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Abstract

Scaling the distribution of automated vehicles requires
handling various unexpected and possibly dangerous situ-
ations, termed corner cases (CC). Since many modules of
automated driving systems are based on machine learning
(ML), CC are an essential part of the data for their develop-
ment. However, there is only a limited amount of CC data in
large-scale data collections, which makes them challenging
in the context of ML. With a better understanding of CC,
offline applications, e.g., dataset analysis, and online meth-
ods, e.g., improved performance of automated driving sys-
tems, can be improved. While there are knowledge-based
descriptions and taxonomies for CC, there is little research
on machine-interpretable descriptions. In this extended ab-
stract, we will give a brief overview of the challenges and
goals of such a description.

1. Introduction

Corner cases (CC) are data that occur infrequently or
represent a critical situation and are only available in
datasets to a limited extent, if at all. However, for ma-
chine learning (ML), CC are important as they are required
for training, verification, and improved performance of ML
models during inference within automated driving systems.

While automated vehicles will always encounter new
CC, it is crucial to have training data with a wide variety
of scenarios [18], including CC. This way, failures and un-
expected behavior of ML models during inference can be
reduced. Such failures can occur on several levels of the
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Figure 1: ML pipeline in automated driving with an empha-
sis on corner cases and their relation to data and ML models
based on corner case descriptions.

system, such as missing detections or incorrect behavior
predictions [16]. To achieve a good online performance of
automated driving systems, it is necessary also to consider
the previous offline development steps, such as dataset engi-
neering. Since CC play a crucial role in both fields, corner
case descriptions (CCD) act as a basis.

CC can be described either by experts or directly by the
limits of a method [16]. On one hand, they can be divided
into the sensor layer, content layer and temporal layer.
Sensor-layer CC are directly connected to a sensor, e.g.,
dead pixels. The content layer ranges from domain shifts
and object-related CC to events on the scene1 level. Finally,
the temporal layer includes all scenario-related CC.

On the other hand, method-layer CC occur when an ML
model reaches its limits, as when failures occur due to insuf-
ficient model knowledge caused by incomplete training data
[16]. Even models as DeepXplore [26], which automati-
cally create CC, are unable to create descriptions of those.

Describing CC with a proper description language and
using those descriptions are fields with many challenges and
applications. CCD are necessary for different aspects of the
offline development pipeline in automated driving and the
subsequent online validation and deployment tasks.

A major research question is how to provide a valid de-
scription of CC in co-existence with established scenario

1We follow the definitions of scene and scenario by Ulbrich et al. [31],
where a scene is a snapshot, and a scenario consists of successive scenes
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description languages. This can be useful in offline appli-
cations to develop automated driving systems: First, exist-
ing data can be automatically described based on a CCD,
including the coverage of datasets in respect to CC. Valid
descriptions of CC are necessary to generate synthetic data
or to record real data. Subsequently, CCD can be utilized
for online applications. In the validation of automated driv-
ing systems, CCD can simulate variations of certain CC to
cover as many variants of a situation as possible. During
the deployment of automated vehicles, perception and fu-
sion can benefit from such descriptions to determine which
sensors are best equipped to detect certain CC, or even serve
as an interface to the prediction or planning tasks.

An insight into how we envision CC within a description
language is shown in Figure 1. Scenarios, either concep-
tual or from the real world, are embedded within the data
recorded by sensors. Only here can CC be detected. An
ML model to perform perception tasks might fail online on
CC data, but can be improved, if CC can be detected and
properly understood. Therefore, CCD have the potential to
increase the performance of ML models.

Such a CCD comprises various aspects, some of which
are already contained in established scenario description
languages [4, 25]. However, there are significant research
gaps regarding CCD which we discuss in the following.

Our contributions of this extended abstract are: We pro-
vide an overview over the state of the art of multiple re-
search areas related to CC and CCD. We formulate six re-
search questions to outline topics for future work, and de-
scribe the potential of CCD based on three use cases in re-
gard to our research questions.

The remainder of this article is structured as follows:
Section 2 provides an overview of related research. Sec-
tion 3 formulates our research questions. Section 4 includes
use cases. Finally, Section 5 provides a summary and an
outlook.

2. Related Work
So far, CCD have received little attention in research.

However, they have many connections to other research ar-
eas, such as scenario descriptions, which are used in val-
idation processes to generate suitable validation scenarios,
and are currently limited in their ability to describe CC. In
addition, there are related research areas such as CC detec-
tion, generation, and dataset engineering that benefit from
established CCD.

2.1. Scenario Description

In the field of automated driving systems, all real world
data is embedded into scenarios, even though CC can also
occur and be detected on lower levels [16]. Scenarios can
be described on different levels of abstraction, namely func-
tional, logical and concrete [23]. In the following, we will

give an overview of scenario descriptions as we aim to com-
bine existing scenario descriptions with a CCD. Since every
CC stems from a scenario, as shown in Figure 1, scenario
description is the field with the closest relation to CCD.
Here, the basic entities in a scene are described by con-
crete scenario description languages. A CCD expands on
this and describes the CC, based on the categories of [16].
One example might be to classify a scene or scenario by a
CCD with a level, a type, and a machine-interpretable de-
scription, including relevant entities.

2.1.1 PEGASUS Layer Model

The PEGASUS model [25, 32], a generic description model
for automated driving scenarios, contains six layers, rang-
ing from road-level to digital information. The first layer
deals with road geometry and its characteristics, while
the second layer includes traffic infrastructure. Temporary
modifications are considered in the third layer, such as mov-
able road infrastructure. All other movable objects, ve-
hicles, and vulnerable road users (VRU) are described in
the fourth layer. Environmental influences, e.g., weather,
are summarized in the fifth layer. Finally, the sixth layer
deals with digital information and describes V2X (Vehicle-
to-everything) information and digital maps. The language
aims to describe scenarios on all three abstraction levels
[23].

2.1.2 Open Scenario & Open Drive

The key feature of OpenScenario is to describe traffic sce-
narios consisting of multiple actors, focusing on concrete
scenarios. Thereby, the temporal succession of actions such
as an overtaking maneuver is clearly described. A standard
for the scenario description is presented in ASAM Open-
Scenario [4]. However, OpenScenario does not provide a
driver model or advanced motion dynamics for vehicles.
ASAM OpenDrive [3] is a standard and describes the road
network, which contains the road geometry, lanes, and sig-
nals. The surface profile of the road is standardized within
ASAM OpenCRG (Curved Regular Grid) [2]. Combining
these components, automated in-the-loop vehicle simula-
tion of dynamic and static content is possible.

2.1.3 Ontology-Based Descriptions

Ontologies have the ability to inherit structure and terminol-
ogy from taxonomies to describe relations, attributes, and
general concepts of and between classes. As shown in [14],
their representations can vary from meta-levels to very de-
tailed, even perception-related attributes and therefore seem
suited for all levels. As demonstrated in [22], they can be
used to describe traffic scenes, including temporal context.

1024



This way, dynamic objects and details about their configura-
tions, intentions, and information about the road layout can
be combined for a holistic scenario description. Once an
ontology is designed, instances can be created to describe
concrete situations.

2.1.4 Operational Design Domain

An operational design domain (ODD) describes the operat-
ing domain of an automated driving system, that has been
designed to limit the situations that possibly occur. This
can act as a baseline to take into account combinations of
possible operating conditions during validation [21]. Mor-
phological boxes, also called zwicky boxes, provide a pos-
sibility to describe an ODD using possible dimensions, i.e.
relevant features, and corresponding attributes, i.e. value
ranges [5, 15]. Describing CC in an ODD is difficult as
many per definition would not be included in the descrip-
tion in the first place. In the case of zwicky boxes, combina-
torial anomalies can be created, but, e.g., any CC based on
temporal context is out of range for the description.

2.2. Corner Case Detection and Generation

The safety of automated driving functions depends
highly on reliable CC detection both for curating suitable
training and test datasets and as an online alert system.

Corner Case Detection: Depending on conceptual lev-
els [16, 8], different CC exists and, hence, implicating dif-
ferent detection methods. Certain types of CC can be de-
tected from single image frames, such as physical-level CC,
e.g., glare situations [17, 12], or content-layer CC, e.g., un-
known objects in the traffic situation [33]. Temporal-layer
CC encompass an entire time span. Hence, detection meth-
ods need to take temporal data into account, such as video
sequences [7]. Such detection systems typically provide
metric-based assessments of situations, such as shown in
[8]. Such metrics, without a context, typically do not con-
tribute to an improved understanding of the situation. A
CCD is a potent tool to embed such metrics in a context.

Corner Case Generation: CC generation strategies can
be divided into the classes model-based, data-driven and
scenario-based [29]. Tuncali et al. [29] propose a model-
based generation method that is able to generate CC based
on a combination of covering arrays and requirement fal-
sification methods. Chou et al. [10] propose a similar
system, which determines corner case situations for an au-
tomated vehicle which are critical, but not impossible to
handle. Data-driven methods, such as shown in [24], rely
on existing datasets and samples from the available data.
Möller et al. [24] generate potential CC by learning a la-
tent space based on available data and subsequently gen-

erate out-of-domain scenarios, which are still close to the
actual in-distribution samples and therefore likely to be re-
alistic. Finally, scenario-based methods mostly utilize de-
scriptions of experts or compiled within accident reports.
Pretschner et al. [27] propose a simulation-based heuristic
search to generate similar scenarios as shown in [10], which
are basically critical, but do not necessarily lead to a colli-
sion. [19] shows a methodology, which samples CC based
on an ontology, which describes the environment of a ve-
hicle. CC generation is dependent on sufficient and precise
CCD to generate suitable data.

2.3. Dataset Engineering

As dataset engineering, we identify the task of putting to-
gether a suitable dataset for the underlying perception func-
tion. When recording new data, CCD can either act as a
trigger a recording during fleet operation [18] or as a formal
description for controlled records. When considering exist-
ing datasets, the challenge is to describe them, quantify their
coverage, and measure their diversity. Sadat et al. [28] de-
fine various complexity measures for dataset diversity, tak-
ing into account the relevance of certain traffic situations. In
active learning, one selects interesting data for additional
labeling to keep costs of labeling low. As an example of
using CC in this research area, Dhananjaya et al. [12] ap-
plied active learning for weather-related CC. In contrast to
general dataset coverage, such active learning methods are
based on the underlying model [28]. CCD can aid the task
of dataset engineering as they give a way to describe the CC
coverage of a dataset and to filter for certain CC. This then
allows determining the CC coverage of ML models based
on their training dataset.

3. Research Questions
The concept of CCD has to overcome various challenges

before it can leverage its full potential. We summarize these
points with the following research questions (RQ), focusing
on the description itself, followed by offline and subsequent
online applications.

Description (RQ1): How to describe CC on different
levels of abstraction? – Heidecker et al. [16] present a
high-level categorization of CC in different layers and
levels. We aim to combine this with a concrete scenario
description language, as outlined in Section 2.1, or meta-
data to build a complete description of CC. This makes
it possible for us to use existing elements of scenario
description languages, which describe the scene in its basic
elements. We believe an add-on should expand on this
and address the CC, whereby we differentiate between the
categories of [16] in the description, and then specifying
the details. To improve and complete the description
languages, data-driven approaches should be utilized, e.g.
adding missing object classes. Based on a CCD, we see
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multiple offline applications, which we address with the
following RQ:

Automation (RQ2): How to automatically describe data
that contain CC? – For an efficient generation of scenar-
ios containing CC, and other tasks, it is important to not
only have a valid CCD but to be able to extract them auto-
matically. Methodologies to detect CC on sensor and ob-
ject data levels are shown in [8, 30]. Having a machine-
readable CCD as an interface will allow transferring algo-
rithmic outputs into a CCD automatically. Thus, we can an-
alyze existing datasets and enhance them with CCD for ev-
ery single frame. While there is early research in this field,
no extensive methodology has been developed to describe
CC precisely. Combining existing CC levels [16] with effi-
cient scenario description languages such as zwicky boxes,
we aim to provide an automatic way to describe CC.

Data Generation (RQ3): How to generate or record CC
from descriptions? – CCD will be used to build up scenario
catalogs as concrete guidelines for human-performed data
recordings or as input for data augmentation tools, such
as [20], or simulation environments, e.g., CARLA [13].
They are also potent trigger descriptions for fleet recordings
[18]. Feeding automatically generated CCD from RQ2 into
a simulation tool, enables automatic description and gener-
ation of corner cases.

Dataset Analysis (RQ4): How to determine the cov-
erage of CC in training data? – We aim to describe the
coverage of a CC detector or ML model. If we describe
the training/testing data with a CCD (e.g., by including
the context), this will represent the content and thus the
cases covered in the dataset. Transferring this description
to the ML model trained and tested on the dataset, we can
obtain the coverage that the ML model has or should have
via evaluating its performance achieved on that specific
dataset and coverage. Conversely, we also know what it
does not cover. Additional training data would now be
selected to achieve better generalization and coverage of
the ML model. In case some CC are missing to fulfill the
required coverage, the CCD is used to explicitly record or
generate these CC scenarios synthetically, see RQ3. These
offline development stages enable the online deployment
of automated vehicles in the real world, which we address
with the following research questions:

Automated Driving (RQ5): How to utilize CCD for
driving automation? – CCD can be utilized to provide
proper situation understanding for perception tasks, such as
sensor fusion, since not all sensors are equally well suited
to detect CC. CCD as a machine-readable format is an ideal
candidate as an interface between the perception and later
stages of the automated driving pipeline, transferring CC-
related information to models such as prediction or plan-

ning. One example is to describe CC based on relevant ob-
jects instead of a static metric, which is a more actionable
interface. While not much research regarding this topic can
be found in academia, in industry, the activation of remote
assistance is often triggered as soon as CC are detected or
the ODD is exited [1].

Testing (RQ6): How to validate and verify ML systems
based on CCD? – Scenario description languages are cur-
rently also used for automated testing and verification while
not providing sufficient information about the coverage of
CC within these scenarios. With CCD as an extension, this
will become possible, improving upon existing approaches.

4. Addressed Use Cases
The CCD and associated RQ show why a description lan-

guage and the corresponding structuring of CC are neces-
sary. To demonstrate the potential of a CCD, we build upon
the RQ and show their application-related relevance in the
real world.

Figure 2: A visually challenging scene due to glare [16] (l)
and an unknown object in the field of view [9] (r).

For this reason, we present the following three use cases
and show how they would benefit from the CCD. We sketch
out conceptual CCD for the use cases, focused on VRU.

4.1. Glare Effect

Being blinded by the sun, an artificial light source, or
even reflected light, hence not seeing the actual object (e.g.,
pedestrian), is a situation that everyone is familiar with (see
Figure 2 (l)). ML models that work with image data also
have problems with being blind, as it harms the object de-
tection or prediction of any kind. The glare can lead to a
failure of the driving function and, in the worst case, to an
accident. First, a CCD is necessary to allow tailored han-
dling of the situation. A CCD including a scenario descrip-
tion, as in RQ1, of Figure 2 (l) would conceptually be: CC-
level - physical level, CC-type - global outlier, scene - win-
ter, sun - low (over the road), visibility - poor, vehicles -
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Figure 3: Sequence of temporarily occluded road users [11].

yes, vehicle1: - on the other lane, coming in our direction,
VRU - yes, VRU1: type - pedestrian, located - ahead on the
road, moving - from left to right. The combinatorics of an
extensive CCD allow generating new scenarios with glare
effects RQ3. Regarding RQ5, based on the CCD, the sensor
fusion layer could put more emphasis on other sensors, such
as LiDAR or RADAR, as the system has gained an aware-
ness that the image data has currently reduced information
richness. A CCD can also be used to describe test cases that
an ML model must pass for the validation RQ6.

4.2. Unknown Objects

In road traffic, an unmanageable number of scenarios oc-
cur every day. Some of these scenarios contain objects (see
Figure 2 (r)), which were never or only to a small extent
included in the training data of an ML method. In addi-
tion, new objects are constantly being created and mod-
ified, which negatively affects object detection reliability
and leads to an increased risk of accidents when used in au-
tonomous driving functions. According to [16], this group
can be described as object-level CC and is included in the
content layer. The challenge is to identify these CC and
make them manageable for the driving function. A precise
CCD RQ1 can have a positive influence on object detection
in several ways. A conceptual description of the CC in Fig-
ure 2 (r) is: CC-level - object level, CC-type - single-point
anomaly, VRU - yes, VRU1: type - pedestrian, located -
next to the road, moving - no, clothing - costumed, direc-
tion of view - towards us.

Blum et al. [6] demonstrate, how RQ3 can be addressed
with automated CC generation for unknown objects, result-
ing in similar data as shown in Figure 2 (r). With RQ4,
based on a CCD, the typically broad category of unknown
objects can be improved drastically, leading to a much bet-
ter understanding of such objects. This would be convenient
for object detection since we can quantify the ML model’s
coverage via the description. Also, CC are important for un-
known objects because they are needed to validate the ML
Model (RQ6).

4.3. Occluded Objects

Situations concerning temporarily occluded VRU are of-
ten accompanied by an increased risk for collision due to

the uncertainty about the VRU reappearance. As such a sit-
uation covers an entire period, it describes a CC on the tem-
poral layer [16]. A conceptual description of the presented
scenario in Figure 3 would be: CC-level - scenario level,
CC-type - risky scenario, infrastructure - intersection, vehi-
cles - yes, vehicle1: - coming from left and left turn, VRU -
yes, VRU1: type - pedestrian, located - opposite street side,
moving - crossing from right to left, visible - true. This
CCD applies to the left and right images in Figure 3. For
the middle image, the scene description would not contain
a pedestrian even though we know one is present because
temporal context is missing. The CCD now changes to vis-
ible - false but keeps the pedestrian as an entity.

The challenge is to ensure no critical situations appear,
which could not be handled by the automated driving sys-
tem. Based on an automatically created CCD (RQ1, RQ2),
the driving function (RQ5) would be aware of the occluded
VRU. A CCD also allows the automatic generation of syn-
thetic scenarios with occluded VRUs (RQ3).

5. Conclusion and Outlook

In this work, we formulated research questions for the
application and need for valid corner case descriptions
(CCD) focusing on machine learning (ML) models. In this
regard, we reviewed existing scenario description languages
based on their ability to describe corner cases (CC) and re-
lated research fields, such as CC generation. Based on our
formulated research questions, we have shown the potential
of a CCD based on three challenging situations within the
domain of automated driving in the real world. We propose
a combination of high-level knowledge-based CCD, low-
level scenario-based CCD, and metric-based CC severity
assessments as the basis for a machine-interpretable CCD,
which will be the focus of future research.
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