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Abstract

We present Border-SegGCN, a novel architecture to im-
prove semantic segmentation by refining the border outline
using graph convolutional networks (GCN). The seman-
tic segmentation network such as Unet or DeepLabV3+ is
used as a base network to have pre-segmented output. This
output is converted into a graphical structure and fed into
the GCN to improve the border pixel prediction of the pre-
segmented output. We explored and studied the factors such
as border thickness, number of edges for a node, and the
number of features to be fed into the GCN by performing ex-
periments. We demonstrate the effectiveness of the Border-
SegGCN on the CamVid and Carla dataset, achieving a test
set performance of 81.96% without any post-processing on
CamVid dataset. It is higher than the reported state of the
art mIoU achieved on CamVid dataset by 0.404%.

1. Introduction

Semantic segmentation provides dense per pixel clas-
sification corresponding to each pixel’s labels [3, 10, 16],
which is a crucial task in the field of computer vision. Solv-
ing and understanding the environment within an image us-
ing segmentation opens the door to many applications in
the field of robotics, security, autonomous vehicles, help-
ing blind and visually impaired people (BVIP), etc. With
the advancements in deep neural networks, [12, 43, 27, 45],
computer vision tasks such as semantic segmentation per-
formance have improved using large scale datasets for train-
ing as compared to segmentation using handcrafted features
[21, 28, 57, 20]. Segmentation of pixels in non-boundaries
regions is easier than for the object boundaries, since border
pixels are prone to have large ambiguity in belonging to a
particular segment.

Graph convolutional network Research in the field
of Graph Neural Networks (GNN) have produced inter-
esting results for graph classification that do not require
as much resources as traditional Neural networks [26].

Graph Convolutional Networks (GCN) have been used in
the field of body pose estimation, action recognition, etc,
as human body data can be converted into graphical forms
[50, 62, 61, 56, 30, 19, 36]. Similarly, point cloud data has
also been used in graphical forms. [42, 54, 29].

As illustrated in Figure 1, we propose a novel GCN
based architecture for refining the outline of object bound-
aries on the pre-segmented image from a baseline network
such as Unet or any other arbitrary network. Instead of fo-
cusing on the whole video segmentation task using GCNs,
we focus on improving the object boundaries causing more
ambiguities at the boundaries than at the non-border re-
gions. The loss function penalizes for the border pixels in
the network. It also decreases the computation complex-
ity for the whole network as it has to only focus on some
regions of the whole scene in each frame of a video. We ef-
fectively build a pipeline to generate graph based data from
the visual data using spatial and intensity information of the
pixels. Our architecture gives the flexibility to use any base-
line network for the pre-segmentation task. We performed
evaluation using two baseline networks to study the effect
of using very different baseline network. In addition, a vi-
sualization analysis reveals that the object outline segmen-
tation learned by the proposed architecture has meaningful
semantic predictions.

Our contributions are summarized as follows: (1) We de-
velop a novel method, Border-SegGCN, using GCNs to im-
prove the semantic segmentation performance by refining
the predicted boundaries. (2) We test our pipeline using two
open source datasets, i.e., Camvid and Carla dataset (3) We
perform the evaluation of different border widths to be used
for a better performance of the procedure. (4) We evalu-
ate the performance with a varying number of edges for the
nodes in the graph. (5) We study the effect of a different
number of features used as an input to the GCN network.
(6) We evaluate the training with different hyper-parameters
such as dropout and regularisation. (7) We also verify the
performance of Border-SegGCN visually using qualitative
results. (8) We prove the performance of the network using
two different baseline models, i.e., Unet and DeepLabV3+.
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Figure 1. We aim to adapt a semantic segmentation model learned
from base algorithm using a graph convolutional network (GCN).
The initial segmentation from base algorithm is used as basis and
thereafter, GCNs are used to improve the object border outline
pixel classification.

Border-SegGCN consistently improves performance when
used on top of baseline approaches.

2. Related Work
Semantic segmentation is actively researched by com-

puter vision researchers due to its application in various
domains such as robotics, health care, security, etc. Most
recent work is using fully convolutional neural networks
for pixel-wise classification [43, 39, 60, 32, 33]. Vari-
ous model variants have been researched [8, 46, 23, 49] to
use the contextual information for the task of segmentation
[38, 11, 57, 28] based on multi-scale inputs [18, 15, 34]
or based on probabilistic graphical models [40, 5, 6, 7].
There are many open-source datasets available for seman-
tic segmentation, such as e.g., PASCAL [17], COCO [35],
CamVid [4], Carla [13], etc. Our work uses the CamVid
and Carla dataset for the semantic segmentation task. We
use Unet and DeepLabV3+ as our base networks for the
segmentation.

Graph neural networks have recently been used for
various applications involving the graph structured data be-
cause of their effectiveness in representing such data [52].
Some of the tasks are action recognition, body pose esti-
mation, link prediction, etc. Graph models can be sub-
divided into two categories, i.e, Graph Neural Network
(GNN) [53, 51, 41, 37, 59, 31, 24], and GCNs.

The first category, i.e., GNN, consists of a graph and a
recurrent neural network and has a functionality of passing
messages and updating nodes states which store the seman-
tic and structural information in the neighboring nodes. For
instance, [41] uses a 3D graph neural network (3DGNN)
with a 3D point cloud to build a k-nearest neighbor graph
for RGBD semantic segmentation. Every node in the graph

represents a group of points which has a hidden representa-
tion vector that is updated based on the recurrent functions.

The second category, i.e., GCN, extends the mathemat-
ical operation of convolution to graph structures. GCNs
can be distinguished into two types, i.e., spectral GCNs and
spatial GCNs. Spectral GCNs convert signals in graphical
form into graph spectral domains, in which they can be ma-
nipulated using spectral filters. For instance, in [14, 22],
graph Laplacian-based CNNs are used in the spectral do-
main. Spectral GCNs use convolution along with neighbor-
hood data to calculate the feature vector for the node. They
were first employed for semi-supervised classification on
graph-structured data [26]. For example, [48] use GCNs on
point cloud data in the spatial domain. [47] use GCNs in a
recurrent structure for skeleton based action recognition.

Both [1] and [58] have shown that image semantic seg-
mentation can be formulated and solved using graphs. This
paper focuses on applying GCNs in the context of video
segmentation. The main issues discussed revolve around
creating an efficient pipeline to convert video frames into
graphs and optimising the pipeline to maximizing the effi-
ciency of the GCN.

3. Methodology

Figure 1 illustrates an overview of the used pipeline. In
the following section, we will discuss how we approach the
graph creation from an image.

3.1. Efficient Graph Generation

This approach includes a refinement of borders using
existing segmentation algorithms. We use the Unet [44]
and DeepLabv3+ architecture as a base segmentation net-
works. The dataset used for the evaluation of this archi-
tecture is the Cambridge-driving Labeled Video Database
(”CamVid”) dataset [2] and Carla dataset [13]. The frame
size is 360 pixels wide and 480 pixels high. A mask is
used to determine which nodes to compute based on their
location, while omitting the rest of the nodes. This allows
the graph to have the same size from frame to frame. Per-
forming computation on the selected nodes allows decreas-
ing computation time drastically and provides more relevant
training examples to the GCN.

To determine which nodes are selected we use the initial
segmentation that our base algorithm provides: in this case
the Unet or DeepLabV3+. With the pre-segmentation pro-
vided, boundaries around the objects and different classes
are determined. Depending on the task at hand, the pixels
that lay on the border are then selected for further process-
ing followed by training or prediction. Figure 2 shows the
process of generating the Boolean mask.

866



Video
Base	Algorithm

Unet

DeepLabV3+
or

First	Segemented	Video Boolean	Border	Mask

Figure 2. Example of how the data is processed during the Boolean
mask generation. Left: The initial frame is passed on to the base
segmentation algorithm. Center: An initial rough segmentation
is retrieved. Right: Pixels are either selected (yellow) or rejected
(purple) depending if they are on the border of different objects.
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Figure 3. Pipeline for feature extraction from the initial frame.
Each feature set is concatenated into a single feature dictionary
with the pixel coordinates being the keys of the hash map. Each
pixel has at least the class predicted by the base algorithm and the
associated RGB values. Intermediate layer values are very depen-
dant on the base algorithm.

3.2. Generating the Features

Features used for each node consist of the intensity val-
ues from the three RGB channels of the video and the out-
put segmented image from the base algorithm such as from
Unet or DeepLabV3+. All other features consist of the in-
termediate values. In case of Unet, the final layers provide
features and for the DeepLabV3+, the intermediate layers
are used as features for input to GCN. Figure 3 illustrates
the pipeline for feature extraction.

3.3. Connecting the Graph

Based on the Boolean mask, nodes are connected that
are on the border of objects. The rest of the nodes are either
isolated or have only incoming connections.

For each node, the mapping consists of two parts: The
actual coordinates of the N closest neighbours denoted by
(xi, yi) with i < N , and the weights that are associated

Boolean	MaskBase	Algorithm	Output

Edge	Dictionary

Nodes

Figure 4. Pipeline for generating the edges of the graph. The first
segmented image provides the size of the image and thus all the
potential nodes that need to be processed. The Boolean mask di-
rects which nodes should actually be worked on. If a pixel does
not reside on a border then it will remain an isolated node.

with each of those neighbours denoted by di with i < N .
The illustration of the pipeline for generating the edges is
shown in Figure 4.

The weights associated for the edge between two neigh-
bours are completely arbitrary. We chose to use a weight
definition that takes into account the distance and intensity
differences as inspired by [1]. The resulting weight defini-
tion is shown in Equation 1.

dn12 =
1

dE12

× exp(−∥In1 − In2∥
∥I255∥

) (1)

Equation 1 represents the weight between two nodes n1 and
n2 in the [0, 1] range. The inverse of the Euclidean distance
between these two nodes denoted as dE12 . The difference
in intensities of the two pixels is taken into account for de-
termining the weight of the edge. This value is normalized
and its exponent is taken to penalise two nodes of different
values. Considering that several operations have to be per-
formed on each neighbour of every selected node, the over-
all computational cost is O(nk) with n being the number
of pixels selected, and k the number of closest neighbours
we would like to connect to. The Boolean mask assists in
directing the resources. If a node is not marked as being on
the border, the number of neighbours collapses to 0 in our
dictionary. Thus, no computation is performed.

Figure 5 illustrates the behaviour of Equation 1. The
selected node is denoted as S on the grid. The values in each
square represent the value of the weight between S and the
node that contains the value. If the colours match and the
node is directly adjacent, then the value is maximal. On the
other hand, two pixels can be next to each other but with
different shades of the same colour. In this case, the value
will decrease. We thus encode both the spatial information
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Figure 5. Weights taking into account Euclidean distance and dif-
ference in pixel-intensity values.

and also the pixel intensity similarity.

3.4. Encoding the Graph

The input to GCN requires the generation of the associ-
ated adjacency and feature matrices. The resulting size of
these two matrices depend on the initial size of the frame
and on the feature set that was selected. An example is
the CamVid dataset which provides frames of 360 by 480
pixels in a video. This creates a square adjacency matrix
of 172’800 by 172’800 pixels for each frame. The feature
matrix will depend on the selected features and in the case
where only intensity values of 3 RGB channels of frames
are used as features, the shape will be equal to 172’800 ×
3.

4. GCN Training

After the data has been correctly generated as explained
in the previous sections (3.1-3.4), the training is carried out.
The employed GCN architecture in our Border-SegSGN is
a modification on the network given in [26]. The architec-
ture used consists of consecutive graph convolutional layers
and dropout layers as shown in Figure 6. We experimented
with several different versions of network architecture but
the Figure 6 has better performance.

The graph convolutional layers take two input matrices:
the adjacency matrix and the feature matrix. The adjacency
matrix is considered immutable and thus does not change
between the layers. On the other hand, the feature matrix
varies with each layer.

However, most importantly, we use the Boolean mask
created before to direct the GCN training. For the model to
fit the correct labels, we pass the mask giving no training
relevance on the loss function for the nodes that are not on
the border. Figure 7 shows the different inputs to the GCN
Network.

Adjacency	Matrix
N	x	N

	N	x	64	N	x	128		N	x	64	

Dropout	Layer

Graph	Convolutional	Layer

Softmax	Layer

Feature	Matrix
N	x	F

Figure 6. Illustration of our GCN architecture based on [26].

GCN	Network

Boolean	Mask

Feature	Matrix

Adjacency	Matrix

Figure 7. Pipeline representing the inputs for the GCN training in
Border-SegGCN.

5. GCN Prediction

For the prediction as shown in Figure 8, the GCN takes
as input the desired adjacency matrix and feature matrix,
but does not require the Boolean mask. We predict the class
of every node. Due to the nature of the training, the GCN
output is poor on pixels that do not lie on any borders. The
solution is to combine the base output of the initial algo-
rithm with the output of the GCN where non-border pixels
are assigned to their classes from the output of the base al-
gorithm, while border pixels are assigned to their classes
from the GCN output.

6. Experiments

In this section, we verify the effectiveness of our pro-
posed approach for semantic segmentation.
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Figure 8. Pipeline of required inputs to generate final segmented
image in Border-SegGCN.

6.1. Implementation Details

We use the Unet implementation of the ”Segmentation
models” PyTorch library [55]. The encoder is ResNeXt-
50 (32×4d) and the weights of the network are pre-trained
from ImageNet. For DeepLabV3+, we use the openly avail-
able pre-trained model from [63] based on[9]. For both
models, we register forward hooks after each layer and re-
trieve data at each step for every passing frame. The GCN
architecture is modelled based on [26] with slight modifi-
cations. It consists of three graph convolutional layers with
64, 128 and 64 channels respectively. A dropout layer is
inserted between each graph convolutional layer. The GCN
is built in Keras using the ”Spektral” library 1 and an Adam
[25] optimiser with a learning rate of 0.001. This approach
assumes that each pixel is a sample and this is why it is nec-
essary to set a batch size of N = H × W , where H is the
height of frame and W is its width. As a metric for evalua-
tion, we use the mean intersection over union (mIoU) score
as defined in [63].

6.2. Dataset

Camvid We use the ”CamVid” [2] dataset for the eval-
uation of Border-SegGCN. It consists of 367 training, 233
testing, and 101 validation fully annotated frames. Each
frame is 360× 480 pixels. The testing frames are from two
different video sequences, Seq05VD and 0001TP. We do
not perform any kind of augmentation on the data for train-
ing. We work with the 11 recommended classes out of the
31 available ones to be able to compare with other literature
that have followed similar approaches of using 11 classes

1https://spektral.graphneural.network

[63].
Carla [13] is a semantic segmentation dataset for self-

driving cars. t is a simulated dataset and not the real-world
images. It is available as open-source. The original dataset
has 4550 training images and 449 testing images. We used
a subset of this dataset, i.e., 500 for training, 100 for valida-
tion, and 300 for testing. We pre-processed this dataset to
have the same frame-size as CamVid dataset i.e. 360× 480
pixels. We cropped the image from the center of the image.
There are 13 classes for the pixels to be classified on in the
dataset.

6.3. Quantitative Results

Table 1 illustrates the mIoU results for the Border-
SegGCN using Unet and DeepLabV3+ models as base seg-
mentation networks on CamVid and Carla datasets.

Metric DeepLabV3+ Unet

Base mIoU 81.63 79.77
Our mIoU 81.96 80.49

Max theoretical mIoU 89.15 83.98
Base mIoU on border 39.17 34.59
Our mIoU on border 40.92 45.67

Table 1. Quantitative mIoU values achieved using Border-
SegGCN with UNet and DeepLabV3+. Note that the theoretical
maximum is computed by replacing all labels for pixels on the
border with their ground truth.

DeepLabV3+ has been shown to outperform the vanilla
Unet. So, it has more border pixels than the Unet model.
Hence, DeepLabV3+ model has a higher theoretical maxi-
mum. The relative improvement on the Unet is much larger
than that on the DeepLabV3+ model because of a lower
upper limit. Thus, having less problematic borders to re-
classify. The best performing mIoU on the CamVid dataset
using our Border-SegGCN achieved 81.96. In [63], they ob-
tained a mIoU of 81.7. Using their code, we managed to re-
produce 81.63. We were able to register a real improvement
on this as baseline by 0.404%. Furthermore, it is important
to consider that the border pixels only constitute between
10-20% of the entire image. This effectively creates an up-
per limit on the performance that the Border-SegGCN can
not exceed.

We do not train Carla dataset for two epochs with Unet
because if trained till the best mIoU then most of the border
pixels in the image are correctly classified for this dataset.
We want to show with our algorithm and experiments that if
there are wrong pixels classified along the border with base
algorithm then BorderSegGCN helps to rectify those pixel
classification on borders. We use same parameter setting for
training with Carla dataset as used for with Camvid dataset
when Unet is used as baseline.
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We performed an ablation study on different parameters
such as border thickness, number of edges for each node,
number of input features from base network to GCN, effect
of using different base network, etc. on CamVid dataset.
The results are sumarized in Table 2

6.3.1 Border Thickness:

Figure 9 shows the camvid dataset frames with different
border pixel thickness. Figure 10a shows that except certain
outliers, the overall trend is that as the amount of border
pixels increases, the mIoU decreases. This can be due to
the spatial intrinsic characteristics that border pixels have,
which allows the GCN to better fit to them.

Figure 9. Left to right: 1, 2, 3 border pixel are selected respec-
tively. Frames taken from CamVid dataset.

6.3.2 Number of Edges:

As the number of edges is variable, we see how the number
of connections each node has influences the results of im-
proving the segmentation task (with the help of improving
the border pixel classification). Figure 10b shows that the
results steadily increase as the number of edges increases
because the more edges a singular node has, the more spa-
tial information it carries about its neighbours. It is also
worth mentioning that increasing indefinitely the number
of edges has two adverse effects. First, it becomes com-
putationally more expensive to generate the graph as more
information is stored per node. But second, and more im-
portantly, the impact of each edge decreases as the number
of edges increases.

6.3.3 Number of Features:

The most important consideration within the graph creation
process is the feature selection step. The features have to
represent enough information to the GCN for it to predict
the correct pixel class. Figure 11 represents the correlation
between the mean IoU and the number of feature channels.

Each step represents a different set of features, repre-
senting a combination of different feature sets. Unsurpris-
ingly, the best results are obtained by combining the base
algorithm’s output, the intensity values of the frames, and a
combination of intermediary layers.
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Figure 10. Influence of graph attributes on mIoU.

6.3.4 GCN Dropout Optimisation:

We used a modification of the architecture given in [26] that
showed an improvement when the number of layers is var-
ied from the original network. We show the dropout effects
on the mean IoU score in Figure 12a.

6.3.5 GCN Regularisation Optimisation:

Figure 12b shows the mIoU improvement as the regularisa-
tion coefficient decreases. This concludes that the GCN is
not prone to overfitting and thus can generalise the results.

6.3.6 Different Base Model: DeepLabV3+:

We use the base network Unet in the previous studies.
Recent research shows that there have been architectures
that have improved performance over Unet such as the
DeepLabV3+ [9].

We observe the same trend with the Unet experiments.
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# connections mIoU Border Thickness mIoU # features mIoU Dropout Rate mIoU Regularization mIoU
2 79.88 1 80.11 11 78.37 0 80.20 1.00e-01 74.79
4 79.97 2 80.00 15 80.45 0.0001 80.39 1.00e-04 80.12
8 80.11 3 80.16 256 81.12 0.001 80.11 1.00e-08 80.24
16 80.33 4 80.07 271 80.90 0.1 80.09 1.00e-11 80.14
- - 5 80.10 319 80.99 0.5 80.33 1.00e-13 80.22
- - 6 79.96 510 81.59 0.9 79.39 - -
- - - - 1039 81.73 - - - -
- - - - 1999 81.92 - - - -

Table 2. Ablation study with quantitative mIoU values achieved using Border-SegGCN with DeepLabV3+ for Camvid dataset using
different number of connections in the graph, number of border pixel thickness, number of features, dropout rate, and regularization
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Figure 11. Influence of number of features on the mIoU.

When increasing the number of feature channels, mIoU in-
creases as well. However, the amount of features is much
higher and requires much more computational resources
with this network. Figure 11b suggests that we are capa-
ble of improving an output from different models with our

Number of features Constituent features

3 ’I’
4 ’base’ + ’I’
19 ’RGB’ + ’d5’
21 ’base’ + ’I’ + ’seg’ + ’d5’

128 ’base’ + ’I’ + ’seg’ + ’d3’ + ’d4’ + ’d5’

Table 3. Decomposition of the features that were used as input
to GCN when Unet is a base network in Border-SegGCN. Nota-
tions: I-intensity values of the RGB channels, base-output seg-
mented image from base network, d3-d5-last 3 decoder layer of
Unet.

Number of features Constituent features

11 ’I’
15 ’I’ + ’base’

256 ’mba’
271 ’base’+’I’+ ’final6’+’final3’
319 ’base’+’I’+ ’seg’+’mba’
510 ’I’+ ’final6’+’m1+’m2’+’seg’+’mba’
1039 ’I’+ ’final6’+’m5’
1999 ’base’+ ’I’+ ’final6’ +’m1’+’m2’+’m3’+’m4’+’m5’

Table 4. Decomposition of the features that were used as input to
GCN when DeepLabV3+ is a base network in Border-SegGCN.
Notations: I-intensity values of the RGB channels, base-output
segmented image from base network, ’final1−6’-Segmentation
heads sublayers 1 to 6, m1-m7- Encoder layers 1 to 7, ’mba’-
Atrous spatial pyramid pooling output

architecture pipeline.

6.4. Time Complexity

Total time required for each frame in the video is around
19 seconds. The average time for DeepLabV3+ is 0.08sec
per frame. So, Border-SegGCN has a drawback of latency.
We are introducing this technique as a stepping stone so that
the research can also be focused on GCNs for improving
semantic segmentation using improved techniques.
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Figure 12. Influence of dropout and regularisation on Border-
SegGCN.

6.5. Image Size

This approach requires adjacency matrix has squared di-
mension of the given image. So, due to available GPU
resources, it is not possible to do experiments on various
video segmentation datasets having large frame size.

6.6. Qualitative Results

Figure 13 shows qualitative examples of the output gen-
erated by our pipeline. The output segmented frames from
using both, the Unet and DeepLabV3+, as base network are
illustrated with their best input feature set compared to an
under-performing input feature set.

We noticed from Figure 13 that

• In the case of Unet as shown in Figure 13f, when the
model is under-performing due to use of wrong feature
set input to the GCN, the model defaults to the statisti-
cal most likely category 13h.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. (a) Original. (b) DeepLabV3+ baseline. (c) Best
Border-SegGCN with DeepLabV3+. (d) Poor Border-SegGCN
with DeepLabV3+. (e) Ground truth. (f) Unet baseline. (g) Best
Border-SegGCN with Unet. (h) Poor Border-SegGCN with Unet.

• DeepLabV3+ has difficulties with objects that appear
smaller in the frame 13b,

• Our model is capable of correcting the DeepLabV3+
predictions on the outline of those objects 13c.

• The outlines using Border-SegGCN in 13g are better
defined as compared to 13f.

7. Conclusion
Our proposed model “Border-SegGCN” employs the

base segmentation network such as Unet and DeepLabV3+
along with the GCN. Border-SegGCN is used to refine the
object boundaries predictions. The most important task for
improving the prediction performance of the base algorithm
is the feature selection to be used as input to GCN. The vari-
ation due to features is the largest contributing factor in both
baseline architectures, i.e., Unet and DeepLabV3+. Our ex-
periments showed that Border-SegGCN is agnostic to the
choice of baseline model. The more spatial information a
node has on its neighbours, expressed by the number of
edges, the better is the performance of the GCN. Finally, our
experimental results show that the proposed model gives a
new state-of-the-art performance on CamVid dataset using
DeepLabV3+ as baseline network. It also improved the re-
sults of Unet baseline for both Camvid and Carla datasets.
In future work, we will work on tackling the drawbacks of
this technique, i.e. improving latency, and reducing compu-
tation complexity.
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