
A. Profiling in PyTorch
This section details the practical implementation

of data collection for the attributes described in Sec.4.
Code to support the description here is open-sourced
in the tool associated with this work. PyTorch forward
and backward hooks are attached to the network’s con-
volution layers and at each hook the following values
are recorded for pruning levels 5x|x ∈ [0, 18] and batch sizes
{2,4,8,16,32,64,70,80,90,100,110,120,128,140,150,160,170,
180,190,200,210,220,230,240,256}.

Results provided in the paper were for both the NVIDIA
Jetson TX2 and the NVIDIA RTX 2080Ti. Φ is profiled in
the same manner for the two systems (embedded and server):

Mini-batch training latency (Φ) is profiled using the
torch.cuda.Events API as this allows to time
asynchronous GPU events.

The total training memory attribute is profiled differently
for embedded (NVIDIA Jetson TX2) and server (NVIDIA
RTX 2080Ti) systems due to the difference in memory man-
agement where the embedded device has a unified memory
space, where the server system has an independent memory
space for the GPU.

Memory Used (Γ)

• NVIDIA Jetson TX2 - Profiled using information from
the /proc/meminfo system file. As the Jetson has
a unified memory, information in this file accounts for
both GPU and CPU memory.

TotalMemUsed =

MemTotal −MemFree−Buffers− Cached

The terms on the RHS of the equation correspond di-
rectly to values found in /proc/meminfo file.

• NVIDIA RTX 2080Ti - Profiled us-
ing the pynvml tool with the command
nvmlDeviceGetMemoryInfo.used.

The system records the maximum value of Γ observed until
the point of profiling.

B. Model Construction
B.1. Initial Profiling

Graphs corresponding to the profiling described in Sec.5.2
for ResNet18, MobileNetV2, SqueezeNet and MnasNet for
the modelled attributes are shown in Fig.5. As discussed,
they display linearity with batch size and varying linear fit
dependent on the pruning level.

B.2. Complete list of model features

This section lists the features described in Sec.5.2.1 along
with various summations of these features that are used to
develop the performance model.

Consider a CNN where each convolutional layer l ∈ L
has nl filters of size ml × kl × kl. Let layer l have stride
sl, padding pl and groups gl. Let the IFM to this layer have
dimensions bs×ml×ipl×ipl, the weights nl×ml

gl
×kl×kl

and the OFM bs × nl × opl × opl where bs is the batch
size of training. The OFM spatial dimensions opl can be
calculated from other variables using the equation opl =
1 + ⌊ ipl+2pl−kl

sl
⌋.

B.2.1 Tensor Allocations

The features in this section describe the sizes of tensors that
constitute the IFM, weights and OFM; and each of their
gradients on a per-layer basis.

1. memw = nl · ml

gl
· k2l

2. memwgrad
= bs · nl · ml

gl
· k2l

3. memifmgrad
= memifm = bs ·ml · ip2l

4. memofmgrad
= memofm = bs · nl · op2l

5. memw +memwgrad
+memifmgrad

+memofmgrad

The following sections model the memory consumption
and operations for the Matrix Multiplication, FFT and Wino-
grad based convolution algorithms on a per layer basis. Each
feature models one of Eq.1 (fwd), the forward pass; Eq.2
(bwdx), the computation of the gradient w.r.t input; or Eq.3,
the computation of the gradient w.r.t weights.

B.2.2 Matrix Multiplication based convolution

The features in this section are obtained by modelling the
sizes of the matrices that are used to perform a convolution
through matrix multiplications, and calculating the memory
and operations required to store these matrices and perform
the multiplication. The total features correspond to the
MATMUL strategy where the entire im2col matrix is stored
in memory, while idx features correspond to the strategy of
storing only the necessary indices as described in Sec.5.2.1.



0 50 100 150 200 250
Mini-batch size

2000

3000

4000

5000

6000

 (M
B)

Pruning Levels
0%
30%
50%
70%
90%

(a) ResNet18 Γ

0 50 100 150 200 250
Mini-batch size

2000

3000

4000

5000

6000

 (M
B)

Pruning Levels
0%
30%
50%
70%
90%

(b) MobileNetV2 Γ

0 50 100 150 200 250
Mini-batch size

0

1000

2000

3000

4000

 (m
s)

Pruning Levels
0%
30%
50%
70%
90%

(c) SqueezeNet Φ

0 50 100 150 200 250
Mini-batch size

0

500

1000

1500

2000

2500

3000

3500

4000

 (m
s)

Pruning Levels
0%
30%
50%
70%
90%

(d) MnasNet Φ

Figure 5: Γ and Φ for 4 different networks that were profiled when training 3x224x224 sized inputs on the NVIDIA Jetson TX2. x-axis is
mini-batch size and y-axis is the attribute value.

As an example, the forward pass (Eq.1) involves a
multiplication between the im2col IFM matrix of size
((bs× op2l )× (k2l ×ml)) and a reshaped weights matrix of
size ((k2l × ml) × (nl)). Using k2l × ml as the common
dimension and calculating the memory and operations for
a matrix multiplication gives the features mem i2cmm

fwdtotal

and opsmm
bwdx

. As discussed in Sec.5.2.1, the index of each
of the op2l output pixels needs to be stored thus giving the
mem i2cmm

fwdindex feature. Similar arguments applied to
Eq.2 and 3 give the remaining features in this section.

6. mem i2cmm
fwdtotal = bs · op2l · k2l ·ml

7. mem i2cmm
bwdtotal

w
= bs · op2l · k2l ·

ml

gl

8. mem i2cmm
fwdindex = i2cmm

bwdindex
w

= bs · op2l

9. mem i2cmm
bwdtotal

x
= bs · ip2l · k2l ·ml

10. mem i2cmm
bwdindex

x
= bs · ip2l

11. mem i2cmm
fwdtotal + mem i2cmm

bwdtotal
w

+

mem i2cmm
bwdtotal

x

12. 2×mem i2cmm
fwdindex +mem i2cmm

bwdindex
x

13. opsmm
fwd = opsmm

bwdw
= bs · nl · op2l · k2l ·

ml

gl

14. opsmm
bwdx

= bs ·ml · ip2l · k2l · nl

15. 2× opsmm
fwd + opsmm

bwdx

B.2.3 FFT based convolution

The features in the section, apart from the summations, have
been obtained from [16] where there is a detailed breakdown
of the memory consumption and operations of using the FFT
algorithm for matrix multiplication.

16. mem wfft
fwd = nl · ml

gl
· ipl · (1 + ipl)

17. mem ifmfft
fwd = ifmfft

bwdw
= bs ·ml · ipl · (1 + ipl)

18. mem ofmfft
bwdw

= bs · nl · ipl · (1 + ipl)

19. mem wfft
bwdx

= nl · ml

gl
· opl · (1 + opl)

20. mem ofmfft
bwdx

= bs · nl · opl · (1 + opl)

21. mem wfft
fwd +mem ifmfft

fwd

22. mem ofmfft
bwdx

+mem ofmfft
bwdw

23. mem ofmfft
bwdw

+mem ifmfft
fwd

24. 21 + 22 + 23

25. opsfftfwd = ip2l · log(ipl) · (bs · (ml + nl) + nl · ml

gl
)

+ bs · nl ·ml · ip2l

26. opsfftbwdx
= op2l · log(opl) · (bs · (ml + nl) + nl · ml

gl
)

+ bs · nl ·ml · op2l

27. opsfftbwdw
= ipl · log(ip2l ) · (bs · (ml + nl) + nl · ml

gl
)

+ bs · nl ·ml · ip2l

28. opsfftfwd + opsfftbwdx
+ opsfftbwdw

B.2.4 Winograd convolution

Each of the features described in this section model Eq.4
for each of Eq.1,2,3. Consider the case of Eq.2. δL

δy is a
matrix of size (bs × nl × opl × opl) and wnm is a matrix
of size (nl ×ml × kl × kl). The term d in Eq.4, is one of
the ⌈ opl

q ⌉2 tiles of δL
δy and g is one of the ⌈kl

r ⌉
2 tiles of w.

Assuming parallelism over bs, ml and ⌈ opl

q ⌉2 gives the fea-
ture memwino

bwdx
and accounting for nl · ⌈kl

r ⌉
2 accumulations

gives the feature opswino
fwd . Applying similar arguments to

Eq.1 and 3 gives the remainder of the features.
The following features are applied twice for (q × r) of

(4× 3) and (3× 2) which both profiling and [8] showed to
be the most commonly used sizes of winograd convolutions
by CuDNN



29. memwino
fwd = bs · nl · ⌈ ipl

q ⌉2 · 3 · (q + r − 1)2

30. memwino
bwdx

= bs ·ml · ⌈ opl

q ⌉2 · 3 · (q + r − 1)2

31. memwino
bwdw

= bs · nl · ml

gl
· ⌈ ipl

q ⌉2 · 3 · (q + r − 1)2

32. memwino
fwd +memwino

bwdx

33. memwino
fwd +memwino

bwdw

34. memwino
bwdw

+memwino
bwdx

35. 32 + 33 + 34

36. opswino
fwd = bs · nl · ml

gl
· ⌈ ipl

q ⌉2 · ⌈k
r ⌉

2 · (q + r − 1)2

37. opswino
bwdx

= bs ·ml · nl · ⌈ opl

q ⌉2 · ⌈k
r ⌉

2 · (q + r − 1)2

38. opswino
bwdw

= bs ·nl · ml

gl
· ml

gl
·⌈ ipl

q ⌉2 ·⌈ opl

r ⌉2 ·(q+r−1)2

39. opswino
fwd + opswino

bwdx

40. opswino
fwd + opswino

bwdw

41. opswino
bwdx

+ opswino
bwdw

42. 39 + 40 + 41

BUILDING BLOCK NETWORKS

RESIDUAL RESNET18, RESNET50
DEPTH-WISE SEPARABLE MOBILENETV2, MNASNET

FIRE SQUEEZENET

INCEPTION GOOGLENET

Table 3: Summary of architectural building blocks and networks
that utilise them

C. Training on a ”basis” of networks
This section provides additional results for Sec.6.3 which

investigated if training could be performed on data from a
representative ”basis” of networks and predict attributes on
other networks not present in the basis but with similar build-
ing blocks to those in the basis. The following discussion
illustrates the similarity of building blocks between networks
in the basis and those not present in it.

Tab.3 details various commonly used building blocks and
the networks that utilise them. Both the Fire and Inception
modules employ a ”branch-and-concatenate” computation
structure and have 1× 1 and 3× 3 convolutions. The Fire
module has 2 branches, whereas the Inception module has
4 branches and a 5 × 5 convolution. ResNet18 is made
of ”Basic-block residuals” which have two 3 × 3 convolu-
tions, whereas the deeper ResNet50 is made of ”Bottleneck
residuals” which have 3 convolutions (one 3 × 3 and two
1 × 1). MobileNetV2 and MnasNet are made up of the
same depth-wise separable inverted residual module, but
have different depths. Thus architecture pairs from most to
least similar are: MobileNetV2 and MnasNet; ResNet18 and
ResNet50; and SqueezeNet and GoogLeNet. The results
of this investigation are inline with this observation where
MnasNet performed the best followed by ResNet50 and then
GoogLeNet.



D. On-device OFA Case Study Subsets
This section provides details on the classes present in

each of the 4 subsets used in the on-device OFA case study
presented in Sec.6.4. The subsets were extracted from sub
classes of the ImageNet dataset and were created to emulate
objects, people, buildings and animals that might observed
in different environments that an autonomous vehicle could
encounter. The details of the classes present in each subset
are as follows:

• City (185 classes) : ambulance, trash can, station
wagon, tandem bike, taxi, car mirror, car wheel, con-
vertible, crane, electric locomotive, fire engine, fire
truck, garbage truck, petrol pump, radiator grille, jeep
landrover, rickshaw, lawn mower, limousine, mailbox,
manhole cover, minibus, minivan, Model T, moped,
scooter, mountain bike, moving van, parking meter,
passenger car / coach, pay-phone, pickup truck, po-
lice car, race car, school bus, shopping cart, snowplow,
sports car, steel arch bridge, tram, suspension bridge,
tow truck, trolley bus, street sign, traffic light, palace,
mosque, church building, castle, boathouse, tirumphal
arch, academic gown/robe, cardigan, fur coat, gown,
jersey / t-shirt, suit, sunglasses, sweatshirt, trench coat,
umbrella, swan, dogs, red fox, cats

• Motorway (26 classes) : station wagon, bullet train,
car mirror, car wheel, convertible, electric locomotive,
petrol pump, jeep landrover, minibus, minivan, mobile
home, Model T, moving van, passenger car / coach, pay-
phone, pickup truck, police car, race car, recreational
vehicle, snowplow, sports car, tow truck, trailer truck,
street sign, water tower

• Country-side (204 classes) : wheelbarrow, station
wagon, bullet train, taxi, car mirror, car wheel, con-
vertible, electric locomotive, freight car, garbage truck,
petrol pump, radiator grille, half track, horse cart,
jeep landrover, lawn mower, mailbox, manhole cover,
minibus, minivan, mobile home, Model T, moped,
scooter, mountain bike, moving van, oxcart, parking
meter, passenger car / coach, pay-phone, picket-fence,
pickup truck, plough, police car, race car, recreational
vehicle, school bus, snowmobile, snowplow, sports car,
steel arch bridge, tank, thatched roof, tile roof, tow
truck, tractor, trailer truck, worm fence, street sign, traf-
fic light, hay, palace, mosque, church building, castle,
lighthouse, barn, viaduct, water tower, cardigan, fur
coat, gown, sarong, jersey / t-shirt, suit, sunglasses,
sweatshirt, swimming trunks, trench coat, umbrella,
cock, hen, quail, goose, swan, dogs, red fox, cats, rab-
bits, ram, sheep

• Off-road (26 classes) : mobile home, mountain bike,
oxcart, pickup truck, plough, snowmobile, tank, tractor,

hay, ostrich, iguana, alligator, wallaby, koala, wom-
bat, brown bear, black bear, hog, wild boar, ox, water
buffalo, bison, wild deer

There are fewer written categories than the number of
classes stated as some categories such as ”dogs” have many
ILSVRC’12 classes within them. There are also overlap of
classes between the subsets as would be expected.


