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Abstract

Deep neural networks have proven increasingly impor-
tant for automotive scene understanding with new algo-
rithms offering constant improvements of the detection per-
formance. However, there is little emphasis on experiences
and needs for deployment in embedded environments. We
therefore perform a case study of the deployment of two
representative object detection networks on an edge Al plat-
form. In particular, we consider RetinaNet for image-based
2D object detection and PointPillars for LiDAR-based 3D
object detection. We describe the modifications necessary
to convert the algorithms from a PyTorch training environ-
ment to the deployment environment taking into account the
available tools. We evaluate the runtime of the deployed
DNN using two different libraries, TensorRT and Torch-
Script. In our experiments, we observe slight advantages of
TensorRT for convolutional layers and TorchScript for fully
connected layers. We also study the trade-off between run-
time and performance, when selecting an optimized setup
for deployment, and observe that quantization significantly
reduces the runtime while having only little impact on the
detection performance.

1. Introduction

Nowadays, we witness a great success of Al-based ob-
ject detection algorithms with deep neural network (DNN)
models. These find applications in automotive scene under-
standing for advanced driver assistance systems and auto-
mated driving. Many object detection algorithms are well
studied and their performance in development conditions is

known in the literature. However, deployment aspects of
these DNN models on edge Al devices, and embedded sys-
tems in general, are often not addressed in scientific papers
but only in blog posts in the form of partly very helpful
or incomplete notes and hints. In this paper, we intent to
present our major findings when deploying two represen-
tative DNN models on a widely used edge Al device, the
NVIDIA Jetson AGX Xavier [1]. As representative DNN
models, we chose 2D object detection using RetinaNet [2]
and 3D object detection using PointPillars [3]. Our findings
are presented in a concentrated form and include necessary
manipulations of the architecture, that take into account the
supported functions of TensorRT or TorchScript.

When deploying DNN models, there are several tech-
niques to optimize the runtime for deployment [4], includ-
ing (1) the design and manipulation of the DNN model
architecture in terms of the model size, depth and width,
(2) pruning techniques to remove neurons, groups of neu-
rons, or filters, which have little impact on the output, and
(3) quantization to change the numerical representation of
data and network weights [5]. These techniques generally
result in a trade-off between runtime and performance. In
this paper, we consider techniques (1) and (3). On the one
hand, we perform experiments with varying resolution of
the input image for RetinaNet [2], and with varying the
number of pillars and points per pillar for PointPillars [3].
On the other hand, we study the effect of quantization to
half-precision floating-point format and to fixed-point arith-
metic.

Our contribution is a case study covering the joint treat-

ment of DNN deployment aspects on a widely used edge Al
device and an in-depth experimental evaluation of runtime
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optimization techniques. We are not aware of comparable
work. In the following, we provide a description of the used
concepts and tools for DNN deployment on the NVIDIA
Jetson AGX Xavier, and present the modified architectures
of our selected DNNS.

2. Concepts and tools

As it is common in the DNN research community, we
develop, train and evaluate our algorithms in a Python en-
vironment, where we have chosen the PyTorch library [6].
However, when deploying the network on an embedded sys-
tem for real-time inference, we move to a C++ environment,
in which other tools are needed. In this section, we give a
short overview on the concepts and tools that have proven
useful to us.

2.1. Network conversion

When deploying a trained DNN on an embedded system
in a C++ environment, a conversion becomes necessary. A
standardized format to exchange networks within different
tools, is the Open Neural Network Exchange (ONNX) [7]
format. It can be created using network tracing, which con-
verts the network into a static computational graph based
on exemplary input data and allows for efficient hardware
acceleration with the NVIDIA TensorRT [8] SDK for run-
time optimized inference. However, tracing does not allow
data-dependent control-flow operations, so that the original
network architecture has to be divided into network graphs
and logical operations. These logical operations do not
contain network weights and have to be realized with C++
functions. PyTorch offers an alternative built-in framework
TorchScript, with the options tracing and scripting. For rea-
sons of comparability and a limited usability of scripting,
we focus on tracing with TorchScript as well.

2.2. Quantization

Quantization has the goal to efficiently represent numer-
ical values by a finite number of bits. Widely used for-
mats include single- and half-precision floating-point for-
mats [9], referred to as Float32 and Float16, respectively,
and fixed-point arithmetic with 8 bit integers, referred to
as Int8. A reduction of the used quantization format can
be beneficial in a deployment setup with limited computa-
tional, memory or energy resources. Moving from the de-
fault Float32 to Float16 is a straightforward and often con-
sidered option. When further moving to Int8 quantization,
several tuning and calibration steps have to be taken into ac-
count. A recent survey of quantization techniques for DNN
inference is given in [4]. In [5], a corresponding practical
workflow for Int8 quantization is recommended.

For the sake of simplicity, in this paper, we focus on
post-training quantization and do not consider quantization-
aware training. In particular, for Int8 quantization, we con-

sider the TensorRT MinMax and entropy calibrator func-
tions [10]. The MinMax calibration measures the maximum
absolute activation of each layer and provides an equidis-
tant and symmetric mapping. Likewise, the entropy cali-
bration determines a mapping which minimizes the infor-
mation loss by saturating the activations above a certain
threshold. Since TorchScript currently only supports Int8
quantization for CPU usage, we only consider the corre-
sponding TensorRT variant.

2.3. Further tools

We use the Robot operating system (ROS) [I11] as
our real-time environment in C++. ROS contains helpful
tools for sensor data streaming, communication of different
nodes and visualization of sensor data and detection results.
With the tools nuscenes2bag [ 1 2] and kitti2bag [ 1 3], we can
convert data from automotive datasets into a ROS compat-
ible format that allows us to simulate a real driving sce-
nario while having access to labeled ground truth. For the
pre- and post-processing of the data in C++, efficient imple-
mentations from libraries like OpenCV [14] for images and
OpenPCDet [ 15] for pointclouds can be used. For many op-
erations, there are also CUDA-based [16] implementations
for hardware acceleration in these stages.

3. Deployment architectures

For our case study, we choose to work with two DNN ar-
chitectures: RetinaNet [2] and PointPillars [3]. Note that we
select them as representative and well-known algorithms,
that provide a reasonable trade-off between runtime and
performance, and are therefore suitable for automotive ap-
plications. Further, note that our selection also covers diver-
sity in terms of the object detection task and and the sensor
modality.

3.1. RetinaNet

RetinaNet [2] is an image-based 2D object detection al-
gorithm. It is one of the pioneering one-stage object de-
tectors, which surpassed the preceding two-stage networks
in terms of runtime while offering similar detection perfor-
mance. When deploying RetinaNet, we divide the pipeline
shown in Figure 1 into the following processing steps:

Pre-processing. In the pre-processing stage, the image
is resized to a lower resolution of choice and normalized
based on the mean and standard deviation of the RGB im-
ages in the ImageNet dataset [17], on which the backbone
network is pre-trained. Both of these steps can efficiently
be done using the OpenCV CUDA library.

Inference. The architecture of RetinaNet [2] is made
out of a ResNet [18] backbone network, a subsequent Fea-
ture Pyramid Network (FPN) [19] as well as regression and
classification heads. It uses the concept of anchor boxes as
pre-defined regions in the image, eliminating the need for
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Figure 1. RetinaNet processing pipeline.

a Region Proposal Network. All of these steps can be real-
ized with a single neural network graph, that can be created
by tracing the computations of an exemplary network input.
Assuming that all pre-processed images have the same res-
olution, the anchor boxes can be included in the graph as a
constant tensor. The graph can then be efficiently deployed
using either TensorRT or TorchScript.

Post-processing. In the post-processing stage, the neu-
ral network classification and regression outputs are fil-
tered by a detection threshold and decoded to generate the
2D bounding boxes. Finally, non-maximum suppression
(NMS) is applied to avoid multiple boxes per object. Again,
this can be efficiently computed using the OpenCV library.
Note that these steps can not be included in the network
graph, as they require logical operations that depend on the
network input but would be treated as constant by the tracer.

3.2. PointPillars

PointPillars [3] is a LiDAR-based 3D object detection
network that achieves state-of-the-art performance on pub-
lic benchmarks with real-time inference speed. As depicted
in Figure 2, PointPillars mainly consists of the following
four blocks:

Pre-processing. In this stage, the input point cloud is
first discretized into a set of pillars in the zy plane. Then,
each point in a pillar is augmented with its offsets from the
arithmetic mean of all points in this pillar and its offsets
from the pillar center, resulting in a D-dimensional point
encoding. For each pillar, we random sample /N points if
it has more than N points or apply zero-padding to fix the
size of the input tensor. Similarly, the number of non-empty
pillars per point cloud is kept to P using the aforementioned
policy. Consequently, the augmented input feature is of size
(P, N, D). The pre-processing block is deployed efficiently
with parallel processing on GPU via the CUDA library.

Feature Extraction. This block aims to extract high-
level features from the input feature obtained in pre-
processing, and further form them in a 2D top-view rep-
resentation. To this end, each point in pillars is first con-
sumed by a simplified PointNet [20], outputing a tensor of
size (P, N, C'). Then, a max operation along the N axis is

applied to generate pillar-wise feature, resulting in a (P, C')
sized tensor. Finally, these pillar-wise features are scattered
back to the pillar locations on the zy plane to create a top-
view representation. In this work, we name the combination
of the simplified PointNet and the max operation as Pillar
Feature Network (PFN), and deploy it using TensorRT or
TorchScript network graphs. The scatter operation is real-
ized by C++ functions using the CUDA library.

Backbone and Detection Head. The backbone used in
PointPillars [3] is common 2D CNN and consists of a top-
down module that gradually captures higher semantic infor-
mation and a second module that performs upsampling and
feature concatenation. The final feature map is processed by
the detection head for anchor classification, box offsets re-
gression and direction regression. During deployment, the
backbone and detection head are jointly realized by Ten-
sorRT or TorchScript network graphs.

Post-processing. To get the final 3D bounding boxes,
the predicted box offsets and directions are decoded to-
gether with the anchor information. Then, NMS is applied
to select the best predictions out of overlapping boxes. We
realize these two logical operations with CUDA-based C++
functions to leverage parallel processing on GPU.

4. Experiments

We train and evaluate our algorithms in a Python envi-
ronment using the PyTorch library. As training and val-
idation data, we use the nuScenes dataset [21] for Reti-
naNet [2] and the KITTI dataset [22] for PointPillars [3].
We deploy the networks in a C++ environment with ROS
for data streaming and visualization. We measure the al-
gorithm runtime as the average runtime across the valida-
tion data. We experiment with different tools for hardware
acceleration and quantization on the target platform, Ten-
sorRT and TorchScript. For the inference with TensorRT,
we first export the trained PyTorch model to ONNX and
parse it to an optimized TensorRT runtime engine in a C++
environment on the target system. TensorRT allows us to
select the desired quantization when building the engine,
with the options of Float32, Float16, and Int8. The latter
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Figure 2. PointPillars processing pipeline.

requires a use-case specific calibration, which can be done
with the MinMax or entropy technique. With TorchScript,
we need to select the quantization before exporting the Py-
Torch model. Currently, it is only possible to run Float32
and Float16 calculations with hardware acceleration. In ad-
dition, we experiment with varying the input image reso-
lution for RetinaNet and the number of pillars and points
per pillar for PointPillars [3]. Finally, we study the impact
of the available power supply on the runtime of our entire
detection pipeline.

4.1. RetinaNet

Experimental Setup. For our experiments, we choose
to work with RetinaNet-18 [2], which is based on a small
Resnet-18 [18] backbone to account for our real-time re-
quirements. We train and evaluate the network with the
nuScenes [21] train and val dataset, respectively. To adapt
the original dataset for the task of 2D object detection,
we project the original 3D bounding boxes onto the image
plane and map the 27 classes to a reduced set of Car, Pedes-
trian, Truck, Motorcycle and Bicycle. We list both the mean
average precision (mAP), with IoU threshold of 0.5, and the
weighted mAP, which takes the number of objects per class
as weights and is more robust to changes in rare classes.

Framework Analysis. In the first experiment, we study
the runtime of RetinaNet [2] when deploying it with Ten-
sorRT and TorchScript, using the available quantization
techniques. We consider two different inference batch sizes,
corresponding to a single image and a full surround view
of six images, as present in autonomous vehicle prototypes
or the used nuScenes dataset. Table 1 shows the results of
this experiment. When running the model with the default
Float32 values, we can observe that the inference with Ten-
sorRT is substantially faster than with TorchScript, which
underlines its optimization capabilities for convolutional
layers. When using Floatl6 precision, we observe a sig-
nificant reduction of the inference time across both tools,
while TensorRT still allows for faster inference. With Int8
quantization in TensorRT, we again significantly reduce the
runtime, resulting in over four times faster inference rela-
tive to Float32. Some studies have shown that the runtime

reduction can have even greater effects when working with
larger batch sizes, offering more room for optimization [ 10].
In our experiment, we can confirm this trend when running
inference on images from all six cameras in the nuScenes
dataset in a single batch, observing the reduction factors
slightly rising for Int8 quantization with TensorRT.

Runtime-Performance Analysis. Of course, we are
not only interested in the runtime reduction but rather in
the trade-off between runtime and detection performance.
In the next experiment, we therefore study the trade-off
achievable with quantization versus changing the resolution
of the input image. The results of this experiment are shown
in Table 2. We compare low, mid and high resolution, which
are chosen to have about twice as many pixels as the pre-
ceding resolution. Note that the number of anchor boxes
increases proportional to the number of pixels. All models
have been trained with input data down-scaled to the desired
resolution. The mid resolution is the same that we used in
the first experiment and we chose to work with TensorRT
for this experiment due to the lower runtime and availabil-
ity of Int8 quantization.

The runtime reduction factor offered by quantization is
similar in all dimensions with almost three times faster in-
ference with Float16 and about four times faster inference
with Int8. Interestingly, the impact of Float16 quantization
on the performance is minimal, both in terms of mAP and
weighted mAP. This also holds for Int8 quantization, where
the performance is slightly reduced for the MinMax calibra-
tor. We assume that this is due to the 8-bit RGB images as
input data, eliminating the need for higher-precision calcu-
lations. The impact of the image resolution is high on both
runtime and detection performance, where the runtime de-
creases proportional to the number of pixels. We therefore
argue that the mid resolution model with Int8 quantization
offers the best trade-off between runtime and performance.

Power Supply Analysis. In a final experiment for Reti-
naNet [2], we study the impact of the available power on
the runtime of the model. We select the mid resolution
model and Int8 quantization from the previous experiment
due to its good runtime-performance trade-off. All experi-
ments so far have been conducted with the MAXN power
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mode of the NVIDIA Jetson AGX, which corresponds to
roughly 50 W. However, in a practical deployment setup, the
power resources are usually limited. As shown in Table 3,
reducing the power mode has a high impact on the result-
ing runtime of the entire detection pipeline. We therefore
list detailed results of pre-processing, inference and post-
processing run-times. Depending on the use-case, a trade-
off between power supply and runtime has to be made.
Summary. In conclusion, the experiments show that
TensorRT achieves lower inference times for RetinaNet [2]
that TorchScript. While quantization should always be con-
sidered for deployment, lowering the resolution can help to
further reduce the runtime, but at the cost of a decreased
detection performance. It is therefore advisable to prefer a
mid to high resolution and Int8 quantization over a low res-
olution and Float32 precision. The runtime is also heavily
influenced by the available power supply. A video showing
qualitative results on a nuScenes sequence obtained by this
detection pipeline is available at:
https://youtu.be/iPoCOYTsigg.

Table 1. Runtime evaluation of RetinaNet with TensorRT and
TorchScript using various quantization techniques and batch sizes.

Batch size | Quant. | TensorRT | TorchScript
Float32 104 ms 210 ms

1 Float16 38 ms 67 ms

Int8 25ms -

Float32 619 ms 1041 ms

6 Float16 201 ms 271 ms
Int8 136 ms -

Table 2. Performance and runtime evaluation of RetinaNet us-
ing different image resolutions and quantization techniques on the
nuScenes val set.

Resolution Quant. Runtime | mAP | weighted mAP
Low Float32 60ms | 0.298 0.391
416736 Float16 22ms | 0.299 0.391
Int8, Entropy 16 ms 0.298 0.391
Int8, MinMax "~ | 0.288 0.381
Mid Float32 104ms | 0.361 0.455
5765 1024 Float16 38ms | 0.356 0.454
Int8, Entropy 25 ms 0.355 0.455
Int8, MinMax 0.355 0.454
High Float32 224ms | 0.395 0.488
332 1472 Float16 74ms | 0.395 0.487
Int8, Entropy 50 ms 0.393 0.485
Int8, MinMax 0.388 0.483

4.2. PointPillars

Experimental Setup. We train PointPillars [3] and
then evaluate the performance of the deployed network on
the KITTI [23] 3D object detection dataset, which con-
tains 7481 image and point cloud pairs with available 3D

Table 3. Detailed runtime of each block in the optimal RetinaNet
detection pipeline using different power modes.

Block MAXN | 30W | 15W 10W
Pre-process 3ms Sms | 6ms 7 ms
Inference 24ms | 35ms | 45ms | 94ms
Post-process 4 ms 4 ms Sms 6 ms
Total 3lms | 44ms | 56ms | 107 ms

bounding box annotations for three categories: Car, Pedes-
trian and Cyclist. For the experimental evaluation, we fol-
low [24] and split the samples into a train and val set
with 3712 and 3769 samples, respectively. The perfor-
mance is evaluated using Average Precision (AP) in mod-
erate level for the 3D object detection task with Intersec-
tion over Union (IoU) thresholds of 0.7 for Car and 0.5 for
Pedestrian and Cyclist. To construct and train the model,
we use the same KITTI-PointPillars configuration as in the
OpenPCDet codebase [15].

For the deployment on the target platform, we imple-
ment the pipeline based on Autoware [25] by developing
additional features. The runtime measurement is conducted
on the target platform, if not specified otherwise, with the
MAXN power mode using the sequence 0095 with 236
frames in the KITTI raw data [22]. We average the run-
time starting from the tenth frame to consider the warm-up
of GPU on the target platform and thus eliminate occasion-
ality.

Runtime Analysis. The runtime results for both Pil-
lar Feature Network (PFN) and Backbone & Detection
Head (named as 2D CNN for short) when deployed with
TensorRT and TorchScript using various quantization tech-
niques are presented in Table 4. When comparing the run-
time of the model deployed using TensorRT and Torch-
Script, PFN and 2D CNN show opposite trends. For the 2D
CNN, TensorRT achieves significantly better runtime opti-
mization, which is consistent with our observations when
deploying RetinaNet. In contrast, for the PFN, TorchScript
provides an improved runtime optimization. One possible
explanation could be slight advantages of TensorRT for con-
volutional layers and TorchScript for fully connected lay-
ers. When comparing the quantization techniques, Float16
offers a significant speed improvement for the PFN and
2D CNN across both tools, whereas Int8 only provides ad-
ditional minor improvements for the 2D CNN. Note that
we do not consider to use Int8 quantization for the PFN,
since the input are 3D coordinates, with approximate range
+10%m and accuracy 1072 m, so that Int8 quantization
would result in a significant loss of information.

Performance Analysis. From the runtime analysis, we
can conclude that the combination of PFN with TorchScript
and 2D CNN with TensorRT achieves the lowest runtime.
We therefore consider this setup and further study the object
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detection performance of the model deployed using differ-
ent quantization techniques. The results of the performance
evaluation for three classes as well as the runtime for the en-
tire pipeline are shown in Table 5. When going down from
Float32 to Float16 precision, we observe no significant per-
formance change in terms of AP for all class categories for
both PEN and 2D CNN. When using Int8 quantization for
the 2D CNN, the performance drops considerably for both
calibration methods, where the reduction is even more se-
vere for the entropy calibrator. We assume that the used
pillar feature map representation and subsequent activations
require a larger arithmetic range to preserve essential geo-
metric information. When further considering the runtime
of the complete PointPillars [3] detection pipeline, it is clear
that deploying PFN and 2D CNN using Float16 precision
with TorchScript and TensorRT, respectively, offers the best
trade-off between detection performance and runtime. We
name it the optimal variant in the following study.

Further Study on PFN. From the previous analysis we
observe that the optimal variant takes in total 41 ms runtime,
where the single PEN costs 19 ms, being the bottleneck in
the deployment. We thus conduct this experiment to investi-
gate the potential of further reducing the runtime of PFN by
modifying the network input. This is achieved by adjusting
two parameters of PFN, namely the number of non-empty
pillars P, and the number of points per pillar N. While we
use P = 16000 and N = 32 in the previous experiments,
we additionally choose P = 12000 and NV € {24,16} and
measure the runtime of PFN and the overall performance.
As shown in Table 6, keeping the number of points while
lowering the number of pillars from 16000 to 12000 does
not introduce notable change on the performance metrics,
while it improves the runtime considerably from 19 ms to
14 ms for the case with 32 points per pillar. Additional run-
time boost can be achieved by decreasing the number of
points per pillar without remarkable performance loss. In
this study, we figure out that the setup with 12000 pillars
and 24 points per pillar is the most appropriate for deploy-
ing PFN with a runtime of 9 ms.

Summary. From our extensive studies, we summarize
that deploying PointPillars [3] using separate PFN and 2D
CNN network graphs on Float16 precision with Torchscript
and TensorRT, respectively, is the optimal solution for the
deployment on the target platform. We further observe that
the input parameters of PFN have a significant impact on
the runtime, where we find P =12000 and N =24 as most
suitable in our study. We finally report the detailed runtime
of the optimal PointPillars [3] pipeline using various power
modes on the target platform in Table 7. A video showing
qualitative results on the KITTI sequence obtained by this
detection pipeline is available at:
https://youtu.be/paY XkkXDKGs.

Table 4. Runtime of PFN and 2D CNN deployed with TensorRT
and TorchScript using various quantization techniques.

Network | Quant. | TensorRT | TorchScript
Float32 30 ms 21 ms
PEN Float16 26 ms 19 ms
Float32 46 ms 82 ms
2D CNN | Floatl6 16 ms 31 ms
Int8 14 ms -

Table 5. Performance evaluation of PFN and 2D CNN combina-
tions using different quantization techniques on the KITTI val set.

PFN 2D CNN AP3p Pipeline
quant. quant. Car Ped. | Cyc. | runtime
Float32 Float32 78.40 | 51.41 | 62.81 | 72ms
Float32 Float16 78.30 | 51.31 | 62.89 | 43ms
Int8, minmax | 71.04 | 48.00 | 55.94
Float32 e entropy | 68.01 | 22.05 | 29.66 | 10ms
Float16 Float32 78.40 | 51.46 | 62.92 | 7lms
Float16 Float16 7831 | 51.39 | 6297 | 41ms
Int8, minmax | 70.99 | 47.65 | 56.42
Float16 Int8, entropy | 69.37 | 21.86 | 29.53 38 ms

Table 6. Performance and runtime evaluation of PFN with different
parameters.

Pillar | Point AP3p PFN

num. | num. | Car Ped. | Cyc. | runtime
16000 | 32 | 78.31 | 51.39 | 62.97 19 ms
16000 | 24 | 78.28 | 50.68 | 62.20 12 ms
16000 16 | 78.14 | 50.81 | 61.33 10 ms
12000 | 32 | 78.29 | 51.37 | 62.98 14 ms
12000 | 24 | 7825 | 51.92 | 62.19 9ms
12000 16 | 78.17 | 49.02 | 61.38 8 ms

Table 7. Detailed runtime of each block in the optimal PointPillars
detection pipeline using different power modes.

Block MAXN | 30W 15W 10W
Pre-process 4ms | 6ms | 8ms 14 ms
PEN 9ms | 14ms | 21 ms 52 ms
Scatter 1ms 2ms 2ms 4 ms
2D CNN 16ms | 25ms | 32ms 71 ms
Post-process 1 ms Ims | 2ms 2 ms
Total 3lms | 48ms | 65ms | 143 ms

5. Conclusion

In this paper, we have presented our major insights when
deploying two representative algorithms on the NVIDIA
Jetson AGX Xavier for automotive scene understanding:
RetinaNet [2] for image-based 2D object detection and
PointPillars [3] for LIDAR-based 3D object detection. We
have discussed the necessary modifications and tools that
we found most helpful. We studied the runtime of Ten-
sorRT and TorchScript and found that TensorRT should be
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preferred for RetinaNet [2] and the convolutional part of
PointPillars [3], whereas TorchScript should be preferred
for the fully connected part of PointPillars [3]. The runtime
of both algorithms can be further reduced by utilizing quan-
tization, which is available up to Int8 with TensorRT and up
to Float16 with TorchScript. While the impact on the detec-
tion performance for RetinaNet [2] is low even with Int8,
PointPillars [3] should only be quantized to Float16, which
is possibly due to the difference in input data, with 8-bit
RGB images and 3D coordinates of LiDAR point clouds,
respectively. We also studied the influence of some design
parameters of the algorithms and found that a good runtime-
performance trade-off can be achieved with an input resolu-
tion of 576 x 1024 for RetinaNet [2], as well as 12000 pillars
and 24 points per pillar for PointPillars [3]. The available
power supply in the embedded environment also has a sig-
nificant impact on the runtime, which additionally has to
be considered when choosing a setup for deployment. In
future work, we plan to extend our findings on fusion meth-
ods between image and LiDAR or radar point cloud data.
Additionally, we consider to address pruning techniques for
further runtime optimization.
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