
Semantic Concept Testing in Autonomous Driving
by Extraction of Object-Level Annotations from CARLA

Sujan Gannamaneni
sujan.sai.gannamaneni@iais.fraunhofer.de

Sebastian Houben
sebastian.houben@iais.fraunhofer.de

Maram Akila
maram.akila@iais.fraunhofer.de

Fraunhofer IAIS

Abstract

With the growing use of Deep Neural Networks (DNNs)
in various safety-critical applications comes an increasing
need for Verification and Validation (V&V) of these DNNs.
Unlike testing in software engineering, where several estab-
lished methods exist for V&V, DNN testing is still at an early
stage. The data-driven nature of DNNs adds to the com-
plexity of testing them. In the scope of autonomous driving,
we showcase our validation method by leveraging object-
level annotations (object metadata) to test DNNs on a more
granular level using human-understandable semantic con-
cepts like gender, shirt colour, age, and illumination. Such
an enhanced granularity, as we detail, can prove useful in
the construction of closed-loop testing or the investigation
of dataset coverage/completeness. Our add-on sensor to the
CARLA simulator enables us to generate datasets with this
granular metadata. For the task of semantic segmentation
for pedestrian detection using DeepLabv3+, we highlight
potential insights and challenges that become apparent on
this level of granularity. For instance, imbalances within a
CARLA generated dataset w.r.t. the pedestrian distribution
do not directly carry over into weak spots of the DNN per-
formances and vice versa.

1. Introduction

Verification and Validation (V&V) of Deep Neural Net-
works (DNNs) remains an elusive but important criterion
for the deployment of such modules in safety-critical ap-
plications. Particularly for applications in computer vision
(CV), or more precisely in automated driving (AD) and
medical diagnostics, a lack of rigorous V&V before deploy-
ment can lead to catastrophic failures. Standard measures
like mean intersection-over-Union (mIoU) or mean aver-

age precision (mAP) on test datasets are typically used as
performance metrics for DNNs. However, they are not re-
liable Machine Learning (ML) validation methods due to
the limited information they provide to the developer about
the DNN behaviour. In addition to developing new metrics
[17, 20, 21] to evaluate, e.g. uncertainty and robustness, ML
developers can also be supported by providing techniques to
evaluate their DNNs at a more granular level. In our work,
we show that such systematic evaluation is possible using
synthetic data generated from computer simulators such as
CARLA [4].

In automated driving, typical computer vision tasks are
object detection and semantic segmentation. For the most
part, DNNs performing these tasks operate on the data from
a front-facing camera of the vehicle. They are trained with
real-world data that is both expensive and time-consuming
to collect and label [3]. Considerations regarding the V&V
of such DNNs should take into account the following two
points: (i) The image space on which these DNNs oper-
ate is enormous, and there are currently no methods to esti-
mate if any training dataset is sufficient to cover the opera-
tional domain of the task. (ii) While large-scale datasets are
available for training and testing [3, 6], these datasets only
contain ground-truth information for the given task without
any information about the semantics present in the image.
This semantic information about the scene or its objects,
like the scene’s brightness, weather conditions or the gen-
der, shirt and age of a pedestrian in the scene, could help to
evaluate DNNs at a more granular level. While extracting
these semantics out of real-world data is time-consuming
and expensive, simulations offer the flexibility to include
such object-level annotations (object metadata) along with
raw image and ground-truth during data generation. The
goal of this work is to show that above points can be ad-
dressed by generating synthetic data plus metadata using the

1006



CARLA simulator to enhance the validation of the DNNs.
Since it is not possible to generate metadata with the current
version of CARLA, we add a new sensor to the simulator to
make our validation possible.

We propose to evaluate the performance of DNNs along
semantic dimensions as shown in Figure 1. Note that this is
only a simplistic representational sketch of our concept. We
can consider the intersection-over-union (IoU) of a seman-
tic segmentation network or, in practice, any other DNN
metric on a per-pedestrian or per-image basis along one
axis. The other two axes contain semantic and non-semantic
dimensions. For example, consider the skin colour of the
pedestrians as the semantic dimension. Intuitively, we ex-
pect to observe higher IoU in pedestrians with skin colour
highly distributed in the training data. If the DNN indeed
shows such behaviour, the developer could, e.g., augment
the training data with pedestrians of other skin colours to
compensate. Similarly, we can also consider the shirt colour
of a pedestrian as the semantic dimension under test. Sup-
pose pedestrians with specific shirt colours tend to have
higher IoU than others. In that case, the developer can ex-
plore the training distribution to uncover whether this is a
weakness learnt from the training data. While this is a sim-
plifying view, testing DNNs w.r.t. specific semantic dimen-
sions can still help to detect weaknesses and provide infor-
mation about coverage of training data.

Figure 1. This is a representational sketch for semantic concept
testing. One axis represents the performance metric, while the
other two axes represent the semantic and non-semantic dimen-
sions under test. The test reveals when systematic weaknesses
learnt by a DNN occur along semantic dimensions (Best seen in
colour).

The remainder of this paper is structured as follows: In
the next section, we discuss the related work regarding test-
ing for DNNs. In section 3, we describe the sensor add-
on we developed to obtain the necessary metadata from the
CARLA simulator. In section 4, we propose a potential

closed-loop validation pipeline for DNNs. We describe the
validation experiments and provide the results in section 5.
Lastly, we provide a brief summary and conclude our work
in 6.

2. Related works
For real-world validation of AD functions, Kalra and

Paddock [8] estimated that the vehicles would need to be
driven hundreds of millions to hundreds of billions of miles
in order to demonstrate reliability with 95% confidence. In
addition, with every major software update or modification,
the validation step would have to be repeated. Kalra and
Paddock [8] conclude that ”Automated Vehicle developers
cannot drive their way to safety”, and alternative validation
methods would be required.

Several works, see [10, 11, 13, 15, 16, 22], have pro-
posed using simulators for training and testing of DNNs.
Among these works, [16] propose a label-to-image trans-
fer method to remove the domain gap problem by gener-
ating paired datasets to test the performance of networks
trained on real-world data. Paranjape et al. [11] propose a
simulation environment to generate scenarios for testing au-
tonomous vehicles. [10] study the effect of combining real
and synthetic datasets as a way to augment real-world data.
[13, 15, 22] released synthetic benchmark datasets for DNN
research.

In addition to CARLA simulator [4], several other pro-
prietary and open-source simulators [1, 14, 18] with real-
time engines are available for autonomous driving research.
We use the CARLA simulator in our work for the flexibility
it provides for modifying source code to add new sensors.

Syed et al. [19] also propose a validation engine ap-
proach in which parameters in the scene can be varied. Our
proposed test method is similar to their approach. How-
ever, our approach grants the developer greater flexibility
to control the training distribution. There is also no issue
of domain gap as training, and test data are from the same
domain. Parallel to our work, Lyssenko et al. [9] present
a CARLA-based extension to perform validation of DNNs
by considering the pedestrian distance from the ego vehicle
as a safety relevance metric. However, they mention that
their bounding box retrieval method for getting instances
has some issues. Our proposed method does not make use
of the bounding boxes for extracting instances.

3. Metadata generation in CARLA
CARLA simulator [4] is an open-source project devel-

oped using the UNREAL Engine [5] for the simulation of
urban driving to further autonomous driving research. The
simulator is set up as a server-client model in which the
server is initialized as a 3D world filled with dynamic and
static assets. By default, several different “maps” with pre-

1007



positioned buildings, roads and scenery (e.g. hills or veg-
etation) are available for use. Using a Python API, mul-
tiple clients can interact with the server, create dynamic or
static objects in the world, extract sensor output, and modify
global parameters like weather or traffic conditions. Gener-
ating semantic segmentation datasets with CARLA is rel-
atively straightforward by designing a client that spawns
an ego vehicle with an RGB camera sensor and a pre-
defined semantic segmentation sensor. These sensors record
and save the output as the ego vehicle drives around the
town. Additional clients can be used to fill the world
with other participants like pedestrians and other vehicles
and to change the weather dynamically. All these steps
are possible out-of-the-box with the latest CARLA version
(v0.9.11). However, the latest version does not include in-
stance segmentation or metadata of the pedestrians in the
scene. Although we know which pixels in an image belong
to a pedestrian, we cannot link the pedestrians to their dig-
ital asset, i.e. we cannot generate pedestrian-specific meta-
data. As also discussed in Lyssenko et al. [9] this lack-
ing separability and identifiability of individual pedestrians
can be challenging for some more advanced analysis (depth-
based in their case) and requires a workaround.

In this work, we introduce a simplistic pedestrian in-
stance detection sensor to the CARLA simulator. This sen-
sor allows us to link the pedestrians in the RGB camera to
their digital assets. Our pedestrian detection sensor builds
upon the radar sensor in CARLA. Since new sensors cannot
be added using the Python API, we modified the CARLA
source code to make the addition. The code for our sen-
sor extension is publicly available1. Since the sensor has
to detect pedestrians in the field of view (FOV) of the RGB
camera sensor, we set the horizontal and vertical FOVs sim-
ilar to the RGB camera. The UNREAL Engine provides
a function UWorld::LineTraceSingleByChannel
that traces a ray from the point of origin to the first block-
ing hit. While the radar sensor uses this function to simu-
late radar behaviour, we use it to get the instances of the
first blocking pedestrian in front of the ego vehicle. An
instance id in CARLA is a unique identification num-
ber assigned to an asset when the asset is spawned in the
world for that specific run. These instance ids provide
the link to the digital asset that the pedestrian belongs to.
We save pedestrians instances detected per run of the sen-
sor. In Figure 2, a sample RGB camera output and its corre-
sponding semantic segmentation sensor output are shown.
While these two could be generated easily, with our sensor,
we can also extract metadata of the pedestrian and the scene
as shown in Listing 1.

1https://github.com/sujan-sai-g/Semantic-Concept-Testing-using-
CARLA

Figure 2. Here we have a sample RGB and semantic segmentation
image from our generated CARLA dataset. While these are gen-
erated with minimal effort using the simulator, the corresponding
metadata shown in Listing 1 was extracted using our extension.

1 {"Pedestrian_data": {
2 "instance_id": 220,
3 "pedestrian_asset_id": 0005,
4 "world_x_coordinate": 190.0",
5 "world_y_coordinate": 147.0,
6 "gender": "female",
7 "shirt_colour": "green",
8 "pant_colour": "red",
9 "skin_colour": "white",

10 "age": "adult",},
11 "Global_data": {
12 "sun_angle":30.0,
13 "sun_azimuth_angle":250.0,
14 "fog_density":10.0,}}

Listing 1. Example of image level JSON file describing pedestrian
and global metadata.

1008



4. Validation Pipeline
As shown in Figure 1, our goal is to evaluate DNN be-

haviour along semantic dimensions. With our sensor exten-
sion to CARLA, such granular testing is made possible. A
potential application could be closed-loop testing or simi-
lar approaches which aim at an iterative improvement of a
given DNN. Figure 3 shows a high-level concept of such
a closed-loop validation approach that builds on semantic
testing and includes a feedback loop where the DNN be-
haviour is both studied and modified with the aim of im-
provement. The training and test data are initially generated
by following some Operational Design Domain (ODD) pa-
rameters defined for the task. The DNN is trained on that
preliminary training data and tested with the preliminary
test datasets.

The test scenarios can be of two types: (i) a holdout test
dataset with similar distribution to training data. (ii) spe-
cially designed test datasets where only a specific semantic
concept is varied, e.g. the pedestrian asset changes, but ev-
erything else remains constant. The trained DNN is tested
on these test datasets, and per-pedestrian or per-image per-
formance metrics are extracted from the DNN. For our ex-
periments, the IoU of a pedestrian is the metric under con-
sideration.

A semantic testing setup as proposed should ideally un-
cover systematic weaknesses in the DNN. Since the DNNs
learn from the training data, the goal is to fix system-
atic weaknesses by modifying/augmenting the training data.
The DNN developer can query more data from a simu-
lator, e.g. CARLA, with the required semantic properties
to augment the overall training dataset and improve the
DNN. After retraining, the overall process would be re-
peated to check if the DNN has indeed overcome the sys-
tematic weaknesses uncovered in the last run. By generat-
ing a large dataset of scenarios that are critical for safety,
a DNN developer can iteratively test the DNN until per-
formance reaches the required levels on all test scenarios.
When a DNN fails in any given scenario, the developer can
detect the possible weakness. While adding the failed sce-
narios directly to the training would overcome the weak-
ness, it would also imply a direct (over-)optimization on the
test invalidating its result in the next iteration. Therefore,
identifying lacking training data is a crucial ingredient to
any form of closed-loop approach. The granularity of the
metadata and flexibility of the engine might play a vital role
in this. For example, having the actual colour of the pedes-
trian shirt (like blue or black) as metadata instead of broader
categories (such as bright or dark) could be much more ben-
eficial for the validation and interpretation of results.

This work investigates how strongly results from tests
are linked to the training data distribution when queried
based on semantic categories. This could give insight into
the feasibility and challenges of such a closed-loop or iter-

ative testing and development approach. A strong connec-
tion between discovered weak spots and the original train-
ing distribution would afford an “easy” remedy by altering
the latter.

5. Experiments

5.1. Dataset

The CARLA simulator has multiple maps available
with different town architectures pre-built. We choose
”Town02”, a map containing a small town with narrower
roads, for our experiments. These narrower roads of the
town lead to more instances of pedestrians being closer to
the ego vehicle and therefore larger in size, which in turn
leads to better performance of the model on the pedestrian
class compared to models trained on data generated from a
larger town with relatively wider roads. The semantic seg-
mentation sensor maps the image to 23 classes, the default
mapping available in version 0.9.11 of the CARLA simu-
lator, which is similar to the Cityscapes [3] class mapping.
To generate the training data, we wrote a CARLA client
using the Python API that spawns an ego vehicle at a ran-
dom point in the town and drives around automatically. Fur-
thermore, we make use of CARLA simulator example code
spawn npc.py to fill the world with 150 pedestrians and
30 vehicles. The pedestrians, for example, are spawned ran-
domly on a set of predefined pavement locations.

The data is generated in different sequences. Each se-
quence is initialized with the same initial settings, like the
number of AI actors and weather, to ensure that the data
distribution remains the same. But, the spawn points of AI
actors and the ego vehicle are random for each sequence.

The ego vehicle has an RGB sensor, a semantic segmen-
tation sensor, and the pedestrian detection sensor we devel-
oped. The RGB and semantic segmentation sensors each
have a resolution of 1920 × 1280 with 90° horizontal and
60° vertical field of view (FOV). The pedestrian detection
sensor projects beams with horizontal FOV of 95° and ver-
tical FOV of 50° using 200,000 points per scene. The max-
imum range of the beam is 200 metres, and the points are
projected to form a cone with a rectangular base. These
values were obtained heuristically to maximize pedestrian
detection without increasing the points per scene, which is
computationally expensive. If there are only a few pixels
in a scene belonging to a pedestrian due to occlusion, our
sensor could fail to detect and extra the metadata. While we
can avoid this by increasing the points per scene, we neglect
these corner cases for our preliminary experiments.

We generated 10,099 images, ground-truth and corre-
sponding pedestrian and global metadata. From these gen-
erated data, we use 7394 for training, 1303 for valida-
tion and 1402 for testing. The validation data is used for
hyper-parameter tuning and for choosing the best perform-

1009



Figure 3. The proposed concept for a closed-loop validation method. The validation is performed by leveraging metadata generated from
our CARLA sensor extension.

ing model. The test and validation data have a similar dis-
tribution to the training data. All three datasets have the
default weather setting in CARLA. Furthermore, we gener-
ated the following separate datasets with specific scenarios
for semantic testing.

• Varying position: For this experiment, we use a sin-
gle isolated pedestrian (asset 0015) for each image and
vary only its position and rotation while keeping all
other semantic properties the same, compare Figure 2
for a sample image. We measure the pedestrian’s po-
sition relative to the ego vehicle: x varies between +7
meters (right) to -6 (left) and depth y changes between
10 and 35 meters. The depth is deliberately limited to
35 as we consider these pedestrians as safety-relevant
for our experiment. We chose -6 on the left side as ob-
stacles on the pavement lead to collisions while spawn-
ing the pedestrian. Each position is sampled five times
with varying orientations of the asset. In total, we gen-
erate 2046 images for this test dataset.

• Varying digital asset: The second experiment uses the
same setup as the first but fixes the pedestrian’s posi-
tion at the image centre, again see Figure 2. Instead
of the position, which remains fixed, we sample all
26 CARLA pedestrian assets (20 adults, six children).
Again, we vary the orientation of each asset five times.
We generate 181 images for this test dataset.

The setup is used to generate a second dataset of iden-
tical size and making, except that the daytime is set to
nighttime to perform an extrapolation experiment.

5.2. DNN Training

We use a DeepLabv3+ [2] with a randomly initialized
Resnet-101 [7] backbone to perform the semantic segmen-
tation task. The entire DNN is trained from scratch with a

stochastic gradient descent (SGD) optimizer with momen-
tum 0.9, weight decay of 5e-4 and a learning rate of 5e-
3, along with a poly learning rate scheduler. We train for
fifty epochs with a mini-batch size of two. We use Py-
Torch [12] for our implementation. We resize the images
from 1920× 1280 to 1080× 1080. Further data augmenta-
tion techniques like random horizontal flipping (rate=50%)
and random scaling are used. In addition, the images are
normalized with mean=(0.485, 0.456, 0.406) and standard
deviation=(0.229, 0.224, 0.225). Mean intersection-over-
union (mIoU) is chosen as the performance metric.

For comparison, we train five models with different ran-
dom seeds and perform our experiments on all of these five
models. The best performing model for each seed is cho-
sen based on the mIoU on the validation data. Each model
achieved at least 70% mIoU over all classes on a holdout
test dataset with a similar image distribution as the training
set. However, for our experiments, we only focus on the
pedestrian class and its corresponding IoU. To extract IoU
at an instance level of individual pedestrians, we perform
a post-processing step. First, using bounding-box informa-
tion, we crop rectangular patches of each pedestrian from
both the semantic segmentation ground-truth and the DNNs
prediction image. We then calculate the IoU of classes in-
side this cropped patch. These steps are repeated for all
pedestrians in an image to get the instance IoU. Note that
this can lead to faulty IoU calculation when pedestrians
overlap in the cropped images.

5.3. Results

5.3.1 Generalization gap

With the availability of metadata, we can explore the gen-
eralization gap of the DNN on training and test data at a
more granular level. Instead of evaluating a DNN by aver-
aged measures such as mean IoU, we can resolve the metric
along semantic concepts like pedestrian asset type or pedes-
trian skin colour. In Figure 4, we see the IoU of the pedes-

1010



Figure 4. This figure shows the generalization gap between the
train and test datasets for DeepLabv3+. The dashed red diagonal
indicates an ideal case where train and test performance are equal.
The points represent the average IoU for each pedestrian asset,
along with the respective standard deviation given by the green
lines.

trians grouped by pedestrian asset type in training and test
datasets. A diagonal line is provided to show ideal DNN be-
haviour where train and test performance is identical. Points
that lie above have a positive generalization gap as testing
performance is lower than training performance. Points be-
low the diagonal have a negative generalization gap as test-
ing outperforms training performance at these points. Over-
all, as indicated by the bars representing the standard devia-
tion for the IoU of each pedestrian asset, performance varies
strongly even for a fixed asset, potentially due to other pa-
rameters such as distance to the camera. These fluctuations,
paired with the comparatively small size of the (per asset)
test dataset, might explain the otherwise uncommon nega-
tive generalization gaps.

5.3.2 Tests with special scenarios

With the flexibility of synthetic data simulators, we can
also vary specific parameters in a scene to evaluate the per-
formance of a DNN. We generated scenario-specific test
datasets to test the DNN behaviour. We perform the ex-
periments based on the scenarios mentioned in 5.1.

The results of the experiment with varying position are
shown in Figure 5. This plot shows the top-down view of
the scene in Figure 2, where each point represents the posi-
tion of the pedestrian. The origin of the x-axis is the centre
of the ego vehicle, and positive (negative) values indicate a
shift of the asset to the right (left, respectively). The y-axis
represents the depth of the pedestrian in the image, i.e. how
far the pedestrian is away from the ego vehicle in the direc-
tion of travel. The pedestrian shown in Figure 2 is at posi-

tion x=0, y=12. Red colour indicates higher IoU while blue
indicates lower IoU, averaged over results from five mod-
els, each adopting over five orientations for each position.
Intuitively, we expect pedestrians closer to the centre of the
image, i.e. closer to the ego vehicle, to have higher IoU.
While this is true, the IoU is not symmetric w.r.t. to x. To
the right, performance decreases for x≥ 6 while for -6 IoU
is higher at lower values of y. One potential explanation for
this could be that the pedestrian at +6 and +7 are positioned
on the grass. As the training data is generated with dynamic
actors where pedestrians movements are predefined, pedes-
trians are mostly situated on pavements and crossings. This
difference between train and testing data distribution based
on position could be a reason for the lower IoU.

The data is generated without placing pedestrians at po-
sition x=-7 as the obstacles on the pavement like the street
lamp cause collisions when spawning pedestrians. Spawn-
ing pedestrians on the road can sometimes lead to unex-
pected behaviour in the CARLA simulator, as seen by the
lack of data points at y=27. The documentation recom-
mends to spawn at specific predefined points to avoid this
situation. However, due to the nature of our experiment, we
spawn the pedestrians on the road as well as the pavement
and grass.

Figure 5. Top-down view of the scene, as seen in Figure 2, where
each point represents one pedestrian position. The ego vehicle is
at 0 on the x-axis. +6 on the x-axis means that the pedestrian
is placed on the right side of the image, and -6 indicates the left
side. The y-axis represents the depth in the image. The red colour
indicates higher IoU, and blue indicates lower IoU (Best seen in
colour).

In the experiment with varying digital asset, we keep
the position of the pedestrian fixed, and the weather remains
the same as the training distribution (daytime). The pedes-
trian position relative to the ego vehicle is x=0, y=12. Fig-
ure 6 shows the average IoU grouped by asset type as bar

1011



graph.
We order the asset types by asset id numbers from

CARLA along with the age meta-information. In addition,
we also include the skin colour of the pedestrian (brown,
tanned, white) as the colour of the bars. We see that the
performance among the assets is not the same, although all
other semantic properties like scene and position are kept
constant. We introduce variance within our five experiments
by randomly varying the pedestrian orientation in each run.
The standard deviation for some assets, e.g. assets 11 and
14, are almost double compared to other assets such as ids 4,
19, and 24. Most of the pedestrians with white skin colour
have lower performance than brown and tanned. To study if
these particular assets are underrepresented in the training
data, we looked at the count of pedestrians in training data
grouped by asset type, see Figure 6. We see that while asset
id 26 is both strongly represented and has a high IoU, the
same does not hold for asset 8, which despite significantly
smaller representation, has a comparable IoU. This shows
that the distribution in training data cannot be the only pa-
rameter impacting IoU. For instance, asset 12, a child whose
distribution in training is equivalent to the adult 26, shows
reduced performance compared to the adult. In CARLA,
the child assets are around half the height of the adult as-
sets. This leads to a relative reduction in pixel area for the
child asset if both assets, such as here, are compared at the
same distance, which might also impact the performance of
the DNN. However, further experiments are needed to pin-
point more relevant semantic dimensions due to which there
is a difference in IoUs for different assets.

5.3.3 Extrapolation to unseen data

The previous experiments followed a similar distribution
of the test and train datasets as the overall simulation pa-
rameters such as the town map, daylight and weather were
kept the same. To study the extrapolation capability of
DeepLabv3+, we extended the varying digital asset ex-
periment by introducing nighttime as a semantic change
as shown in Figure 7. Looking at the IoU grouped by as-
set type as before, we see a significant reduction in perfor-
mance for all assets in Figure 8. However, the drop in per-
formance is not distributed homogeneously. For example,
while asset 15 had high IoU in the daytime, the reduction in
performance is more significant than other assets like 26 and
4. Similarly, asset 20 has a significant reduction compared
to daytime performance. Especially for the child assets, the
IoU is consistently less than 5%. We place the pedestrians
under a streetlight in this experiment, which might lead to
slightly better performance than other placements. For e.g.,
this experiment could be extended to changing two seman-
tic dimensions by placing pedestrians on the grass as an ad-
ditionally challenging position while keeping nighttime to

(a) Pedestrian type vs IoU on test data

(b) Pedestrian type distribution in training data

Figure 6. These plots show the semantic dimension pedestrian type
and corresponding average IoU for the test scenario varying dig-
ital asset and the distribution of pedestrian assets in the training
data. The pedestrian asset id plus age are shown as y-axis ticks.
The colour of the bar indicates the skin colour of the pedestrian
(Best seen in colour).

study DNN behaviour across two semantic changes.

6. Conclusion

We presented two contributions: At first, we showed
how the CARLA simulator could be extended by an addi-
tional sensor that allows for logging of granular scene meta-
information with limited effort. We demonstrated this by
resolving where and which type of pedestrian asset, i.e. the
corresponding 3D model, is situated in an obtained image.
While this is a technical contribution, we also showcased

1012



Figure 7. A sample image for varying digital asset experiment at
nighttime.

Figure 8. The average IoU is calculated by grouping by pedestrian
asset type for the nighttime experiment. In comparison to Figure
6, the performance is consistently lower. The pedestrian asset id
plus age are shown as y-axis ticks. The colour of the bar indicates
the skin colour of the pedestrian (Best seen in colour).

how we can use such metadata to test DNNs along semantic
dimensions. This provides an effective way to check for the
presence of weaknesses or learnt shortcuts. For instance,
we showed in Figure 4 that, given a trained DeepLabv3+
segmentation DNN, specific pedestrian assets are statisti-
cally better resolved (i.e. possess consistently higher IoU)
than others when comparing performance on training and
holdout test datasets. Using CARLA further to investigate
specific test scenarios, we demonstrated in Figures 5 and
6 that performance differs even more significantly among
assets and semantic dimensions such as position in a given
scene. Similar statements hold for the case of extrapolation
as shown in Figure 8, where observed performance losses
were asset-specific, a property hard to resolve without good
control over the metadata.

The results from Figure 6 also showcase the problems of
identifying relevant semantic dimensions and ensuring that

they are indeed correct. For example, while age in the sim-
ulation might be a good predictor for IoU performance, the
result might be correlation rather than causality. Instead,
majority of the effect is likely attributed to the physical size
of the pedestrian, which is not fully determined by age.
Therefore, choosing the appropriate semantic dimension is
essential to perform validation. It is potentially impossible
to find and test all potentially relevant semantic dimensions,
i.e. to achieve completeness, due to their large number and
difficulties to extract and generate them even in simulation.
Nonetheless, even studying a limited set of metadata and
resulting performance measures can point towards potential
failure cases or weak spots.

Linking the experimental results to the training data dis-
tribution appears to be non-trivial. On the one hand, un-
seen scenarios such as nighttime lead to tremendous per-
formance deterioration. On the other hand, shifts in relative
distributions among different assets do not directly translate
to observable performance differences. We highlight that
we did not leverage the complete metadata available and
provide our experiments as a proof-of-concept. Also, modi-
fications to the training distribution, e.g. adding night scenes
or further skewing the pedestrian distribution and retraining
and re-evaluating the network based on such modifications,
is left for future work.

Considerations in this direction are important as it is
a common, and to some extent justified, assumption that
DNNs as data-driven models suffer from weaknesses that
stem from incomplete or lacking training data. Many
improvements aim to compensate for or find such miss-
ing data, e.g. via closed-loop testing. In this regard, our
CARLA sensor extension offers a principled way to study
such concerns in the future.

Acknowledgment

The research leading to these results is funded by the
German Federal Ministry for Economic Affairs and En-
ergy within the project “Methoden und Maßnahmen zur Ab-
sicherung von KI basierten Wahrnehmungsfunktionen für
das automatisierte Fahren (KI-Absicherung)”. The authors
would like to thank the consortium for the successful co-
operation. The work by author Sebastian Houben has been
supported by the German Federal Ministry of Education and
Research as part of the Competence Center Machine Learn-
ing Rhine-Ruhr ML2R (01—S18038ABC).

References
[1] Apollo: An open autonomous driving platform. https:

//github.com/ApolloAuto/apollo, 2017.
[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-

1013



tion, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(4):834–848, 2017.

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3213–3223, 2016.

[4] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator. In Proceedings of the Conference on Robot Learn-
ing, pages 1–16. PMLR, 2017.

[5] Epic Games. Unreal engine.
[6] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,

Xavier Ricou, Rupesh Durgesh, Andrew S Chung, Lorenz
Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-
tian Dorn, et al. A2d2: Audi autonomous driving dataset.
arXiv preprint arXiv:2004.06320, 2020.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[8] Nidhi Kalra and Susan M Paddock. Driving to safety: How
many miles of driving would it take to demonstrate au-
tonomous vehicle reliability? Transportation Research Part
A: Policy and Practice, 94:182–193, 2016.

[9] Maria Lyssenko, Christoph Gladisch, Christian Heinzemann,
Matthias Woehrle, and Rudolph Triebel. From evaluation
to verification: Towards task-oriented relevance metrics for
pedestrian detection in safety-critical domains. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 38–45, 2021.

[10] Farzan Erlik Nowruzi, Prince Kapoor, Dhanvin Kolhatkar,
Fahed Al Hassanat, Robert Laganiere, and Julien Rebut.
How much real data do we actually need: Analyzing object
detection performance using synthetic and real data. arXiv
preprint arXiv:1907.07061, 2019.

[11] Ishaan Paranjape, Abdul Jawad, Yanwen Xu, Asiiah Song,
and Jim Whitehead. A modular architecture for procedural
generation of towns, intersections and scenarios for testing
autonomous vehicles. In Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), pages 162–168, 2020.

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Proc. of NeurIPS, pages 8024–
8035, Vancouver, BC, Canada, Dec. 2019.

[13] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In Proceedings of the European Conference on Com-
puter Vision, pages 102–118. Springer, 2016.

[14] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang
Lu, Steve Lemke, Mārtiņš Možeiko, Eric Boise, Gee-
hoon Uhm, Mark Gerow, Shalin Mehta, Eugene Agafonov,
Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael
Reyes, Dmitry Zelenkovsky, and Seonman Kim. SVL Sim-

ulator: A high fidelity simulator for autonomous driving.
arXiv preprint arXiv:2005.03778, 2020.

[15] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3234–
3243, 2016.

[16] Julia Rosenzweig, Eduardo Brito, Hans-Ulrich Kobialka,
Maram Akila, Nico M Schmidt, Peter Schlicht, Jan David
Schneider, Fabian Hüger, Matthias Rottmann, Sebastian
Houben, and Tim Wirtz. Validation of simulation-based test-
ing: Bypassing domain shift with label-to-image synthesis.
In Proceedings of the IEEE Intelligent Vehicles Symposium,
Workshop on Ensuring and Validating Safety for Automated
Vehicles, 2021.

[17] Timo Sämann, Peter Schlicht, and Fabian Hüger. Strategy
to increase the safety of a DNN-based perception for HAD
systems. arXiv preprint arXiv:2002.08935, 2020.

[18] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and Service Robotics,
2017.

[19] Qutub Syed Sha, Oliver Grau, and Korbinian Hagn. DNN
analysis through synthetic data variation. In Proceedings of
the ACM Computer Science in Cars Symposium, pages 1–10,
2020.

[20] Georg Volk, Jörg Gamerdinger, Alexander von Bernuth, and
Oliver Bringmann. A comprehensive safety metric to eval-
uate perception in autonomous systems. In 2020 IEEE 23rd
International Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1–8. IEEE, 2020.

[21] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and
Stephanie Abrecht. Safety concerns and mitigation ap-
proaches regarding the use of deep learning in safety-critical
perception tasks. In Proceedings of the International Con-
ference on Computer Safety, Reliability, and Security, pages
336–350. Springer, 2020.

[22] Magnus Wrenninge and Jonas Unger. Synscapes: A pho-
torealistic synthetic dataset for street scene parsing. arXiv
preprint arXiv:1810.08705, 2018.

1014


