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Abstract

The evaluation of camera-based perception functions in
automated driving (AD) is a significant challenge and re-
quires large-scale high-quality datasets. Recently proposed
metrics for safety evaluation additionally require detailed
per-instance annotations of dynamic properties such as dis-
tance and velocities that may not be available in openly
accessible AD datasets. Synthetic data from 3D simu-
lators like CARLA may provide a solution to this prob-
lem as labeled data can be produced in a structured man-
ner. However, CARLA currently lacks instance segmenta-
tion ground truth. In this paper, we present a back projec-
tion pipeline that allows us to obtain accurate instance seg-
mentation maps for CARLA, which is necessary for precise
per-instance ground truth information. Our evaluation re-
sults show that per-pedestrian depth aggregation obtained
from our instance segmentation is more precise than pre-
viously available approximations based on bounding boxes
especially in the context of crowded scenes in urban auto-
mated driving.

1. Introduction

In automated driving (AD), camera-based perception
functions still pose a major challenge for reliable deci-
sion making especially in unstructured and crowded urban
scenes. While there is a high amount of available image
data, it is often not suitable for safety evaluation where
high-quality data is of utmost significance and where spe-
cific ground truth annotations may be required. In contrast
to standard performance measures, the evaluation in safety-
critical domains is often performed on a per-instance basis,

Figure 1: Result of the implemented instance segmentation
see Section 3. The Figure depicts separated pedestrian in-
stances within the semantic segmentation from Subfigure
2b, each pedestrian is assigned a specific ID, represented as
different coloring in the image.

e.g. evaluation is carried out for each individual pedestrian
in an image separately [3, 24, 17]. This requires that all in-
formation for evaluation of safety-related metrics like dis-
tance and maybe further dynamic properties such as orien-
tation and velocity are annotated for each single pedestrian.

Recent examples for safety evaluations based on distance
are given by Bolte et al. [3] and Lyssenko et al. [17], who
evaluate detection performance for individual pedestrians in
relation to their distance, as well as by Volk et al. [24],
who incorporate trajectories and velocities of pedestrians
and cars into the computation of a safety metric.

Synthetic data from 3D simulators like CARLA [11]
may provide a solution to the dataset engineering problem
for such evaluations as labeled data and dynamic properties
of subjects can be derived automatically. In addition, sim-
ulators provide tight control over the generated data which
is beneficial for structured dataset engineering. Thus, syn-
thetic data from a simulator (possibly combined with do-
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main transfer techniques e.g. Ros et al. [20]) is a viable op-
tion for generating such high-quality data sets in a struc-
tured way along with the necessary instance-wise ground
truth information. However, CARLA, a 3D simulation en-
vironment with particular focus on driving functions, does
currently not provide an instance segmentation ground truth
sensor1 that allows to distinguish different pedestrians in the
segmentation maps, which is a significant impediment for
using such data for metric evaluation.

The main contribution of this work is a back projection
pipeline that allows us to obtain accurate instance segmenta-
tion maps for CARLA. Our approach is based on a chain of
coordinate transformations that back project pixels from the
RGB images into the CARLA world and actors like pedes-
trians therein. A resulting instance segmentation map 2 is
shown in Figure 1. The figure also shows a main motiva-
tion of our work: Accurate distance estimation of pedes-
trians in crowded scenes. Here, the previous state-of-the-
art [17] used bounding boxes for determining the depth of
a pedestrian. As we see on the right of the figure (bright
green), this is not an issue for individual pedestrians since
the bounding box will be well separated from others. How-
ever, let us consider the pedestrian on the left (pale green).
In its bounding box, there are four additional pedestrians
present in the background with widely different depths. Sit-
uations like these may frequently happen in urban scenar-
ios, especially when they are crowded. In this case, using
a bounding box approximation, as described for example
in [17], will lead to inconsistent results. With an instance
segmentation-based depth estimation, we can remedy such
issues and can therefore provide more accurate results for
depth-based evaluation metrics when using CARLA.

In our evaluation, we systematically construct a dataset
using CARLA that is labelled with instance segmentation
ground truth and per-pedestrian distance information. For
comparison, we reimplemented the bounding box-based
distance estimation by Lyssenko et al. [17], that is based on
semantic segmentation, for evaluating the increase in pre-
cision. Our results show that even in the best case of ac-
curately fitted bounding boxes, instance segmentation pro-
vides a significantly improved precision on our dataset. Us-
ing an optimal bounding box fit we could measure devi-
ations in distance of more than 20m for several pedestri-
ans between the approaches. We consider this as significant
for safety-related evaluations, particularly in urban environ-
ments.

1https://github.com/carla-simulator/carla/
issues/76

2For visualization purposes we show a crop of the full resolution
2048×1024 CARLA image

2. Related Work
Datasets: Until recently, it was challenging to find

datasets containing instance-wise annotations for AD.
Datasets like Pascal-Voc [12] and MS COCO [16] of-
fer instance segmentation annotations but the diversity of
objects is rather focused on indoor scenes (like e.g. in
robotics). These may be suitable as additional—but not
main—datasets for AD. KITTI [13, 5], is referred to as the
pioneering multimodal dataset in AD providing 200k 2D
and 3D bounding boxes for over 22 scenes, as well as addi-
tional depth information acquired from front-facing stereo
images. The BDD100K dataset [25] is a large AD dataset
with 100K video and 10 different tasks including rich set
of corresponding annotations: object bounding box driv-
able area, full-frame semantic and instance segmentation.
Additionally, the dataset covers various weather conditions,
time, and scene types. The nuScenes dataset [5] comprises
1000 scenes with fully annotated 3D bounding boxes cov-
ering 23 semantic classes. Although it provides a variety
of scenarios including dense traffic and challenging driv-
ing situations, neither instance nor semantic segmentation
is included. The SYNTHIA dataset [20] is a collection of
213,400 synthetic images with semantic segmentation for
11 classes in urban scenes using a variation of seasons. The
simulator used for generating the dataset is based on the
Unity 3D engine.

However, with exception of e.g. A2D2 [14], available
benchmark AD datasets display a lack of instance segmen-
tation ground truth, as in e.g. nuScenes, KITTI, and even
the synthetic SYNTHIA dataset, or do not offer any im-
portant physical cues such as distance in e.g. BDD100K or
Cityscapes [10]. Due to the low costs of acquiring instance-
level, pixel-wise annotations, (open-source) simulators with
a flexible API may support in a controlled scenario genera-
tion with the requested ground truth.

Open-source Simulators: CARLA [11] is a popu-
lar open-source 3D simulator for the development of au-
tonomous vehicles. Like Airsim [23], it is based on the
Unreal Engine 4 (UE4) and implements various sensors in-
cluding RGB camera, depth, semantic segmentation, and
more. Unfortunately, AirSim focuses on various types of
autonomous vehicles but does not refer to other subjects
like pedestrians in the paper. Conversely, CARLA includes
a controlled spawning function of e.g. pedestrians and con-
tains eight 3D worlds (Town01-Town07, and Town10HD)
with objects labelled using 23 classes. It provides a Python
API and a client-server architecture making it flexible and
easy to use out-of-the-box. SUMMIT [6] is a framework
that builds on top of CARLA. Hence, it inherits the fea-
tures from CARLA such as physics and rendering capabil-
ities but extends it for simulating complex traffic behav-
iors in crowded urban scenarios. Similarly to SUMMIT,
CADET [4] introduces a CARLA-based tool for generating
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(a) RGB traffic scene scenario in the CARLA simulator. (b) Semantic segmentation ground truth with 23 object classes.

Figure 2: Figure a shows the rendered CARLA output on the basis of the Unreal Engine, while Figure b and Figure 1 illustrate
the corresponding semantic map and its refined instance segmentation, respectively.

training data from the simulator. It enables the export of
high-quality synchronized LiDAR and camera data. They
generated a dataset offering 10,000 samples with 2D and
3D annotations for the pedestrian and vehicle class, comple-
mented by a depth map-based occlusion detection. Neither
of these simulators provide instance segmentation.

Commercial Simulators Commercial 3D simulation is
provided, e.g., by Cognata [21]. They also provide datasets
with pedestrians for vulnerable road user (VRU) detec-
tion applications [9] including scenarios such as roadworks
and emergency situations. Additional commercial options
for simulation-based synthetic image generation include
LGVSL [19], [1] and dSPACE [22] simulators, where, e.g.
dSPACE allows scenario generation from raw image data
equipping the scenery with a variety of 3D assets.

Further work: Furthermore, there are publicly funded
projects such as KI Absicherung – Safe AI for automated
driving [2], which works on the cross-concerns of DNN-
based computer vision algorithms, synthetic image genera-
tion for verification and validation. A particular focus is on
pedestrian detection in urban scenarios. To evaluate such
scenarios 3D synthetic data is developed including seman-
tic and instance segmentation, respectively.

Summary: The goal of this work is to generate data with
distance and instance segmentation information based on
simulation. We want to generate controlled variations of ur-
ban scenes. To this end, CARLA meets the prerequisites by
providing a flexible API enabling a controlled subject place-
ment, and by offering instance segmentation ground truth or
further functionalities that may support its implementation.
With available depth maps, pixel-wise annotations, and pre-
cise knowledge of CARLA’s 3D world, the present work
proposes a novel function in CARLA, tackling the task of
instance segmentation for the pedestrian class.

3. Pedestrian Instance Mask Estimation in
CARLA

This section describes the combination of CARLA’s ac-
tor information along with a chain of coordinate transfor-

mations to implement an accurate pedestrian instance dis-
tinction in crowded scenes. However, for our approach
we assume that in CARLA collision of subjects (e.g. hug-
ging or standing close together) is avoided 3, i.e. 3D actor’s
bounding boxes do not overlap. We leave potential colli-
sion cases as future work. Please not that the current setting
still includes crowded scenarios (as it can be seen in Figure
1) which lead to a high degree of overlap in 2D bounding
boxes.

We leverage PyTorch 1.7 [18] with CUDA support in
order to boost performance on our rendered full-resolution
images using CARLA’s 0.9.11 Release.

3.1. Instance Segmentation

Unlike semantic segmentation, which only provides per-
pixel class labels (a.k.a. semantic segmentation) regardless
of object instances, instance segmentation aims to obtain the
per-pixel class annotations, as well as instance-aware labels
simultaneously.

Let us consider an RGB input image I ∈ RH×W×3

where H and W denote the image’s high and width in pix-
els, respectively. We define the instance ground truth as a
set {(Gi, cj)} with Gi ∈ {0, 1, 2, ...m}H×W denoting the
integer-based instance segmentation mask for the i-th in-
stance (subject), andm as the maximal instance number per
image. cj ∈ {1, 2, 3, ...M} defines the j-th class category
with M describing the total number of classes.

Although, for our rendered datasetM is equal to 23 con-
sidering all semantic classes in CARLA, our implemented
back projection pipeline in Section 3.2 refers so far only
to the pedestrian class. However, our instance segmenta-
tion approach can be trivially extended to any actor class
in the CARLA simulator, e.g. vehicles, as all actors offer
unique 3D bounding boxes, which is the prerequisite for
our method.

Please note that due to CARLA’s labelling policy, pedes-
trian and biker class members carry the same label ID.

3UE4’s collision avoidance referenced in https://github.com/
carla-simulator/carla/issues/258
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However, our implemented instance approach filters non-
pedestrian pixels within the instance mask providing pedes-
trian pixels only, i.e. in Figure 1 the biker is filtered out.
Please note, in our dense setup in Figure 1 we may no-
tice very small clusters of pixels belonging to heavily oc-
cluded pedestrians. However, these are not artifacts of our
approach but actual pedestrian pixels.

Considering the constraints, our implementation reduces
M to 1 (only pedestrian class is relevant),m to 21 (in Figure
5a maximal pedestrian count in the test split) and the ground
truth set to {(Gi, c1)}, respectively.

CPixel C̃Pixel CCamera CUE CWorld CActor

Back Projection Pipeline

T0 T1 T2 T3 T4

TPA

Figure 3: Overview of the applied coordinate system C
transformations (T0-T4) to back project pedestrian pixels
CPixel into the CARLA world CWorld, and subsequently to
actor coordinates CActor (using Equation 2-8 from Section
3.2).

3.2. Identifying Pedestrians in the Group

We leverage the pinhole camera model that mimics
the geometrical mapping of a 3D world point N =
[X,Y, Z, 1]T ∈ R4 to its corresponding 2D projection
n = [u, v, 1]T ∈ R3 onto the pixel grid using Equation 1
(see [26]). We use homogenous coordinates as an aug-
mented representation of points in Rn to Rn+1, hence we
use n + 1 dimensions. This representation is frequently
used with perspective and projective transformations in e.g.
robotics and computer vision [26].

λ · n = K · [R | t ] · N, with K =

α 0 u0
0 β v0
0 0 1

 (1)

λ ∈ R+ denotes an arbitrary scale factor, while the extrin-
sic parameters (R, t) describe the relationship between the
world- and camera coordinate systems. Thereby R ∈ R4×4

and t ∈ R4 define the position of the camera center and
the camera’s orientation in world coordinates, respectively.
The intrinsic properties are summarized by matrix K with
the principal point (u0, v0) ∈ R2 and the focal lengths α
and β ∈ R+, scaling the image along u and v axes. All in-
trinsic parameters are provided by CARLA’s sensor’s class.

We split the back projection in the following steps as
shown in Figure 3. We require the inverse transformation
of the forward projection, that is given by Equation 2

TPA =

0∏
i=4

Ti. (2)

TPA describes the chain of performed transformations
in order to achieve the mapping from pedestrian pixels
[u, v, 1]

T
CPixel

to 3D points [X,Y, Z, 1]TCActor
.

Figure 4: Output of CARLA’s depth sensor (8-Bit) that
stores pixel-wise depth in meters (zbuffer).

Starting with a pixel-wise multiplication of the z-buffer
(zbuffer) acquired from CARLA’s depth sensor (see Figure
4), we apply T0 with

T0 : zbuffer(u, v) · [u, v, 1]TCPixel
(3)

to obtain depth-weighted pixels when transforming CPixel
to C̃Pixel. This prerequisite is necessary to express TPA as
a cascaded transformation matrix enabling tensor initializa-
tion on the GPU using CUDA.

Equation 4 applies the inverse intrinsic matrix K−1 to
transform the depth-aware pedestrian pixel coordinates in
C̃Pixel to 3D camera coordinates CCamera in T1 using

T1 : C̃Pixel
K−1

→ CCamera. (4)

Subsequently, to map camera coordinates to the coordinate
system CUE used by Unreal Engine, we need to apply T2
with

T2 : [x, y, z]Camera → [z, x,−y]UE. (5)

The unreal-to-world transformation T3 from Equation 6 de-
notes the coordinates mapping fromCUE to CARLA’s world
reference defined through CWorld.

T3 : CUE
[ R3 | t3 ]→ CWorld (6)

To compute the 3D Point [X,Y, Z, 1]TCUE
in world refer-

ence, we obtain [R3 | t3 ] from CARLA’s API, accessing the
matrix from a transformation class that defines a combina-
tion of location and rotation of CARLA’s actors.

Finally, T4 from Equation 7 completes the back projec-
tion pipeline leveraging the actor’s location and orientation.

T4 : CWorld
[ R4 | t4 ]−1

→ CActor (7)

Since CARLA’s transformation class provides the actor-to-
world conversion [R4 | t4 ] (analogous to [R3 | t3 ]), the fi-
nal transformation requires the inverse matrix [R4 | t4 ]−1
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for the world-to-actor mapping. Resulting points
[X,Y, Z, 1]

T
CActor

are axis-aligned with the actor’s 3D bound-
ing box enabling a check of its extent along the three dimen-
sions.

The last step includes a correspondence verification,
whether the back projected 3D point [X,Y, Z, 1]

T
CActor

matches a provided pedestrian actor bounding box from
CARLA. After a successful search, the corresponding
pedestrian pixel is assigned a unique object identification
in the integer-based instance map {(Gi, c1)} (see Section
3.1).

We express the cascaded transformation from CPixel to
CActor as a single matrix TPA from Equation 2 to transform
pedestrian pixels [u, v, 1]TCPixel

to 3D points [X,Y, Z, 1]TCActor
in CARLA’s actor coordinate system using

NCActor = TPA · nCPixel . (8)

For an efficient implementation, we leverage CUDA and we
convert the transformation matrix TPA as well as our pixel
array nCPixel , to tensors on the GPU. As a result we can ac-
celerate the instance mask calculation by a factor of ≈ 102

(in seconds).

4. Data Collection of Urban Scenes in CARLA
CARLA uses Unreal Engine to render a virtual environ-

ment containing a virtual city, equipped with important el-
ements for urban automated driving simulation e.g. ground
markings, traffic signs, vegetation, and construction. The
city can be populated with a variety of traffic participants
like vehicles, bikes, and pedestrians with different appear-
ances all derived from CARLA’s blueprint library, similar
to [20].

4.1. Crowded Scene Population

We implemented a Python API on top of CARLA’s
spawning functionality to control pedestrian placement.
Leveraging different ground types (road, shoulder, and
sidewalk) we aim for collision-aware pedestrian placement
within the sensor’s field of view, ideally achieving a wide
coverage. In contrast to a previously described methodol-
ogy in [17], we strive for a roughly equal pedestrian place-
ment across all ground types, rather than contributing occa-
sional waypoints from the road.

In contrast to SUMMIT’s CARLA extension [6] we do
not rely on topological graph constructs to define behaviors
of pedestrian actors, but rather a desired spawning distance
from our current sensor’s location using CARLA’s waypoint
reference API4. During distance-aware placement, we re-
quest a specific pedestrian count at each simulation step.
However, placing a high pedestrian count may not always

4See CARLA’s documentation on carla.Waypoint API Reference

be possible due to unstructured surroundings and its obsta-
cles.

We select different elements from the blueprint library
to generate a high variety of appearances 5. This in-
cludes pedestrians with different gender and age (adult, kid)
dressed in random clothing samples from a pre-specified
wardrobe.

To create realistic and diverse scene settings and to differ
from an overall static impression, we modify each pedes-
trian’s dynamic behavior such as initial random speed and
heading. Finally, once the actor has been successfully
placed inside the simulator, a unique instance identification
is assigned which is fundamental to Section 3.2.

4.2. Synthetic CARLA Images

To generate our scenes, we focus on urban environments
similar to SYNTHIA [20]. Therefore, our dataset solely
contains scenes from CARLA’s virtual city Town03. Pixel-
level semantic annotations include 23 different classes (e.g.
the pedestrian class depicted in Figure 2b), which are di-
vided into seven categories: sky, construction, human, flat,
nature, vehicle, and object.

Table 1: On the basis of the scenario settings from Section
4.1 (controlled pedestrian placement), we created our syn-
thetic dataset that may be used for further DNN evaluation
using instance annotations. The table depicts the total num-
ber of images to the subset of samples with pedestrians (in
parentheses).

Train Validation Test

4559 (2111) 1227 (566) 746 (355)

We include images rendered from CARLA in our dataset
with a resolution of 2048×1024 pixels. The training dataset
split includes 4559 samples (with 2111 images offering
pedestrian instances). Accordingly, the validation and test
splits contain 1227 (566) and 745 (354) samples, respec-
tively. For each selected scene we generate the following
data: a RGB image, semantic ground truth, a depth map,
as well as the novel instance segmentation map, plus addi-
tional information such as number of pedestrians along with
their distances acquired from CARLA.

Benchmark datasets in AD, e.g. Cityscapes and
KITTI [10, 13], provide a statistical representation using
the frequency of scenes with a certain number of traffic
participants (pedestrians and vehicles). However, those
dataset statistics describe an overall scene complexity rather
than being class specific. In Figure 5a, we show explicitly
the distribution of pedestrian instance occurrences in our

5Actor’s appearance described in CARLA 0.9.6 Release http://
carla.org/2019/07/12/release-0.9.6/
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(a) Occurrence distribution of the pedestrian class.
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(b) Distribution of camera-instance distances for the pedes-
trian object class.

Figure 5: Among the dataset splits from Table 1, Figure b
and Figure a depict the distance distribution and pedestrian
instance occurrence, respectively. The figures outline that
our pedestrian distribution is fairly similar across the vali-
dation and test split.

dataset. Please note that fluctuations in the requested sub-
ject count are caused by CARLA’s internal collision con-
flicts if e.g. the aimed spawning location is already occupied
by another object, or by successfully spawned pedestrians
that are fully occluded. Nevertheless, our dataset exhibits
challenging crowded scenarios with a pedestrian count up
to 21 6 instances across all splits.

Figure 5b shows that our rendered dataset covers a wide
range of pedestrian distances (up to 90m) across all dataset
splits, highly similar to the nuScenes dataset [5]. In com-
parison, the AD dataset A2D2 offers a maximal pedestrian
distance of ≈ 62m. Other datasets like e.g. Cityscapes and

6Maximal pedestrian count in the test split.

KITTI [10, 13] provide a histogram of object distances over
a wider range (up to 249m and 121m, respectively) but un-
fortunately, the statistics only consider the vehicle class.

5. Experimental Comparison
In this section we conduct dedicated experiments to

show that even optimally fitted bounding boxes decrease the
depth precision on our test dataset. Please note, that in our
case per-pixel depth information (see Figure 4) is available
and only per-instance depth aggregation needs to be per-
formed and evaluated.

5.1. Baseline: Bounding Box Retrieval

Mimicking the approach towards instance segmentation
and object detection in CARLA from [4, 17], we use the
instance mask resulting from Section 3.1 as a basis for 2D
bounding box (BBox) retrieval. To investigate the impact
of a synthetic BBox expansion on pedestrian’s depth preci-
sion we conduct our experiments using an optimal BBox,
complemented by 10% and 20% extension. We use the di-
agonal of the BBox as a basis for a proportional expansion
from mass center. We conduct those extensions to investi-
gate how the BBox’s size impacts the depth precision of the
baseline approach in contrast to our presented methodology.

Please note that the pixel-wise distance from the depth
sensor (8 Bit) is implemented using CARLA’s logarithmic
scale (carla.ColorConverter class), accordingly a conver-
sion to linear depth following [8] is conducted. Subse-
quently, we used 8 Bit granularity, as well as logarithmic
depth in our evaluation. However, to leverage CARLA’s
24 Bit depth map 7 settings (raw depth data) further studies
would be interesting.

5.2. Results

In the following we report on the comparison between
depth determined on the basis of a BBox in comparison to
the instance segmentation. This will show which system-
atic issues and idiosyncrasies result when using a BBox for
distance annotation for a pedestrian rather than an instance
segmentation in crowded scenes. As can be seen in Fig-
ure 6, we base our comparison on heatmap plots that show
how many pedestrians have a certain distance from instance
segmentation (x-axis) as well as for the BBox (y-axis). For
the BBox, we aggregate the associated distance of all pix-
els inside the BBox belonging to the pedestrian class using
the median in Figure 6. Note that the plot is a logarithmic
heatmap, such that empty cells feature no pedestrians, dark
cells feature a few pedestrians and brightly colored cells a
large number of pedestrians. For the instance segmenta-
tion GT, we generally use the median. Please note that the

7https://carla.readthedocs.io/en/0.9.12/ref_
sensors/#depth-camera
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Figure 6: Logsscale heatmaps show the relationship between instance GT and BBox distances for each pedestrian. (a) shows
an accurate BBox fit to our instance mask (baseline approach, see Section 5.1), while (b) and (c) show an applied extension
on the diagonal of (a) using 10 and 20%, respectively.
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Figure 7: (a) shows the error of the BBox methodology in respect to its diagonal. (b) shows a concrete example to visualize
occlusion effects on BBox distance. (c) reproduces the results from Figure 6 (a) using a mean aggregation.

maximal difference between mean and median is ≈ 0.18m
across all test instances. For the BBox, we investigate this
difference between mean and median further below. If the
BBox would return exactly the same distances as the in-
stance segmentation – which would be the case for fully
separated pedestrians (no grouping) – the plot would show
just a diagonal. As we can see from the plots, this main
diagonal is still clearly visible, but there is some “noise”
surrounding it. This shows that for some pedestrians the
BBox method does not return accurate distance results.

Figure 6 shows three different variants of the same plot.
We increase the size of the BBox from an optimal (min-
imal) size (a) and increase the size in steps of 10% for
(b) and (c). As a result, we can see the expected effect
that results get noisier when the BBox size increases and
there is more potential for other pedestrians getting mixed
into a BBox. More interesting, we see that there is a bias
in differences between the BBox and instance segmenta-
tion: Distances determined by the BBox get mostly smaller

rather than larger. Note that this difference is quite strongly
pulling certain pedestrians to a close-by distance of a few
meters.

We analyze this effect further in Figure 7(a) by plot-
ting the difference between the two distances (y-axis) con-
ditioned on the size of the bounding box (x-axis). As we
can see in the plot, many smaller BBoxes are affected. This
is not surprising: When we have smaller BBoxes, a change
of the distribution of distances in the BBox and therefore
the median is easier to achieve. In order to highlight such
as case, we plot one of these examples from the bottom of
Fig. 7(a) in Fig. 7(b) with the corresponding BBox . We can
see the occluded pedestrian (green) where only the visible
parts are surrounded with a BBox. The occluding pedes-
trian (orange) however takes up most of the bounding box
and as a result the BBox distance will be dominated by the
orange rather than the green pedestrian. Concretely, while
the instance segmentation results in a distance of 36m, the
orange pedestrian in ≈ 15m distance pulls the green pedes-
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trian 21m forward. Please note that changing the BBox size
has not much impact in these cases: the occluding close-
by orange pedestrian will always dominate the distance in
the BBox. This effect is rather caused by dense placement
of pedestrians in crowded scenes and shows that when we
want to study such a context, a distance measurement-based
on instance segmentation will result in considerably better
measurements.

As a final study, let us look at Fig. 7(c) where we study
the same setup as Fig. 6(a) but now with a mean averaging
of distance in the bounding box. We can see two effects:
First, the pedestrians are not as much pulled to the front
as for the median due to averaging effects. For instance, for
the example in Fig. 7(b), a median distance on the bounding
box results in ≈ 15m while the mean distance results in ≈
25m. While the averaging helps in reducing this “pulling-
effect”, it results in substantially more noise: we can see
that there are considerably more samples that report a larger
distance. Additionally, examples farther away (> 60m) are
increasingly affected.

6. Conclusions
In this paper, we presented a back projection pipeline

that allows us to obtain accurate instance segmentation
maps for CARLA. Our CUDA-enabled implementation ap-
plies a chain of coordinate transformations to efficiently
back project pedestrian pixels into CARLA and to the corre-
sponding actors. For evaluating our instance segmentation,
we included a module for controlled pedestrian placement
within CARLA, enabling the creation of urban scenes with
pedestrians in a wide range of distances and for control-
ling pedestrian density, i.e. including crowded scenes. On
this basis, we systematically constructed a synthetic dataset
containing accurate instance annotations, as well as per-
pedestrian distance information derived from the instance
masks We performed a detailed comparison with a bound-
ing box-based approach which identifies that in crowded
scenes only the instance-based approach can resolve occlu-
sions among pedestrians and return accurate distance infor-
mation. Since our instance segmentation methodology de-
livers precise per-pedestrian annotations and distances for
dense scenes with a high degree of overlap, this approach
can be used to generate large-scale high-quality datasets
with accurate per-pedestrian statistics. Furthermore, sub-
sequent work targets the evaluation of perception functions
considering physical cues for safety-argumentation, where
estimated per-instance distances must be accurate.
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