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École des Ponts Paristech

Champs-sur-Marne, France
florentin.poucin@eleves.enpc.fr

Andrea Kraus, Martin Simon
Valeo Schalter und Sensoren GmbH,

Kronach, Germany
{andrea.kraus, martin.simon}@valeo.com

Abstract

A major issue related to computer vision for the automo-
tive industry is that real-world perception models require
huge amount of well-annotated data to achieve decent per-
formance. While this data is very expensive to collect and
annotate, synthetically generated images seem to be an ef-
ficient alternative to solve this problem. More and more
public data sets, composed of synthetic data, are avail-
able in various domains, however, there is too little con-
crete methodology to use them properly. In this paper, we
propose a simple approach combining the use of synthetic
and real images to boost instance segmentation. We men-
tion some pre-processing requirements as harmonizing in-
stance labeling and removing non-valuable instances from
synthetic images. We present our training strategy based on
data set mixing, and show that it overcomes the domain shift
between real and synthetic data sets. A comparison study
with other training approaches, such as fine-tuning tech-
niques, highlights the benefits of our method, which boosts
network performances on both real and synthetic image in-
ferences.

1. Introduction

Deep Neural Networks (DNNs) are nowadays achiev-
ing the best performance in many tasks related to percep-
tion for autonomous driving, such as object detection or se-
mantic segmentation. While network architecture and GPU
computational power are constantly improving, the need for
properly curated data has become one of the biggest issues
in this field. DNNs need large amounts of training data to
ensure good accuracy and robustness. Training data sets
must reflect reality by properly representing frequently en-
countered situations, but also rare events and corner cases.
Collecting and annotating real-world images that make up
these data sets is very expensive. In view of these high costs,
there is interest in the possibility of synthetically generat-

ing realistic data. Recent examples, such as the NVIDIA
Omniverse platform [20], develop synthetic data generation
algorithms for deep learning training applications. Image
generation techniques drastically reduce the annotation ef-
fort to collect ground truth data, but the effectiveness of the
produced images, in properly feeding DNNs, is not immedi-
ate. Many public synthetic data sets are nowadays available
and represent a high potential source of data for many tasks.
Our motivation is to explore the right use of synthetic data
in order to boost real world automotive AI perception.

In order not to limit this work to common practices
on how to properly use synthetic data, we focus on a
precise use case, and highlight for it the most effective
methodology to improve DNN performances throughout
our experiments. We restrict the scope of our study
to instance segmentation, which is about detecting and
delineating each distinct object of interest appearing in an
image. To perform this task, we use a Mask R-CNN [10]
architecture to which we add the PointRend module [13].
As Mask R-CNN architectures are currently state-of-the-art
for Instance Semantic Segmentation and several other
image based perception tasks, the overall results of our
experiments are applicable in a general fashion. Regarding
the data, we use real-world images from the Cityscapes
data set [3] and synthetically generated images from the
Synscapes data set [29].

In this work, we raise different issues from the use of
synthetic data to improve the performance of the chosen
neural network. We propose a data set mixing approach
taking advantage of both real and synthetic images. The
full methodology is shown in Figure 1. Our contribution
could be summarize as follows:

• We highlight pre-processing requirements related to
the use of synthetic data. Ensuring high quality of ren-
dering and annotations for synthetic images appear to
be essential for the network to perform well.

• We present our data set mixing strategy, which over-
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Figure 1. Processing steps for the use of synthetic data. On the left, the pre-processing steps: labeling harmonization regarding class
definition and non-valuable synthetic instance removal. On the right, different training approaches (real-world training, mixed data set
training, fine-tuning, synthetic training) and their performance obtained on Cityscapes (blue) and Synscapes (orange).

comes the current PointRend performances on both
Synscapes and Cityscapes data sets.

• We give a comprehensive comparison of our method
with a more common transfer learning approach based
on fine-tuning.

2. Related Work
Mask R-CNN [10] models have been top ranked for

many tasks, including instance segmentation, in several
benchmarks e.g. [3, 16]. These region-based approaches
are very effective for small instances but could show over-
smoothing issues for larger objects. In order to improve this
aspect, more holistic approaches using the image structure
are given in [1, 2, 27]. The PointRend (Pointbased Render-
ing) module is presented in [13] as an effective alternative
to Mask R-CNN’s default mask head. The authors were in-
spired by classical ideas from computer graphics to perform
point-based segmentation predictions. More recently, Liang
et al. [15] propose PolyTransform, a model using modern
polygon-based methods to improve the precision of instance
masks. Adapted from language to vision, Transformer ar-
chitectures [4, 17] also show promising results for instance
segmentation.

A lot of research has been made about the generation of
synthetic data to improve DNNs performance for real world
tasks. In [22, 28], synthetic data are generated and used
to overcome a lack of well labeled images in their specific
field. Dwibedi et al. [5] generate synthetic images by cut-
ting and pasting object instances onto diverse environment,
whereas Su et al. [26] propose to use 3D models for the gen-
eration. Human annotated real-world data are substituted
with virtual world images from the video game GTA V in

[12]. In the same vein as Synscapes [29] and Cityscapes
[3], Virtual KITTI [6] synthetically replicates a part of the
KITTI data set [8]. Most of these papers highlight the ben-
efits of using synthetic images to improve neural network
performance. Valuable similarities between synthetic and
real images are described in [21].

Seib et al. [25] offer a review of several approaches us-
ing synthetic data to train neural networks. Several papers
present complex models, based on specific network archi-
tectures, which overcome the domain-shift between real and
synthetic images. An autoencoder-approach for lane de-
tection is mentioned in [7] and generative adversarial net-
works are used in [24] to achieve domain adaptation. [23]
proposes to deal with foreground and background synthetic
classes with two different architectures, the combination of
which makes it possible to dispense with the use of real
data. These complex models show good performance but
require a large architectural effort, which makes them not
very adaptable and efficient. Simpler methods, such as
transfer learning techniques in which knowledge learned
from synthetic images is used for real world tasks, also
achieve a high level of performance and are widely used.
ImageNet pre-training paradigm in computer vision is dis-
cussed in [9], whereas authors of [14, 19] propose to re-
think hyperparameters for fine-tuning methods. Features
transferability and frozen layers are detailed in [30, 11].
Some mixed training and fine-tuning issues are approached
by [18].
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3. Data set Alignment

3.1. Settings and metrics

The aim of this study is to achieve, with the PointRend
network, the best possible performance on real-world in-
ference. We use the baseline Cityscapes partition, 2975
images for training and 500 for validation, and the Syn-
scapes data set includes 20k images for training and 5k
for validation and test. Regarding the evaluation, we use
Cityscapes and Synscapes basic metrics for instance seg-
mentation. Instance-level performance is evaluated by an
average precision on the region level for each class and av-
eraged across a range of overlap thresholds. There are 10
different thresholds, ranging from 0.5 to 0.95 in steps of
0.05. The overlap is computed at the region level, mak-
ing it equivalent to the IoU (Intersection-over-Union) of
a single instance. Each evaluation, either on Cityscapes
or Synscapes images, provides an average precision score
for each of the 8 instance classes. These classes are “per-
son”, “rider”, “car”, “truck”, “bus”, “train”, “motorcycle”
and “bicycle”. In this work, we mainly evaluate the per-
formance of the network through its overall average preci-
sion, obtained by averaging the precision over the 8 classes.
Except for the fine-tuning approach, we use ImageNet pre-
trained weights instead of random initialization in order to
speed the convergence [9]. Every training is performed on
4 GPUs with the same batch size of 8 images, i.e. 2 images
per GPU.

3.2. Data set Harmonization

Before involving images from Synscapes and Cityscapes
in the training process, we need to ensure that the character-
istics, e.g. definition of classes and instances of the labels
of both data sets are same. Even if Synscapes was designed
to be similar to Cityscapes, there remain some important
differences in the data. For example, regarding instance
definition, a rider and his vehicle (bicycle or motorcycle)
are considered as two different instances in Cityscapes but
as a single one in Synscapes. An example is given in fig-
ure 2, where the top image shows the labeling convention
of Syncapes and the bottom image visualizes the separated
instances of rider and motorcycle like it is in Cityscapes
data set. This mismatch directly affects the network train-
ing which, then, tries to learn two incompatible interpreta-
tions of the couple “rider” + “motorcycle”. To overcome
this mismatch, we adjust the whole Synscapes data set to
the Cityscapes convention in a pre-processing step.

Since the given semantic segmentation labels in Syn-
scapes include rider, bicycle and motorcycle, an additional
instance has been labeled as rider, if any of the pixels in the
initial bicycle or motorcycle instance are identified as rider
in the corresponding semantic segmentation. The area of
the initial motorcycle or bicycle instance is then reduced to

Figure 2. Instance label harmonization. On top, original Syn-
scapes labeling, rider and his vehicle compose a single instance.
In the middle picture, semantic segmentation labeling contains the
pixel-wise class information. At the bottom, the new labeling be-
comes consistent with the Cityscapes data set.

the strict vehicle area. Figure 2 shows an example of the
applied instance creation in Synscapes data set. The top
image visualizes the original annotated instances. A sepa-
ration of rider and vehicle is achieved by using the semantic
segmentation in the middle. The result, compatible with the
definitions of labeling in Cityscapes data set, is shown in
the lowest image.

Instance definition of a rider and his vehicle is one issue
related to the harmonization, but there are many others. We
can mention the difference in labeling for wheelchairs or for
motorcycles and bicycles without riders. As far as possible,
we need to make the labeling of the two data sets consis-
tent, in order to get the maximum value from both real and
synthetic images.
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Evaluation set
Synscapes Cityscapes

Tr
ai

ni
ng

se
t Synscapes 31.6% 12.9%

Cityscapes 11.8% 35.7%

Table 1. Average precision obtained by the PointRend mod-
ule. Evaluation made for instance segmentation on Cityscapes and
Synscapes data sets.

3.3. Overview of PointRend performances

Once annotations of the two data sets are harmonized,
we process first trainings and evaluations. We train and
evaluate the PointRend network on both data sets individ-
ually. The Synscapes data set is reduced to 2975 images as
Cityscapes to ensure comparable amount of training data.
We use baseline configuration i.e. 24k iterations with a
learning rate initialized at 0.01 and decreasing by steps of
0.1x after 18k and 22k iterations. Table 1 contains the first
evaluation results and gives a comparison basis for the fol-
lowing experiments.

When the network is trained on Synscapes, it shows
good performance, 31.6%, on this precise data set but very
poor performance on Cityscapes, 12.9%. Similarly, when
the network is trained on Cityscapes, its performance on
Cityscapes, 35.7%, is 3 times better than on Synscapes,
11.8%. These first results highlight the domain shift be-
tween the two data sets. Synthetic data are not sufficient
to achieve a decent performance on real world inference.
A training strategy combining synthetic and real images is
necessary to achieve better results on both data sets.

4. Methodology
4.1. Removing non-valuable synthetic instances

Synscapes images are very realistic and show high qual-
ity instance-level annotations. These annotations are auto-
matically generated during the rendering of the synthetic
images, every instance is accurately labeled even when it is
truncated, occluded or very deep in the image background.
Comprehensive labeling is made possible by the synthetic
nature of these images. Although exact labeling is desirable
in theory, a comparative study of the synthetic data set with
the target data set (Cityscapes) showed that the number of
instances including only a few pixels differ a lot.

Having the exact position information of all instances is
a good point, however there is almost too much information
in synthetic images. Very small instances composed of few
pixels due to their occlusion or depth are present. They are
almost invisible to the naked eye but still annotated, their
value for DNNs training is questionable. In order to eval-
uate the value of the Synscapes instance labeling, we want
to measure the impact of having more or less labeled in-
stances in the images. If instances are considered valuable,

removing their label in the training images should decrease
the performance of the network on the validation data set.
The choice of the labels to be removed is based on a size
criterion, i.e. the number of pixels representing the labeled
instance in the image. This size criterion indirectly contains
truncation, occlusion and depth notions. Removal thresh-
olds percentage are introduced for each class. For example,
applying a 30% removal threshold for cars means removing
30% of car labels in the data set, starting with the smallest
instances in terms of pixel representation. The same image,
from the Synscapes data set, is depicted with six different
removal thresholds in Figure 3.

We create 10 reduced versions of the Synscapes data set
by applying to the same 2975 synthetic images different in-
stance removal thresholds from 0% to 90%. In order to eval-
uate the impact of label removal on learning effectiveness,
the network is trained on the 10 different data sets. Figure
4 represents, for each class, the average precision obtained
on Synscapes against the removal threshold applied to the
training set. Precision trend is quite the same for every class
and can be separated into two phases. First, for small re-
moval thresholds, the precision is constant or even slightly
increasing. This means that for each class, removing the
smallest instances does not have a negative effect on the fi-
nal performance and may even improve it. Then, there is a
strong decrease of the average precision when the removal
threshold becomes too high. This can be explained by a
poor feeding of the DNN due to a lack of training labels.
The limit threshold between the two phases depends on the
class. For most of them, the limit threshold is around 30%
but regarding “person” class it is rather around 60%.

This experiment shows that the label value for the DNN
training is not the same for all instances. For each class,
removing labels from the smallest instances has beneficial
effects, or at least no effect, on the network performance for
Synscapes evaluation. We can consider that around 40%
of the labels present on synthetic images are not valuable,
and we choose to remove them from the Synscapes data
set. Concerning the 2975 images of this experiment, we go
from 137,255 labeled instances to 70,744. In comparison,
the Cityscapes data set contains 54,060 labeled instances
for the same number of images. This removal initially has
3 beneficial aspects: i) it slightly improves the network pre-
cision on synthetic images, ii) it reduces considerably the
number of labeled instances and thus reduces the compu-
tational effort, and iii) it makes Synscapes and Cityscapes
labelings more similar. Table 2 illustrates the benefits of
this pre-processing step for the different approaches that we
present in the following.

4.2. Data set mixing approach

With the pre-processing done, we present in this section
our data set mixing strategy and show its performance. The
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Figure 3. Synscapes labeling for different removal thresholds. We represent the same synthetic image and its labeling, applying 6
different removal thresholds to each class individually: 0%, 40%, 60% on top, and 70%, 80%, 90% at the bottom.

Figure 4. Synscapes evaluation score when removing training
instances. Class precision scores obtained by the network against
the instance removal threshold applied to the training set

Instance removal
Evaluation off on

Tr
ai

ni
ng

ap
pr

oa
ch Pre-training on Synscapes 38.6 42.0

Synscapes Cityscapes 14.9 14.2
Mixing Synscapes Synscapes 38.6 41.0
and Cityscapes Cityscapes 38.9 40.9
Fine-tuning on Synscapes 28.7 29.6
Cityscapes Cityscapes 37.6 39.6

Table 2. Impact of instance removal pre-processing on final
precision scores. For almost all training approaches, the final av-
erage precision obtained on both data sets, is better with instance
removal pre-processing than without.

principle of our approach is simple, but effective. Since we
managed to make our two data sets as similar as possible
with the methods presented, there is no more concrete in-
compatibility, for the network, to learn both synthetic and
real images at the same time. Although domain shift is still

Figure 5. Impact of synthetic/real image ratio on network per-
formance. The average precision obtained on Cityscapes, in blue,
and on Synscapes, in orange, is plotted as a function of the syn-
thetic/real ratio of the training images

a reality, each image, real or synthetic, contains valuable
features for the network performance and robustness. For
these reasons, we mix real and synthetic images together, to
create a single training data set.

During the training, we do not make any process dis-
tinction between real and synthetic images. However, we
do make this distinction during the creation of the mixed
data set. The latter requires finding the right composition,
i.e. the most relevant distribution between real and syn-
thetic images. The Synscapes data set is much larger than
the Cityscapes data set, but it is not necessarily relevant to
use both data sets in their entirety. Therefore, we create 11
different data sets of 2975 images, each with a different per-
centage of real images, from 0% to 100%. The images has
been randomly sampled from the given training data sets.
Then, we evaluate the impact of data set composition, i.e.
synthetic/real images ratio, on network performance.

Figure 5 illustrates the performance of the network when
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Amount of additional synthetic data
0k 3k 6k 9k 12k 20k

Tr
ai

ni
ng

ep
oc

hs 33 32.6 37.6 38.4 38.8 38.9 40.3
50 36.2 37.9 38.9 39.3 39.3 40.9
66 35.7 37.2 37.7 39.3 38.9 40.5

Table 3. Average precision scores obtained on Cityscapes with
a data set mixing approach. Precision score is given against the
number of training epochs and the amount of synthetic images
used in addition to the 2975 Cityscapes images.

it is trained on the customized data sets and evaluated on
Cityscapes and Synscapes. The blue curve and the orange
curve, respectively representing Cityscapes evaluation and
Synscapes evaluation, have basically reversed trends. The
more training images from a specific data set, the better the
performance in the evaluation on that data set. It is a triv-
ial observation but shows an essential similarity between
synthetic and real feature learning. Synthetic data has not
the same value as real data, when the objective is to per-
form on real data, and vice versa. We can also observe
a large performance gap in Cityscapes evaluation between
0% and 10%, and another performance gap in Synscapes
evaluation between 90% and 100%. The performance in
Cityscapes evaluation, shown in blue, almost doubles be-
tween 0% and 10%. This improvement in accuracy, due to
a 10% synthetic to real image replacement, is greater than
the improvement due to replacing the remaining 90%. This
experiment mainly shows two results. First, real and syn-
thetic data differ in nature, the gaps of performance high-
light the necessity to use both of them for the training, even
in unequal proportions. Furthermore, the monotonicity of
the curves prove that, if the objective is to perform on real
images, it is always preferable to feed the network with a
real image rather than a synthetic image. The opposite re-
sult is also true when the objective is to perform on synthetic
images. Regarding our study, the most important seems to
use the entire Cityscapes data set, while the amount of ad-
ditional Synscapes images remains to be determined.

Table 3 contains the performance of the network ob-
tained when evaluating on Cityscapes, against the amount
of additional Synscapes images involved and the number of
epochs set for the training. For a fixed data set composi-
tion, we observe that it is generally preferable to train the
network on 50 epochs. With respect to our experimental
setup, increasing or decreasing this number leads to a de-
crease in performance. Otherwise, for a fixed number of
epochs, the more images the data set contains, the better the
performance. These results show that the real/synthetic im-
age ratio has very little impact on the performance as long
as enough epochs are applied to the training. The network
obtains a performance up to 40.9% for a 50 epoch training
on a mixed data set containing Cityscapes and Synscapes

Iteration Best average Composition
limitation precision (%) (real/synthetic)

20k 35.1 3k/0k
40k 38.4 3k/6k
60k 38.9 3k/6k
80k 39.3 3k/9k
100k 40.3 3k/20k
150k 40.9 3k/20k

Table 4. Efficient composition for a limited number of itera-
tions. For several iteration limitations (left column), we report the
best performance achieved on Cityscapes evaluation (middle col-
umn), and its corresponding data set composition (right column).

in their entirety. Our strategy overcomes the current per-
formance of the PointRend module on Cityscapes valida-
tion set, average precision increased to 40.9% from 36.2%.
Same improvement is observed on Cityscapes test set, for
which the network obtains a 30.5% average precision with
baseline configuration compare to 34.8% with our data set
mixing strategy. Otherwise, table 2 highlights the benefits
of non-valuable instance removal for this data set mixing
method. This pre-processing boosts the network perfor-
mances on both Synscapes and Cityscapes evaluations.

Training a network on 23k images during 50 epochs
with a batch size of 8 images makes more than 140k iter-
ations. This computational cost raises the question of the
efficiency of the method. Table 4 contains best precision
scores obtained on real data when limiting the number of
iterations for the training. Under 20k iterations, which ap-
proximately correspond to 50 epochs on 3k images for our
batch size, adding synthetic data to the data set seems inef-
fective. When the number of allowed iterations increases, it
becomes interesting to add synthetic images. In general, we
find that the best trade-off, between performance and train-
ing time, is obtained for a data set size enabling to spend
50 epochs on diverse images. An effective strategy would
be to adapt the amount of additional synthetic images as a
function of the number of iteration allowed. For example, if
for any reason we can spend a maximum of 80k iterations
for our training, it corresponds to 640k processed images,
to 50 epochs on 12,800 images, then it would be effective
to train the network on a mixed data set composed of 3k real
images and 9800 synthetic images.

4.3. Comparison study

Fine-tuning is a transfer learning technique usually em-
ployed to solve domain adaptation issues. It consists of us-
ing final weights from a pre-training model as initialization
for a second training. Knowledge, learned from the source
domain during pre-training, generally improves the learn-
ing of features from the target domain. In this study, Syn-
scapes and Cityscapes are respectively the source and the
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target domains. In this section, we use fine-tuning to im-
prove the performance of our network and compare the re-
sults obtained with the performance achieved with a data set
mixing strategy. We present our different steps to optimize
the fine-tuning approach and summarize the main results in
table 5.

First step is to train the network on synthetic data and
get the valuable weights to initialize the second training.
We run 100 epochs on the 20k Synscapes images, which
have been harmonized and pre-processed by removing non-
valuable instances. After this pre-training, the network
achieves an average precision of 42.0% when evaluating on
Synscapes. There is a large improvement compared to the
initial training on 2975 Synscapes images run in subsection
3.3. This result highlights the benefits of using Synscapes
in its entirety, increasing the number of epochs, and pre-
processing the images. The performance on real images,
14.2%, remains very poor.

Second step is to fine-tune on real images. We use
baseline configuration as 3.3 except that we initialize the
model with Synscapes pre-trained weights rather than Im-
ageNet pre-trained weights. After this second training,
the network precision decreases to 19.7% when evaluating
on Synscapes, but increases to 38.0% when evaluating on
Cityscapes. Compared to baseline training, replacing the
initialization weights and fine-tuning already improve the
average precision on real images to 38.0% from 35.7%.

In this work, fine-tuning is about learning knowledge
from real images, adapting the one learned from synthetic
images. We want to learn additional content without losing
the generalization ability provided by pre-trained weights.
During the second training, controlling hyperparameters,
like learning rate and momentum, which directly supervise
the way and the speed of network learning, is crucial. When
the learning rate is too high, weight variation between each
iteration is too important and initialization with specific
weights becomes useless. In the opposite, with a too small
learning rate, weights are not sufficiently adjusted to the
training data set, additional content is simply not learned.
After a pre-training on Synscapes, we fine-tune the network
on Cityscapes with different combinations of learning rate
and momentum.

Figure 6 illustrates the average precision obtained by the
network against hyperparameter settings. The x-axis is log-
arithmic and corresponds to the value of the learning rate
η. This value is the initialization value of the learning rate,
which is reduced by 0.1x, 2 times during the training, in the
last 60k and last 20k iterations. When η is above 0.02 the
model diverges and when it is under 0.00005 the model con-
verges too slowly, making the precision very low. We only
use two different values for the momentum, namely 0.0 and
0.9. The two curves, orange for a zero momentum and blue
for a momentum equal to 0.9, respectively reach their max-

Evaluation set
Synscapes Cityscapes

A
pp

lie
d

m
et

ho
ds Basic train on Cityscapes 11.8 35.7

Pre-train on 3k Synscapes images 31.6 12.9
+ Retrain with 20k Synscapes images 38.6 14.9
+ Remove non-valuable instances 42.0 14.2
+ Fine-tune on Cityscapes 19.7 38.0
+ Optimize hyperparameters 29.6 39.6

Table 5. Precision scores related to fine-tuning. This table con-
tains the network performance obtained for the different steps of
the fine-tuning approach and highlights the benefits of each of
them (“+” means in addition to previous steps).

Figure 6. Learning rate and Momentum impact on training.
Average precision score from Cityscapes evaluation is plotted as a
function of training learning rate (logarithmic x-axis) and momen-
tum (curve color).

imum for a learning rate equal to 0.0005 and 0.005. The
basic value of learning rate and momentum are η = 0.01
and m = 0.9. In this case, a lower learning rate enables a
better fine-tuning performance. Otherwise, overlapped by
factor of 10 along the x-axis, the two curves have approxi-
mately the same trend. This can be related to a result from
[14], showing that the fine tuning performance depends on
an effective learning rate defined by η′ = η/(1 − m) with
η the learning rate and m the momentum. The difference
of momentum between 0.0 and 0.9 corresponds to a fac-
tor of 10 between the effective learning rates. The maxi-
mum of the two curves are reached for the same effective
learning rate of 0.005, which is lower than its baselines
value of 0.1. There are two options to reach the optimal
precision : reduce the learning rate significantly or reduce
the learning rate and the momentum simultaneously. For
η = 0.005 and m = 0.0, we obtain an average precision
up to 29.6% on Synscapes and up to 39.6% on Cityscapes.
Consistent learning rate and momentum enable to control
the fine-tuning phase improving the performance on both
data sets at the same time.

In this work, fine-tuning strategy achieves an average
precision up to 39.6% when evaluating on Cityscapes,
which overcomes the baseline PointRend performance. We
mention good usage for pre-processing and pre-training on
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Synscapes and we highlight optimal learning rate and mo-
mentum settings for fine-tuning. Once again, table 2 illus-
trates the benefits of the synthetic instance removal for this
method. Fine-tuning technique achieves very good results
while keeping the two data sets separated and independent.
Once computed, Synscapes pre-trained weights can be used
for several configuration involving different target domains
or different networks. This specific generalization ability of
fine-tuning is very interesting and makes this approach very
popular. However, we have shown in this study that the
performance obtained by a data set mixing strategy remains
better on both data sets than by using fine-tuning.

5. Conclusion

To conclude, synthetic data shows promising properties
to boost the performance of DNNs on real-world instance
segmentation. Although synthetic data is not yet able to
fully replace real data for training, it can easily overcome a
lack of real-world images and can be used to improve neu-
ral network performance. In this work, we have presented
some pre-processing requirements and a training strategy
comparison related to the use of synthetic data. Figure 1
recaps the main points discussed in this paper. We have
highlighted the benefits of harmonizing and pre-processing
synthetic images before using them. Removing the non-
valuable instances from synthetic data reduces the compu-
tational effort and improves the precision on both synthetic
and real data sets. Once the data have been made as similar
as possible, we propose a training strategy mixing them into
a single data set, for which real and synthetic images are
processed in parallel the same way. We have evaluated the
impact of the mixed data set composition, and we conclude
that real images remain the most valuable data but addi-
tional synthetic images can significantly boost the network
performance. Our approach overcomes the current perfor-
mance of the PointRend module trained on real images only.
We have also compared our training strategy to a common
transfer learning approach consisting in pre-training on syn-
thetic data and fine-tuning on real data. This second method
achieves a very good performance, especially when control-
ling the fine-tuning phase with consistent hyperparameters,
and shows interesting generalization ability. However, the
performance of the data set mixing strategy remains better
on both Cityscapes and Synscapes data sets. Some parts of
these results naturally depend on the choice we made re-
garding the network, the task performed and the two data
sets. However, many elements of this study, such as pre-
processing and data set mixing principles, could be very
useful for other application scenarios involving synthetic
data.
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