No d) I don’t know.

Figures 1 and 2 the responses from the annotators and
the distribution of annotation video snippets respectively.

3. Examples of Calibration Optimization
Figure 4 shows more examples of how the network suc-

cessfully corrects a miscalibrated side-channel gaze input.
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Figure 2. Top: Distribution of annotation video snippets. All video
sequences were well represented, aside from some variance due to
the criteria used to select desired and undesired sampling points.
The video ids on the horizontal axis refer to the original video
sequence ids in the Dr(Eye)ve dataset. Bottom: Distribution of
final location for annotation according to sampling type.

In each of the examples in the figure, before correction the
miscalibrated gaze distorts the heatmap and pulls it away
from the ground truth gaze. As the networks learns the cor-
rection transform (for this experiment, the correction trans-
form was learned by training the network on the test split
that was used during the original model training phase), it
corrects for the miscalibration and the heatmap begins to
align closely with the ground truth gaze. Note that, dur-
ing the optimization procedure for learning the correction
the weights of the entire network except that of Tcorrect are
kept frozen.

4. Visualization of Denoising Mean Shift
Traces

The meanshift algorithm is a procedure for locating the
local maxima—the modes—of a density function. For the
gaze denoising experiment, we perform the exact same
meanshift procedure on three different density maps a) the

Ablation Awareness Estimate
LACAP 0.167
LDEC 0.073∗

LS−A 0.157
LS−G 0.143

LACAP ,LAA 0.138∗

LACAP ,LS−G 0.270
LACAP ,LATT 0.444
LACAP ,LT 0.165

LACAP ,LS−G,LS−A 0.134∗

LT ,LS−G 0.264
LT ,LS−G,LS−A 0.146

Full model 0.138

Table 6. Attended awareness estimation (mean squared error) on
the test set using different ablations of MAAD. The testing noise
level was set to be σn = 0.1. The result highlighted in red in-
dicates the anomalous case in which the awareness heatmap is no
longer spatially localized and hence results in gross overestimation
of attended awareness. The results highlighted in blue indicate ab-
lations for which the results were comparable to the full model but
resulted in training instability. For more discussion on results with
asterisk please refer to the text in Section 5.

gaze-conditioned saliency map, b) pure saliency map and c)
the mask image that encodes the objects in the scene. Fig-
ure 5 shows different examples of the traces of the mean
shift procedure on the mask image, gaze map without and
with side channel gaze. In general, we see that when mean
shift is performed on the gaze-conditioned saliency maps
the resulting mode is closer to the ground truth (right-most
column in Figure 5).

5. Ablation Experiments

We performed a set of leave-N -out ablations to inves-
tigate the impact of different regularization terms on the
network’s ability to estimate attended awareness. Table 6
shows the mean squared error in the awareness estimation
for different ablations that we tested.

Regularization for stability: One of the key functions
of the regularization terms is to provide stability during
training. In our ablation experiments we found that ablating
the attention capacity regularization term (LACAP ) in gen-
eral, resulted in training instability and in truncated train-
ing runs despite seemingly comparable (and at times better)
awareness estimation scores to the full model.

We also experimented with a different network architec-
ture in which the S3D modules in the decoder units were
replaced with standard Conv3D modules. Due to the larger
number of parameters for Conv3D modules, the number of
layers in the encoder and decoder were reduced to 4. For
these architectures, we found that including the spatial regu-
larization for the gaze map (LS−G) was critical for stability
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Figure 3. Comparison of awareness heatmap with (top) and with-
out LDEC (bottom). The heatmap is much more localized when
decay term is present in the cost function.

during training.
In general, from our ablation experiments we recom-

mend that for both the S3D and non-S3D versions of the
model, the spatial regularization (LS−G) and the attention
capacity (LACAP ) cost terms should be added to improve
training stability.
LDEC ablation: Although removing the decay term,

(LDEC), resulted in better awareness estimation scores
(row 2, Table 6, this was due to the fact that without
LDEC the awareness heatmap was no longer spatially lo-
calized as shown in Figure 3 essentially resulting in over-
estimation of attended awareness. Over-estimation of driver
awareness (model falsely predicting that the driver is aware
of something when they are not) can lead to undesirable
consequences when used in safety warning systems in au-
tonomous vehicles. Additionally, utilizing LDEC also ac-
celerated the convergence of the model during training.

6. Influence of Cognitive Task Modifiers
During the dataset collection procedure we opted for a

high-accuracy gaze tracker. However, this raises a question
about the effect of the cognitive task modifier in a passive
observation experiment. In order to investigate the impact
of cognitive task modifiers as a latent factor that could in-
fluence awareness estimation accuracy, we trained MAAD
exclusively on training data collected under the ‘null condi-

Task Modifier Null Condition Model Full Model
Null Condition 0.110 0.139
Reading-Text 0.211 0.132

Blurred 0.220 0.140
Flipped 0.231 0.166

Roadonly 0.171 0.114

Table 7. Awareness estimation mean squared error: Breakdown of
the results according to cognitive task modifier type for full model
and the model training on only null condition data.

Noise level MSE, FG MSE, MAAD
Null Condition 0.110 0.492
Reading-Text 0.211 0.393

Blurred 0.220 0.425
Flipped 0.231 0.454

Roadonly 0.171 0.330

Table 8. Mean squared error awareness estimates with spatio-
temporal Gaussian with optic flow (FG) and our proposed ap-
proach (MAAD) according to cognitive task modifier type for the
model trained only on null condition data.

tion’. This model was then evaluated on the data collected
under the remaining cognitive task modifier conditions.

From Table 7 we can see that a model that was trained
exclusively on null condition data performed worse on the
other task modifiers compared to the full model. However,
as shown in Table 8, the null condition model still did con-
siderably better than the spatio-temporal Gaussian baseline
(FG) with optic flow. These results indicate that the model
is sensitive to the cognitive task that the subject is execut-
ing. Future work will explore ways to disentangle this latent
factor within the network capabilities.

7. Examples of Gaze and Awareness Maps
Figures 6,7 and 8 are more examples of gaze and aware-

ness maps for different interesting scenarios that arise dur-
ing driving. Figures 6 and 7 are examples of gaze condi-
tioned saliency and highlights the spatio-temporal persis-
tence of awareness in situations where the subject’s gaze
shifts between multiple driving-relevant entities (such as
pedestrians, traffic lights and other cars) in the scene. Fig-
ure 8 is a unique example which illustrates how the network
can handle occlusions.
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Figure 4. Examples of how the network learns a correction transform to correct for a miscalibrated gaze input. In each of the examples, the
corrupted gaze input is marked as white cross hairs and the ground truth gaze is marked as lime-green cross hairs. Left column: Gaze maps
before calibration. Due to the corruption applied, we can see that the side channel gaze is far away from the ground truth gaze. Middle and
Right Column: As the optimization progresses, the networks learns to correct for the miscalibration and brings the side channel input close
to the ground truth. In all these examples, the noise level was set to be 0.3.
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Figure 5. Examples of meanshift operation performed on Left: Object Masks, Middle: Gaze map without side-channel (pure saliency)
information. The examples highlighted using the red rectangle indicate extreme failure cases. Right: Gaze map with side channel noisy
gaze (our approach). The meanshift sequences is shown as green polylines. The starting point (the noisy gaze) of the sequence is indicated
using a green crosshair. The ground truth gaze is denoted as white cross on the images. Our approach with noisy side channel gaze
outperforms the object-based and pure saliency-based approaches.
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Figure 6. Gaze and awareness map as the ego car performs a left turn. Top Left: The car approaches an intersection and is about to make
a left turn. The gaze map and the awareness map are primarily concentrated in the center of image. Middle: The car has started the left
turn maneuver. The gaze map has started to shift leftward. However, the awareness map is much more smooth and indicates awareness
of the cars ahead of the ego car in the previous frame. Bottom Middle: The left turn maneuver is almost complete and the gaze map is
almost completely shifted to the left hand side. The awareness map still exhibits temporal persistence of objects that were attended to a
few seconds before. In this figure, the gaze and awareness maps are in the left and right column respectively. The green circle indicate the
ground truth gaze and the white circles indicate the noisy side channel information fed into the network during inference.
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Figure 7. Gaze conditioned saliency and awareness maps with shifting gaze and incoming traffic: Top: The gaze is fixated straight ahead
and on the incoming traffic. Middle: The gaze map shifts to the bottom left (reading text). The awareness map exhibits multiple regions of
activation: a) for the newly attended region, b) the car straight ahead and c) the incoming traffic. Bottom: The gaze maps remains almost
the same as the subject continues to gaze in the bottom left. As the incoming traffic approaches closer to the ego car, the activation levels
of the awareness map have weakened and furthermore, the activation regions have separated indicating spatial and temporal persistence
attached to objects.
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Figure 8. Gaze conditioned saliency and awareness maps with occlusion: Top: As the ego car approaches the traffic roundabout, the gaze
is impinged on the car ahead. The awareness map reflects the fact that the subject is aware of the car as well. Top Middle: The gaze has
shifted toward the bus on the right and the car ahead is about to be occluded by the bus. The awareness is split between the car and the
vehicles on the right. Bottom Middle: The car is no longer visible due to occlusion. The gaze and the awareness activation is solely on the
bus. Bottom: The car has reappeared in the visual field after occlusion. The gaze activation continues to be on the bus. The awareness map
reassigns positive awareness on the previously attended car demonstrating how the model can ‘remember’ past attended objects despite
occlusions.
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