
perf4sight: A toolflow to model CNN training performance on Edge GPUs

Aditya Rajagopal
Imperial College London

adityarajagopal0@outlook.com

Christos-Savvas Bouganis
Imperial College London

ccb98@ic.ac.uk

Abstract

The increased memory and processing capabilities of
today’s edge devices create opportunities for greater edge
intelligence. In the domain of vision, the ability to adapt a
Convolutional Neural Network’s (CNN) structure and pa-
rameters to the input data distribution leads to systems with
lower memory footprint, latency and power consumption.
However, due to the limited compute resources and mem-
ory budget on edge devices, it is necessary for the system
to be able to predict the latency and memory footprint of
the training process in order to identify favourable training
configurations of the network topology and device combina-
tion for efficient network adaptation. This work proposes
perf4sight, an automated methodology for developing ac-
curate models that predict CNN training memory footprint
and latency given a target device and network. This enables
rapid identification of network topologies that can be re-
trained on the edge device with low resource consumption.
With PyTorch as the framework and NVIDIA Jetson TX2
as the target device, the developed models predict training
memory footprint and latency with 95% and 91% accuracy
respectively for a wide range of networks, opening the path
towards efficient network adaptation on edge GPUs.

1. Introduction

There is increasing demand for the optimised deployment
of DNNs on edge devices. Current approaches focus on opti-
mising network weights and topology offline using datasets
that represent the input data distribution that is expected to
be observed at the point of deployment. As it is not always
possible to accurately capture the expected data distribution,
the ability for a system to tune the network after deployment
greatly improves its performance [12, 19].

Currently the adopted approach of tuning a network after
deployment is to send information regarding the data dis-
tribution back to a server in order to finetune the deployed
network. This process raises data-privacy concerns and can
also be infeasible in scenarios where there is poor or no
connectivity between edge device and server. Consequently,

there has been a push to increase the intelligence of the
processing performed on edge devices [26]. For instance,
the limited but increasing compute and memory capabilities
of edge devices such as NVIDIA’s Jetson TX2 and Xavier
GPUs, have enabled the training of CNNs on edge devices.

Utilising this ability, [19] demonstrated Data-aware Prun-
ing and Retraining (DaPR) as a viable approach to tuning
the network after deployment to the data observed. Let us
consider a scenario of a car in a city environment utilising
an image classification model MD that has been trained on
a large dataset (D) that includes images of objects in both
city (D′) and country-side (D′′) environments. [19] showed
that memory footprint and latency gains can be achieved
by retraining a pruned version of MD on D′, such that the
accuracy of the pruned model on the subset D′ is at least as
high as that of MD (unpruned) on D′. Using CIFAR-100 as
a proxy for D, and various subsets of CIFAR-100 as D′, [19]
achieve on average a 10.2pp, 2.22x and 90% improvement
in test accuracy, inference latency and memory footprint
respectively across various networks and pruning levels.

However, state-of-the-art pruning and retraining tech-
niques such as [17, 15] are far too data and compute intensive
to be performed directly on an edge device. One possible
solution to this is the Once-For-All (OFA) network proposed
by [3]. OFA enables quick access to a large number of high-
performing pruned topologies, with significant variation in
memory footprint and latency. This creates the possibility
for a system that can vary its network architecture over time
in line with varying memory and latency requirements. In a
dynamic system where both the data observed and the pro-
cesses running on the device can change with time, being
able to select network architectures with varying resource
consumptions and retraining them to adapt to the observed
data distribution is beneficial.

In order to utilise OFA in such a system, an estimate of the
training memory and latency of each sampled sub-network is
necessary. One approach to perform this estimation is to pro-
file each architecture on the device. Not only is this approach
time consuming, but edge devices such as the NVIDIA Jet-
son TX2 tend to have shared CPU and GPU memory systems.
This means that a process running on one can prevent pro-

963



cesses from starting up on the other due to a lack of available
memory. Such an event can be catastrophic in safety critical
applications such as autonomous driving. Hence there is a
requirement to accurately predict the memory consumption
and latency of processes without running the process itself.

This work addresses the problem of accurately predicting
the memory consumption and latency of training a CNN
on an edge GPU to enable network adaptation on edge de-
vices. Furthermore, the applications of accurate memory and
latency models extend beyond this, from Network Architec-
ture search (NAS) to improving productivity of researchers
by preventing network training deployments that fail due to
excessive memory consumption [5]. The novel contributions
of this work are:

1. The development of performance models that utilise
decision trees to predict for a given training batch size,
network architecture, device and training framework -
the memory consumption and latency of the training
process.

2. A methodology to profile the training process of CNNs
in order to develop models for a specific device and
framework combination.

3. An extensible open-source PyTorch tool1 (perf4sight)
that automates both the profiling and modelling pro-
cesses.

The rest of the paper is organised as follows. Sec.2 de-
scribes the operations required to perform CNN training.
Sec.3 describes state-of-the-art methodologies to predict
both inference and training memory and latency. Sec.4 intro-
duces the modelling problem. Sec.5 describes the proposed
methodology. Sec.6 evaluates the performance of the devel-
oped models and provides a case study that demonstrates a
use case for the system.

2. Background
The CNN training process is based on the back-

propagation algorithm that involves a forward pass to calcu-
late the loss followed by a backward pass that calculates the
gradient w.r.t. the weights and inputs per layer. Finally, a
gradient descent step updates the weights with the calculated
gradients. In this process, the most memory and compute
intensive operations occur in the convolution layers.

For each convolution layer the following operations are
performed. For each input feature map (IFM) x, output
feature map (OFM) y and weight matrix w, the forward pass
performs the convolution y = x∗w (1)2. After computation
of the loss L, the backpropagation [20] algorithm requires

1https://github.com/ICIdsl/performance_
modelling.git

2∗ refers to the convolution operator

the following computations per layer. The gradient w.r.t.
inputs is calculated as δL

δx = δL
δy ∗ rot180(w) (2)3 , and the

gradient w.r.t. weights is calculated as δL
δw = x ∗ δL

δy (3).
On NVIDIA GPUs, these operations are commonly im-

plemented using the cuDNN [8] library. There are three ways
in which a convolution operation is commonly executed on
a GPU. The Matrix Multiplication algorithm transforms the
IFM using the im2col operation to perform a convolution as
a matrix multiplication [4]. Alternatively, the Fast Fourier
Transform (FFT) algorithm perform convolutions as a prod-
uct between weight matrices and IFMs in the frequency
domain [16]. It benefits from reduced operations compared
to matrix multiplication and the ability to precompute and
reuse the FFT of the weight matrices during the training pro-
cess. Finally, the Winograd Convolution algorithm reduces
the number of operations performed by up to 4x compared to
a matrix multiplication and uses up to 163x less temporary
memory compared to the FFT operation [11].

All three algorithms discussed above display variability
in performance with respect to the characteristics of the layer
[8]. This necessitates the cuDNN library to use proprietary
heuristics to decide which of these three algorithms to apply
on a per layer basis. Consequently, models that predict the
memory footprint and latency of the training process on
GPUs, need to account for the memory consumption and
operations of all three algorithms for each of Eq.1, 2, and 3.

3. Related Works

3.1. Inference Performance Modelling

Currently, the focus of performance modelling for GPUs
has been on the inference stage rather than the training stage.
State of the art approaches for inference performance mod-
elling, [14, 2], explore the topic of predicting CNN inference
memory consumption, runtime and energy on embedded
GPUs. [14] approximate the forward pass as matrix multi-
plications and profile random matrix multiplication sizes on
the NVIDIA TX1 device to train a model to make layer-wise
predictions of memory, latency and energy. The developed
models achieve up to 30% prediction error in each metric
across two embedded GPUs (NVIDIA TK1 and TX1) and
two networks (NIN [13], VGG19M [22]).

[2] models the latency and power consumption of the
inference stage of various CNNs on the NVIDIA GeForce
GTX Titan X GPU (cloud system). The authors develop
a layer wise polynomial regression model and achieve an
average error of 11.76%, 11.66% and 2.79% in runtime,
power and energy respectively on a wide range of networks.

A layer-wise profiling system (as seen in [14, 2]) ob-
tains memory, latency and power predictions per layer and
a prediction for the entire network is constructed from the

3rot180 refers to a 180◦ rotation of the matrix

964



layer estimates. This approach suits the case of modelling
inference as there is only one operation performed per layer
(Eq.1), allowing for the modelled attributes of a single layer
to be treated in isolation. However in the case of training,
three operations are performed at different times i.e. one on
the forward pass and two on the backward pass. Frameworks
such as PyTorch speculatively allocate more memory than is
required for the single layer even if only one layer is being
profiled as it is expected that an entire network rather than a
single layer will be executed when performing training. This
makes isolating memory and latency data for a single layer
during training irrelevant. Alternatively, approximating all
operations as matrix multiplications and profiling random
sizes as in [14] would lose information regarding cuDNN’s
heuristics that choose between the three implementations
of a convolution on a layer and operation-wise (Eq.1,2,3)
basis. As a solution, this work proposes a novel network-
wise profiling strategy where each datapoint corresponds to
the training of an entire network, instead of a single layer.
Furthermore, in contrast to [14] and [2] the proposed work
focuses on modelling the memory consumption and latency
of the training stage instead of that of the inference stage.

3.2. Training Performance Modelling

Due to the limited investigation of efficient CNN training
on edge devices, there has been little focus on modelling the
latency and memory consumption of the training process on
edge devices. On a server or distributed GPU system where
training is commonly performed, the state of the art is [5]
which proposes a model to predict GPU memory consump-
tion (but not latency) of training. [5] develop an analytical
model that captures both network and framework specific
contributions to memory consumption during training and
achieve memory prediction error rates between 0.6% and
23% across different frameworks (TensorFlow, PyTorch and
MXNet) and networks (VGG16, ResNet50, Inception V3).

Similar to [5], this work uses an analytical model to cap-
ture network specific terms, i.e. weights, activations and
temporary memory, required by the various convolution al-
gorithms described in Sec.2. These are static features that are
unlikely to change as both the training process and methods
of performing convolutions on GPUs are well established
fields. However unlike [5], this work complements the ana-
lytical modelling with a profiling and learning methodology
to account for the constantly changing framework and de-
vice specific terms. For instance, terms that arise from the
choice of cuDNN [8] version are proprietary and cannot be
accurately modelled through analytical approaches. Further-
more, building an analytical model for targeting different
frameworks (PyTorch, Tensorflow etc.) requires expert-level
understanding of framework specifics and significant hand-
crafting of features which is both more time consuming and
at risk of quickly becoming out-dated as frameworks evolve.

This combination of handcrafting static features and profil-
ing for device and framework specific optimisations provides
a strong argument for future generalisation over [5].

Additionally, this work focuses on modelling training on
embedded GPU systems in contrast to [5] which focuses
on server GPUs. Embedded GPU systems typically have
only one GPU and a unified memory system (CPU and
GPU share memory) as compared to server GPU systems
which can have many GPUs with each GPU having its own
independent memory space. Both the number of GPUs as
well as the required memory management differentiate the
problems of modelling embedded over server GPU systems.

4. Problem Description
Motivated by the scenario presented in Sec.1, the problem

addressed by this work and the modelled attributes of the
CNN training process are as follows:

Given a target device and framework, construct models that
take as input a CNN network architecture and mini-batch
size and accurately predict the memory consumption and
latency of training.

Training memory consumption (Γ) The total memory
consumed by the training process. In unified memory sys-
tems where the CPU and GPU share a memory space, this
attribute also captures the memory allocated by CPU opera-
tions such as data normalisation.

Mini-batch training latency (Φ) The time taken to per-
form the forward and backward passes for one mini-batch
of size bs. Frameworks such as PyTorch can overlap the
tasks of preparing data (eg. normalisation) for the follow-
ing mini-batch with the execution of the current mini-batch.
Hence, only the compute time and not the time taken for
data preparation is measured. The time taken to perform the
gradient update step in stochastic gradient descent (SGD) is
also included in the measurement. Total training time for a
system can be estimated by multiplying Φ with the number
of mini-batches of training.

5. Model Construction
The values of the attributes described in Sec.4 depend on

the network, training framework and target device. Network
architecture related information can be obtained by analyti-
cally modelling the expected memory consumption and oper-
ations of training on a per layer basis. However, information
related to the training framework and target device such as
layer wise choice of convolution algorithm (Sec.2) can only
be obtained by profiling networks on the target device. As
such, this work proposes to use decision trees to construct
high accuracy memory and latency prediction models. At the
core of the proposed approach, analytical modelling is used

965



Batch sizes

Network 
Description

Pruning Process • Forward Pass
• Backward Pass
• SGD gradient 

update

Data Collection 
Process Profiled Data

• 𝚪 (memory)
• 𝚽 (latency)

Target 
Device

Figure 1: Components required for the proposed network-wise
profiling strategy

to produce a set of features capturing memory footprint and
computational cost of the various operations. These features
along with profiled system attributes (Sec.4) are used to train
decision tree based prediction models.

5.1. Network-wise profiling strategy

This section outlines the proposed methodology for profil-
ing the desired attributes and provides details on the targeted
framework and device. In order to encode network archi-
tecture information into the decision tree training process,
structured pruning (removing entire convolution filters) was
utilised as a methodology to vary the topology of a network
and hence produce the data points used to train the deci-
sion trees. Fig.1 shows the proposed profiling process. The
pruning process takes as input the network description, the
desired pruning level and strategy (S) and performs struc-
tured pruning.

The pruned network along with nbs batch sizes in the
range [bslow, bshigh] are passed to the data collection pro-
cess. For each datapoint, this process profiles the Forward
Pass, Backward Pass and SGD gradient update step on the
target device. This profiling strategy limits the number of
datapoints that can be collected as the degrees of freedom are
the pruning levels, pruning strategies and batch size. How-
ever it benefits from the fact that the information captured
does not treat each layer as an isolated element but rather as
part of a larger architecture where the building blocks and
their connectivity affects the performance.

5.1.1 Profiling Hyperparameters

Sec.5.1 introduced the hyperparameters of S, nbs, bslow and
bshigh, the values of which along with the targeted frame-
work and device are detailed here. The training framework
targeted is PyTorch v1.6 which uses CUDA 10.2 and cuDNN
8.0. The target device is the NVIDIA Jetson TX2. The filters
to be pruned are randomly chosen (S), and the pruning is per-
formed using the open-source tool ADaPT [19]. nbs = 25,
bslow = 2 and bshigh = 256; this range and granularity of
batch sizes covers the most commonly used training batch
sizes (powers of 2 up till 256) while providing sufficient in-
formation in the regions inbetween. Framework and device
specific details on profiling can be found in Appendix A.

OPERATION FEATURE NAME FEATURE DESCRIPTION

Op Independent

memw Weights memory
memwgrad Gradient w.r.t. weights memory
memifmgrad Gradient w.r.t. inputs memory
memofmgrad Gradient w.r.t. outputs memory

Matrix-multiplication
mem i2cmm

fwdtotal im2col memory when storing redundant data
mem i2cmm

fwdindex im2col memory when storing only indices
(mm) opsmm

fwd Matrix multiplication operations

FFT (fft)
mem wfft

fwd Weights memory for FFT
mem ifmfft

fwd IFM memory for FFT
opsfftfwd Operations for FFT

Winograd (wino)
memwino

fwd Memory allocated for winograd multiplication
opswino

fwd Operations performed for winograd multiplication

Table 1: Description of features provided in Sec.5.2.1

5.2. Decision Tree Models

Four state of the art networks (ResNet18[6],
MobileNetV2[21], SqueezeNet[7] and MnasNet[24])
were profiled for the attributes defined in Sec.4 using the
profiling strategy described in Sec.5.1 for pruning levels
{0,30,50,70,90}%. For all networks, both attributes display
linearity with batch size, but varying linear fit dependent
on the network architecture (pruning level). Graphs of the
profiled values are provided in Appendix B.

To model this behaviour, a decision tree based approach
is adopted 4. A decision tree selects terms that best partition
the space into regions of low entropy. Regression predictions
are made by classifying new data points into these regions
and predicting the mean value of that region that was learnt
in the training stage [18]. This data dependent partitioning
of the space inherently fits the modelling problem at hand
well. Hence, random forests [1] are employed to model both
the memory and latency of training. To do so, the modelling
algorithm needs to be provided with a list of features that
define the axes of the space in which the data is fit. These
features are constructed through analytical modelling of a
network architecture and are described in Sec.5.2.1.

5.2.1 Analytical Modelling

The models receive as input a network description and train-
ing batch size. As discussed in Sec.2 cuDNN uses propri-
etary heuristics on a per layer basis to select between the
Matrix Multiplication, FFT, and Winograd convolution algo-
rithms. In order to model this black-box behaviour, features
corresponding to the expected memory consumption and
the operations performed for all three algorithms are gener-
ated from the network description, as layer-wise algorithm
choice prediction before deployment is not possible. For
each algorithm, Eq.1,2 and 3 are modelled.

Consider a CNN where each convolution layer l ∈ L has
nl filters of size ml × kl × kl. Let layer l have stride sl,
padding pl and groups gl. Let the IFM to this layer have
dimensions bs×ml×ipl×ipl, the weights nl×ml

gl
×kl×kl

4Linear regression was evaluated as a possibility but discarded due to
poor performance

966



and the OFM bs×nl×opl×opl where bs is the batch size of
training. The OFM spatial dimensions opl can be calculated
using the equation opl = 1+⌊ ipl+2pl−kl

sl
⌋. Table.1 describes

all the features listed below.
Independent of the choice of algorithm, the following

features are allocated in memory.

memw = nl ·
ml

gl
· k2l

memwgrad
= bs · nl ·

ml

gl
· k2l

memifmgrad
= memifm = bs ·ml · ip2l

memofmgrad
= memofm = bs · nl · op2l

The remaining features described below all vary with the
choice of algorithm. Features corresponding to the forward
pass (Eq.1) will be described here. Those for Eq.2 and 3 can
be found along with a full list of features in Appendix B.

Matrix Multiplication based convolution A convolution
is converted to a matrix multiplication by performing the
im2col operation on the IFM (LHS of the convolution).
There are two variants of the cuDNN operator, one which
stores the entire im2col matrix in memory and one that only
computes indices that allows the compute unit to read re-
peated values from the IFM without actually storing these
duplicated values [4]. The proprietary nature of cuDNN
means that which indices are calculated is not public. How-
ever the im2col operation reads repeated values due to the
overlap between the kl × kl sliding windows during a con-
volution, where each window corresponds to 1 output pixel
in opl. Within a sliding window, the offsets of the k2l val-
ues from the top-left element of the window (win[0]) are
fixed regardless of which window (opl) is being computed.
However, sl and pl decide the pattern of win[0]. A reason-
able assumption is that the indices computed to reduce the
memory overhead of the im2col operation are the location
of all win[0] for each image in the IFM. The operations do
not change between these two variants. Under these assump-
tions, the parameter count and operations for Eq.1 are:

mem i2cmm
fwdtotal = bs · op2l · k2l ·ml

mem i2cmm
fwdindex = bs · op2l

opsmm
fwd = bs · nl · op2l · k2l ·

ml

gl

FFT based convolution As provided in [16], the features
required to model Eq.1 are:

mem wfft
fwd = nl ·

ml

gl
· ipl · (1 + ipl)

mem ifmfft
fwd = bs ·ml · ipl · (1 + ipl)

opsfftfwd = ip2l · log(ipl)·(bs · (ml + nl) + nl ·
ml

gl
)

+bs · nl ·ml · ip2l

Network 
Description

Random Forest Model 
Training Process 𝚽 (latency)

𝚪 (memory)

Profiled 
Data

Target 
Device

Profiling 
Process

Analytical 
Modelling

Figure 2: High-level description of the entire perf4sight toolflow.

Winograd based convolution The Winograd minimal fil-
tering algorithm [25] reduces the number of operations re-
quired to calculate q outputs using an r-tap FIR filter. As
provided in [11], for the computation of q × q outputs with
an r × r convolutional filter, the 2-D Winograd minimal
filtering algorithm is Y = AT

[
[GgGT ]⊙ [BT dB]

]
A (4).

In Eq.4, Y has shape (q×q), g is an (r×r) convolutional
filter, and d is a tile of the input matrix of size (q+r−1×q+
r − 1). A, G and B are transform matrices that only depend
on the values of q and r. The algorithm takes (q + r − 1)2

multiplications to produce q × q output values.
In Eq.1, each channel of the IFM x is split into ⌈ ipl

q ⌉2

tiles and each channel of the filter w is split into ⌈k
r ⌉

2 tiles.
Each IFM and filter tile corresponds to d and g respectively
in Eq.4. The memory consumed by A, G and B is fixed
and does not scale with any of the layer parameters. The
Hadamard product contains 3·(q+r−1)2 parameters (one for
the LHS, RHS and result). The memory and operations scale
with layer parameters depending on the number of these
products that can be done in parallel. Each of the ⌈ ipl

q ⌉2
tiles, nl filters and bs images can be computed in parallel
as they constitute independent operations. Accumulation
needs to occur across ⌈k

r ⌉
2 filter tiles and ml IFM channels

and hence do not lend themselves to parallelisation. Eq.4
computes (q + r − 1)2 multiplications, hence the parameter
and operations counts for Eq.1 are:

memwino
fwd = bs · nl · ⌈

ipl
q
⌉2 · 3 · (q + r − 1)2

opswino
fwd = bs · nl ·

ml

gl
· ⌈ ipl

q
⌉2 · ⌈k

r
⌉2 · (q + r − 1)2

5.3. Training Memory and Latency Models

For a given batch size, network architecture and device,
the mem and ops features detailed in Appendix B are cal-
culated per-layer and summed across all layers to obtain
an estimate for the network. These set of 42 features are
provided to the random forest trainer along with training
data consisting of profiled Γ and Φ values for a range of
batch-sizes and pruning levels (detailed in Sec.5.1.1). A
separate random forest model is developed for each of the
target attributes. This process is shown in Fig.2.

967



6. Evaluation
This section describes the construction of the training and

test sets for the evaluation and evaluates the performance
models in Fig.2 on the following criteria. First the models
are evaluated on their ability to predict the two attributes
when the training and test sets have the same networks, but
different topologies. The topologies are varied between the
training and test sets by having different pruning levels in
each. The evaluation is then extended to allow the network
itself to change, exploring the idea of training performance
prediction models on data from a ”basis” of networks and
predicting attribute values for networks not in the basis. The
final section presents a case study describing the model
selection and retraining use case presented in Sec.1.

6.1. Constructing training and test sets

The degrees of freedom when generating configurations
to profile are pruning levels, pruning strategies and batch-
size. With batch-sizes and pruning strategy fixed to those
specified in Sec.5.1.1, the training and test sets are developed
by varying the pruning levels in each. Let the set of all
pruning levels considered be {5x |x ∈ [0, 18]}. The training
set is constructed by finding the smallest set of pruning levels
that captures sufficient information regarding the network
topology such that it can predict the attribute values of other
topologies of the same network well.

AlexNet [10] was used to tune the training set size hy-
perparameter. Sizes of training set (T ) from 1 (T = {0})
to 8 (T = {0, 10, 20, 30, 50, 60, 70, 90}) in increments of 1
were used to train the two models and the resulting accu-
racy evaluated on a test set {5x|x ∈ [0, 18], 5x /∈ T}. For
T = {0}, the test error varied between 33%-74% across
the attributes and decreased until T = {0, 30, 50, 70, 90}
after which it plateaued at 3%-6%. Expecting this trend
to hold for other networks, this is the training set chosen
for the following experiments, with the test set containing
pruning levels {5x|x ∈ [0, 18], 5x /∈ T}. To avoid biasing
the results, AlexNet is not used in the rest of the evaluation.

6.2. Same base network in training and test sets

All results presented in this section correspond to the sce-
nario where both the training and test sets are constructed
from data from the same base network but differ in topol-
ogy (pruning levels and strategy). Random pruning strategy
refers to randomly pruning filters with equal probability
across all layers.

Bars labelled Rand in Fig.3 show the mean attribute pre-
diction error averaged across a wide range of pruning levels
and batch-sizes when a random pruning strategy was em-
ployed for both training and test sets. Bars labelled L1 in
Fig.3 show the same when a random pruning strategy was
employed for the training set, but an L1-norm pruning strat-
egy for the test set. This strategy prunes filters with the

0

2

4

6

8

10

12

14

16

Rand L1 Rand L1 Rand L1 Rand L1 Rand L1 Rand L1

ResNet18 MobileNetV2 SqueezeNet ResNet50 MnasNet GooglLeNet

Te
st

 E
rr

or
 (%

)

Same base network in training and test sets

𝚪 (memory) Φ (latency)

Figure 3: Mean test error of attribute prediction for random and L1-
norm pruning strategies across 25 batch sizes in the range [2,256]
and pruning levels {5x|x ∈ [0, 18], 5x /∈ {0, 30, 50, 70, 90}}

smallest L1-norm first and results in more filters pruned
from deeper layers. With a comprehensive coverage includ-
ing both human-designed and NAS generated networks, the
results show that the mean prediction error of Γ and Φ does
not exceed 9.15% and 14.7% respectively with only small
increases in error in most cases when testing on L1-norm
pruned networks.

To further explore the ability of the modelling to encode
network topology information, MobileNetV2 was pruned to
50% with 100 random pruning strategies including uniform
pruning across all layers and increased pruning at early, late
or middle layers. For batch-size 80, the mean and variation in
attribute values Γ and Φ across topologies were 4423±1597
MB and 1741±871 ms respectively. The models, trained
on just a uniform random pruning strategy, predicted these
attributes with a mean error across topologies of 1.32% and
9.90% respectively, which are comparable to those seen in
Fig.3. The results from this section demonstrate the ability
of the proposed methodology to capture network architecture
dependent information well.

6.2.1 State-of-the-art comparison

Compared to works focusing on inference stage prediction
([2, 14]), which achieve error rates between 12-30%, the
results displayed here outperform these methods on the more
complex problem of training.

DNNMem [5] predicts the memory consumption of train-
ing for an NVIDIA Tesla P40 GPU using PyTorch 1.2,
CUDA 9.0 and CuDNN 7.0.2. Due to lack of access to a P40
or DNNMem’s source code, but to perform as fair a com-
parison as possible, ResNet50 was profiled on an NVIDIA
RTX 2080Ti server GPU using PyTorch 1.6, CUDA 10.2
and CuDNN 7.6 as the framework configurations used in
[5] do not support the 2080Ti. Γ (corresponding to DNN-
Mem’s memory consumption attribute) had a 2.45% error
across batch-sizes and topologies (pruning levels). This sig-
nificantly outperforms [5] which had a 17.4% error across a

968



0

5

10

15

20

25

30

Rand L1 Rand L1 Rand L1 Rand L1 Rand L1 Rand L1

ResNet18 MobileNetV2 SqueezeNet ResNet50 MnasNet GooglLeNet

Te
st

 E
rr

or
 (%

)

Using a Basis of networks to construct model

𝚪 (memory) Φ (latency)

Figure 4: Mean test error of attribute prediction across 25 batch
sizes in the range [2,256] and pruning levels {5x|x ∈ [0, 18]}. The
random forest models used here are trained using data from a basis
of networks containing ResNet18, MobileNetV2, and SqueezeNet.

range of batch-sizes and input image sizes. Possible reasons
for the worse error achieved by [5] could be due to either
inaccuracies in handcrafting features per training framework
or the fact that [5]’s model accounts for a multiple GPU
setting which may have lead to inaccuracies on the single
GPU setting evaluated here. By demonstrating perf4sight’s
ability to generalise from a unified memory embedded GPU
system to a non-unified memory single GPU server system,
these results indicate potential for future generalisation to
other devices and training frameworks.

6.3. Different base networks in training and test sets

This section investigates the performance of the proposed
framework in the case where the targeted network is not
known beforehand but rather a model is built using data
from a ”basis” of networks, and predictions are made for
the unseen network. The training set was constructed with
a combination of data from ResNet18, MobileNetV2 and
SqueezeNet (basis) for the same batch-sizes and pruning
levels listed in Sec.6.1 and a uniform random pruning strat-
egy. Testing was performed on data from both random and
L1-norm pruned networks. The attribute prediction errors
are shown in Fig.4.

Across all attributes and pruning strategies, net-
works present in the basis (ResNet18, MobilNetV2 and
SqueezeNet) showed -1pp5, +4.6pp, +2.7pp mean increase
in error respectively and networks not present in the basis
(ResNet50, MnasNet and GoogLeNet [23]) showed +5.6pp,
+2.55, +16pp mean increase in error respectively compared
to the results in Fig.3. The results support the idea of using
a basis of networks, but the significant error degradation
of GoogLeNet suggest that best performance is achieved
when the exact building blocks if not the identical network is
present in both training and test sets. 6 Appendix C provides
a breakdown of the building blocks of all the networks.

5pp stands for percentage points
6Across Fig.3,4, the mean errors for Γ and Φ are 5.53% and 9.37%.

6.4. Case Study: On-device OFA

The Once-for-All (OFA) network [3] is a large super
network trained once, following which a large number of
smaller sub-networks can be sampled, each with good per-
formance on the original training dataset. This case study
explores the option of using the OFA network on an edge
device as a way to perform on-device NAS in order to ac-
commodate a dynamic system where both the observed data
distribution and available memory and latency budgets can
vary over time. The OFA network used is OFAResNet50
trained and open-sourced by [3] and has the same building
blocks as ResNet50, but a slightly different connectivity.

Dynamic system description Let us consider the scenario
of an autonomous car performing image classification on
an NVIDIA Jetson TX2. As examples of input data for
classification, let us consider 4 subsets of the ILSVRC’12
dataset containing images that could be observed by an au-
tonomous car in city, motorway, country-side and off-road
settings. Details of the subsets are provided in Appendix D.
Let us consider the case where the observed data distribution
changes over time from a city to the country-side and the
memory consumption of other, possibly safety critical, pro-
cesses running on the device also change over time. Assume
there is some available time during which the system can
retrain a deployed network to account for the shift in the
observed data distribution. Let us place hard constraints on
the following three attributes: acceptable memory consump-
tion of training (Γ) and inference (γ), and latency (ϕ) of
inference, all of which can change over time.

Given the above scenario, the goal of this case study is
to describe a system that can safely and quickly identify
network architectures on which training and inference can
be performed without exceeding the above constraints. The
proposed system uses the evolutionary search (ES) algo-
rithm proposed in [3] to search the OFA super network for
a sub-network that meets the requirements. The ES algo-
rithm starts with a population of 100 sub-networks and runs
500 iterations of evolutionary search before identifying the
best performing sub-network within the constraints. This
results in the process sampling at least 50, 000 sub-networks,
but often more due to some sub-networks exceeding the
hard constraints. Each sub-network sampled requires an
estimation of the three constrained attributes. The follow-
ing analysis compares both the approach of profiling each
sub-network on device and utilising the developed memory
models.

Naive Approach (Profiling) It is not feasible to profile
offline the attribute values for all possible sub-networks as
the weight sharing employed by OFA results in too many
possible sub-networks to do so. Furthermore, the mean and
standard deviation of Γ for a 100 sub-networks sampled from
OFAResNet50 profiled on the TX2 for batch sizes 32, 64

969



PERFORMANCE GAINS FROM ON-DEVICE MODEL SELECTION AND RETRAINING

Top1 Test Accuracy on subset (%)

Sub-network Search Time Model Size Γ γ ϕ
City Off-road Motorway Country-side

(hours) (MB) (MB) (MB) (ms) Initial Retrained Initial Retrained Initial Retrained Initial Retrained

MAX - 192 (1x) 5838 (1x) 1958 (1x) 69.6 (1x) 82.0 - 86.2 - 78.3 - 82.4 -

A 382/1.9 153 (1.3x) 3735 (1.6x) 1873 (1.05x) 39.2 (1.8x) 81.4 82.8 (+0.8pp) 83.9 90.4 (+4.2pp) 78.0 81.0 (+2.7pp) 81.7 83.6 (+1.2pp)

B 519/2.6 76 (2.5x) 3104 (1.9x) 1733 (1.1x) 25.1 (2.8x) 79.6 81.6 (-0.4pp) 84.1 89.9 (+3.7pp) 76.4 80.2 (+1.9pp) 80.0 81.9 (-0.5pp)

MIN - 26 (7.4x) 2768 (2.1x) 1569 (1.2x) 19.1 (3.6x) 76.4 78.9 (-3.1pp) 79.6 88.1 (+1.9pp) 70.8 77.3 (-1.0pp) 77.0 79.4 (-3pp)

Table 2: Top1 test accuracy, model search time, model size, Γ, γ and ϕ for various sub networks of OFAResNet50 on the 4 autonomous
driving subsets. The search time column displays the results of the (naive / modelling) approaches. The comparisons presented in brackets
are all relative to model MAX. Initial and Retrained refer to the Top1 test accuracy on the subset with and without retraining the searched
model for 1 epoch on that subset respectively. Γ is reported for batch size 32 and γ and ϕ reported are for batch size 1.

and 128 was 4318 ± 1129 MB. This large variation means
that a single estimate is also not feasible for all possible
sub-networks sampled, thus necessitating a case-by-case
sampling on-device. In the case where there are other safety
critical applications to be executed, profiling is not feasible
due to the possibility of a profiled sub-network consuming
more memory than is acceptable and preventing the start
up of another application. Additionally, reliably profiling
requires use of the GPU and multiple runs to average across.
On the TX2 this process takes on average 20s per data point.
With the 50, 000 sub-networks sampled by the ES algorithm,
this would result in an infeasible 11 days of run-time.

Utilising performance models Alternatively, utilising the
memory prediction model to predict the attribute values only
requires 0.1s and 2MB as it simply requires the inference
of a random forest model. For the same search space as
above, this would result in 1.4 hours of run-time with the
entire process running only on the CPU. The model for Γ
developed in Sec.6.2 using data from ResNet50 generalises
well to the OFA version and predicts Γ for the 100 sampled
sub-networks with a mean error of 4.28%.

Furthermore, as the problem of modelling inference stage
attributes is a subset of that of training, random forest models
were developed to predict both γ and ϕ. Batched (throughput
driven) is less common than single image (latency driven)
inference on the edge device setting as there are diminishing
throughput gains after batch sizes greater than 32 on the
Jetson TX2 [9]. Thus profiling for the batch sizes specified
in Sec.5.1.1 yields little useful information. Limiting the
batch sizes profiled to between 1 and 32 and utilising only
the five pruning levels specified in Sec.6.1 results in too
few data points to train models on. Instead, the models
developed for γ and ϕ are trained using profiled data for
25 out of the 100 sampled OFA sub-networks for batch
sizes 1,2,4,8,16,32 and the reported test errors are for the
remaining 75 sampled networks averaged across all batch
sizes. The profiling was performed only for the inference
stage and only the features corresponding to the forward
pass from Appendix B were used to train the random forest
models. The developed models predict γ and ϕ with 1.8%
and 4.4% errors respectively.

Performance gains Table 2 displays the results of retrain-
ing 4 different sub-networks on the 4 subsets described
above. The sub-networks MAX and MIN correspond to
the largest and smallest sub-networks that can be extracted
from OFAResNet50 and hence no search was required to
obtain them. Sub-networks A and B are obtained using the
ES algorithm with progressively stricter constraints on Γ,
γ and ϕ. The MAX sub-network is used as a comparison
as this is assumed to be the best possible model that can be
deployed when maximising for accuracy without retraining.

The results show that not performing evolutionary search
(MIN) produces models that consistently under perform com-
pared to MAX. Performing evolutionary search (A and B)
results in model size, Γ, γ, ϕ improvements up to 2.5x,
1.9x, 1.1x and 2.8x respectively with better Top1 test ac-
curacy, after retraining, compared to MAX in most cases.
Furthermore, performing evolutionary search using the naive
approach of profiling results in infeasible search times for
on-device deployment while utilising the models provides
a 200x improvement in search time allowing the process of
model selection and retraining to be performed on-device.

7. Conclusion

This work proposes perf4sight, a methodology to model
the memory consumption and latency of the training process
for a given combination of network, device and framework.
The developed decision tree based models predict memory
consumption and latency of the training process with a mean
error of 5.53% and 9.37% respectively over a wide range
of network topologies and mini-batch sizes for the Jetson
TX2 device and PyTorch framework. These error rates are a
significant improvement over those obtained by other works
when modelling the same attributes on both CNN training
and the simpler problem of inference. Thus, perf4sight en-
ables the quick and accurate identification of favourable
training configurations on edge devices. The methodology
has been automated and open-sourced to enable researchers
working on topics from NAS to resource constrained train-
ing of CNNs to benefit from the ability to accurately predict
hardware attributes of CNN training.

970



References
[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001.
[2] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Di-

ana Marculescu. Neuralpower: Predict and deploy energy-
efficient convolutional neural networks. arXiv preprint
arXiv:1710.05420, 2017.

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once for all: Train one network and specialize
it for efficient deployment. In International Conference on
Learning Representations, 2020.

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-
hamer. cudnn: Efficient primitives for deep learning, 2014.

[5] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao
Zhu, Haoxiang Lin, and Mao Yang. Estimating gpu memory
consumption of deep learning models. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 13421352, New York,
NY, USA, 2020. Association for Computing Machinery.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. volume 2016-
December, pages 770–778. IEEE Computer Society, 12 2016.

[7] Forrest N. Iandola, M. Moskewicz, Khalid Ashraf, Song Han,
W. Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. ArXiv,
abs/1602.07360, 2016.

[8] Marc Jorda, Pedro Valero-Lara, and Antonio J. Pena. Perfor-
mance evaluation of cudnn convolution algorithms on nvidia
volta gpus. IEEE Access, 7:70461–70473, 2019.

[9] Pilsung KANG and Jongmin JO. Benchmarking modern
edge devices for ai applications. IEICE Transactions on
Information and Systems, E104.D:394–403, 03 2021.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

[11] Andrew Lavin and Scott Gray. Fast algorithms for convolu-
tional neural networks. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4013–4021,
2016.

[12] Ilias Leontiadis, Stefanos Laskaridis, Stylianos I. Venieris,
and Nicholas D. Lane. It’s always personal: Using early exits
for efficient on-device cnn personalisation. In Proceedings
of the 22nd International Workshop on Mobile Computing
Systems and Applications, HotMobile ’21, page 1521, New
York, NY, USA, 2021. Association for Computing Machinery.

[13] Min Lin, Q. Chen, and Shuicheng Yan. Network in network.
CoRR, abs/1312.4400, 2014.

[14] Zongqing Lu, Swati Rallapalli, Kevin Chan, Shiliang Pu, and
Thomas La Porta. Augur: Modeling the resource require-
ments of convnets on mobile devices. IEEE Transactions on
Mobile Computing, 20(2):352–365, 2021.

[15] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.

In IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pages 5068–5076.
IEEE Computer Society, 2017.

[16] Michaël Mathieu, Mikael Henaff, and Y. LeCun. Fast training
of convolutional networks through ffts. CoRR, abs/1312.5851,
2014.

[17] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pages 11264–11272. Computer Vision Foundation /
IEEE, 2019.

[18] J. Ross Quinlan. C4.5: programs for machine learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[19] Aditya Rajagopal and Christos-Savvas Bouganis. Now that
i can see, i can improve: Enabling data-driven finetuning of
cnns on the edge. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020.

[20] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating er-
rors. Nature, 323:533–536, 1986.

[21] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 4510–4520, 1 2018.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Computer Vision and Pattern Recognition
(CVPR), 2015.

[24] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. Pro-
ceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2019-June:2815–2823,
7 2018.

[25] S. Winograd. Arithmetic Complexity of Computations. CBMS-
NSF Regional Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1980.

[26] Z. Zhou, X. Chen, En Li, Liekang Zeng, Ke Luo, and Junshan
Zhang. Edge intelligence: Paving the last mile of artificial
intelligence with edge computing. Proceedings of the IEEE,
107:1738–1762, 2019.

971


