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Abstract
To achieve 3D skeleton-based human motion prediction,

many graph-convolution-based methods are proposed for
promising results; however, due to only preserving low-pass
information over graphs, those graph convolution methods
suffer from over-smoothing, causing the predicted poses
staying the same in the long term. To resolve the over-
smoothing issue, we propose a novel skeleton graph scat-
tering network (SGSN), which leverages graph scattering
to extract comprehensive motion information from multiple
graph spectrum bands. The core of the proposed SGSN is
the adaptive graph scattering block (AGSB), including two
key modules: i) graph scattering decomposition, which de-
composes information into various graph spectrum bands
and updates the trainable features in each band, as well as
ii) graph spectrum attention, which aggregates those fea-
tures in various graph spectrum bands via trainable atten-
tion weights. Extensive experiments reveal that SGSN out-
performs state-of-the-art methods by 8.5%, 9.0% and 3.9%
of 3D mean per joint position error (MPJPE) in average
on Human3.6M, CMU Mocap and 3DPW datasets, respec-
tively. We also test the mean angle error (MAE) on Hu-
man3.6M, which is lower by 3.3% than previous methods.
Moreover, SGSN outperforms even more in the long-term
prediction because of the alleviation of the over-smoothing.

1. Introduction
In recent years, increasing attention has been attracted

by processing the signals on the ubiquitous graphs in var-
ious scenarios, such as social networks [49], human be-
haviors [45, 55] and molecule structures [25, 57]. More-
over, graphs can also depict the spatial dependencies in
some dynamic systems for kinetic modeling. The dynamic
systems usually contain multiple agents performing inter-

active movements or complex evolution [26]. For exam-
ple, skeleton-based human bodies carry body-joints during
actions [33]; pedestrians in intersections show social ef-
fects [20]. In this work, we focus on the 3D skeleton-based
human motion prediction, which aims to forecast the future
poses conditioned on the historical ones and plays critical
roles in various applications, such as human-computer in-
teraction [16] and autonomous driving [6].

Human motion prediction has been studied for a long
period. Traditional attempts employ state models [51, 50,
30, 44] to depict shallow distribution. In the deep learn-
ing era, algorithms capture flexible patterns. Considering
the sequential formats, some methods [11, 54, 39, 15] build
recurrent networks to predict poses step-by-step along time,
while they would accumulate prediction errors due to the se-
quential generation mechanisms. Some feed-forward mod-
els [31] directly output the whole motion sequence to al-
leviate the errors caused the noisy self-regression, while
they neglect the spatial dependencies on the body. Recently,
graph-based models [38, 34, 7, 37] explicitly model the in-
herent body relations. Although many have improved the
prediction quality, the deep and multi-step low-pass infor-
mation propagation averages the joint feature to enhance
their similarity and loses the dynamics variance among dif-
ferent joints, causing the over-smoothing issue. For exam-
ple, the generated poses tend to show mode collapse and
converge to a mean pose without clear movements, espe-
cially in the long-term future.

To address the mentioned problem, in this work, we pro-
pose skeleton graph scattering networks (SGSNs), which
combine mathematically designed graph scatterings and
trainable feature embeddings to capture motion features
in various graph spectrum bands and alleviate the over-
smoothing. In our SGSN, we build a deep feed-forward
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Figure 1. Architecture overview of the SGSN model. Taking the historical motions as inputs, the SGSN first applies DCT to convert the
body-joint positions along time to the frequency domain. Then, N cascaded adaptive graph scattering blocks (AGSB) are built for deep
feature extraction. Finally, we use inverse DCT to recover the temporal information and build a skip-connection for stable prediction. Note
that different AGSBs employ dynamic and trainable pose graphs

network, which learns informative motion representation
in spectrum to achieve effective motion prediction. The
core module of SGSN is an adaptive graph scattering block
(AGSB), which is formed by two key operations. The
first is the graph scattering decomposition, which builds a
tree structure with multi-layer graph scatterings to provide
spectrum information; on the tree node, mathematically de-
signed graph filter is computed from the body-graph struc-
ture and applied on the learnable joint representation. In
this way, we could learn the flexible features that adapt to
different actions. The second operation is the graph spec-
trum attention mechanism, which reflects the importance of
sperctal features by calculating the attention scores. We fur-
ther aggregate the spectrum weighted by the attention for
information fusion.

As for the entire system (see Figure 1), our SGSN con-
structs hierarchical AGSBs in cascade to learn the underly-
ing dynamics; note that, each AGSB carries dynamic and
trainable body graph to adaptively depict the implicit in-
teraction and dependencies during motions. Taking the 3D
motions as inputs, SGSN first converts the temporal fea-
tures by discrete cosine transform (DCT) to obtain more
compact representation, which removes the complexity of
temporal modeling [38] and helps the model focus on spa-
tial graphs. The DCT-formed features are then fed to the
AGSB pipeline. Finally, an inverse DCT recovers the out-
put features to the temporal domain. We also build a skip-
connection between inputs and outputs to force to predict
the residual DCT coefficients, leading to stable prediction.

Extensive experiments are conducted for both short-term
and long-term human motion prediction on various datasets,
i.e., Human3.6M [23], CMU Mocap 1 and 3DPW [53]. We
demonstrate that, the proposed SA-GCN could significantly
outperform state-of-the-art methods in terms of different
metrics inluding mean per joint position error (MPJPE) and
mean angle error (MAE), respectively. The prediction vi-
sualization also reveals the rationality of our method. The
main contributions of our work are summarized here:

1http://mocap.cs.cmu.edu/

• We propose the skeleton graph scattering networks
(SGSN) to extract motion features at various graph spec-
trum bands and resolve the over-smoothing issue in the 3D
skeleton-based human motion prediction.
• In our SGSN, we propose the adaptive graph scatter-

ing block (AGSB), which contains two operations: graph
scattering decomposition and graph spectrum attention to
learn rich spectral representation and aggregate comprehen-
sive features for effective dynamics learning.
• We conduct experiments to quantatitively and qual-

itively verify that our SGSN outperforms state-of-the-art
works by 8.5%, 9.0% and 3.9% of MPJPE for motion pre-
diction on Human3.6M, CMU Mocap and 3DPW datasets,
respectively. We also obtain lower MAE by 3.3% than pre-
vious methods on Human3.6M.

2. Related Works

2.1. Human Motion Prediction
3D skeleton-based human motion prediction is a critical

task that has been widely explored. Many traditional meth-
ods develop algorithms based on state models [51, 50, 30,
44]. Recently, some recurrent-network-based models con-
sider the sequential motion states. ERD [11] bridges en-
coder and decoder with a recurrent learner. Structural-RNN
[24] builds recurrent networks to propagate information be-
tween body-parts. Pose-VAE [54] constructs an LSTM-
based VAE. Res-sup [39], AGED [15] and DMGNN [34]
model the pose displacements in an RNN model. Besides,
some feed-forward networks abandon recurrent computa-
tion, even directly predict the whole sequences. CSM [31]
builds both encoder and decoder with spatio-temporal con-
volutions. Furthermore, considering an articulated pose
structures, some methods exploit the correlations between
body-components. TrajGCN [38] and LDR [7] build adap-
tive body relations in spatial domain and apply graph convo-
lutions to learn patterns. HisRep [37] builds a self-attention
mechanism along time to emphasize periodic motion pat-
terns. LPJP [4] designs progressive information propaga-
tion strategies in a transformer-based networks. Compared
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to previous models, our methods aim to exploit rich band-
pass spectrums based on pose graphs to alleviate the over-
smoothing caused by previous low-pass graph convolutions
for more precise prediction.

2.2. Graph Representation Learning
Graphs represent numerous data with non-grid structures

by depicting the vertices relations [56, 46], which could be
leveraged in various scenarios such as social networks [49],
human behaviors [45, 55, 60, 56, 33, 47, 19, 59, 5, 29, 10,
36], and dynamic system analysis [26, 58, 21, 28, 32, 20].
To capture the graph patterns, some works study the graph
neural networks (GNNs) mainly from two perspectives: a
spectral perspective and a vertex perspective. From the
spectral perspective, graphs are converted into its spectrum
based on the eigen-decomposition of graph Laplacian or
spectrum approximation [61, 3, 9, 27]. From a vertex per-
spective, feature aggregation resembles the classic convo-
lution [18] or modify the propagation strategies, including
node sampling, learning edge attentions or building recur-
rent networks [17, 42, 52, 35, 8].

Recently, to alleviate the over-smoothing caused by
classic GNNs, graph scattering transform (GST) and re-
lated deep models are developed [22, 14, 40, 43]. GSTs
generalize the grid-like scattering transforms [2, 48, 1]
to the graph domains, showing theoretical justification in
terms of spectrum properties and stability. [62] employs
energy-preserving graph wavelets. [12] develops diffusion
wavelets. [13] proves the stability for a large graph wavelet
family. [22] designs a pruning algorithms to sample the im-
portant scattering channels. [40, 41] propose hybrid scatter-
ing GCNs with trainable feature GST. [43] expands GSTs
on the spatio-temporal domain. In this work, we combine
the nontrainable GST based on mathematically designed
graph filters with trainable graph feature embedding net-
work to extract highly flexible pattern in spectrum.

3. Skeleton Graph Scattering Network
3.1. Problem Formulation

Skeleton-based motion prediction generates the future
pose sequences given the observed ones. Mathematically,
let X(t) ∈ RM×3 be a pose matrix carrying the 3D coordi-
nates of M body joints at time t, X = [X(1), . . . ,X(T )] ∈
RT×M×3 be a three-mode tensor that concatenates moving
poses within T timestamps, where X[t,m,c] is the cth coor-
dinate of the mth joint at timestamp t. Based on these nota-
tions, let X− = [X(−T+1), . . . ,X(0)]∈ RT×M×3 represent
T historical poses, X+ = [X(1), . . . ,X(∆T )]∈ R∆T×M×3

represent ∆T future poses. In motion prediction, we aim to
propose a predictor Fpred(·) to predict the future motions
X̂+ = Fpred(X−) to approximate the ground-truth X+.

In this work, we further consider the spatial dependen-
cies in a human pose, which could be depicted as a graph

G(V,X,A). V = {v1, . . . , vM} denotes the vertex set
containing M nodes, whose features are recorded by X ∈
RM×3. A ∈ {0, 1}M×M is the adjacency matrix, where
Ai,j = 1 if there is connection between vi and vj ; other-
wise Ai,j = 0. We attempt to exploit the underlying fea-
tures from the graph signals and motion dynamics.

3.2. Framework Architecture
Here we propose our Skeleton Graph Scattering Network

(SGSN) for motion prediction. Figure 1 sketches the frame-
work architecture of the proposed SGSN. Given the input
motion X−, we first apply the discrete cosine transform
(DCT) on the time axis to encode each joint’s dynamics into
the frequency domain; that is, X− = DCT(X−) ∈ RM×C ,
where C denotes the number of DCT coefficients as well as
the dimension of the transformed features. This processing
enables a compact representation [38], and we eliminate the
complexity to embed the temporal dynamics for an easy and
stable training process.

Then, at the trunk of SGSN, we stack N adaptive graph
scattering blocks (AGSBs) as the core components to learn
the hierarchical motion features. In each AGSB, we build
adaptively tuned graph structures to model the implicit
constraints and interactions among joints at different fea-
ture levels; for example, in shallow layers, bone-connected
joints might have strong constraints, while in deep layers,
distant joints carry stronger interactions. Furthermore, each
AGSB employs mathematically designed graph filters as
well as trainable networks to extract rich and flexible spec-
tral information and integrates the spectrum according to
the importance of each channel; see details in Section 3.3.
At the output layer, we apply inverse DCT to recover the
temporal information for prediction. Moreover, we build
skip connections between the input and output to capture
the residual feature displacements for stable prediction.

Some methods [38, 37, 7] connect multiple graph convo-
lution layers in a deep pipeline; however, the graph convo-
lution pushes the edge-connected joint feature to be increas-
ingly similar while weakening the joint difference, thus we
call the graph convolution a low-pass graph filtering. Due to
the iterative graph convolution, rich high-frequency infor-
mation is removed and the joints lose their variations, caus-
ing nearly static ‘mean poses’. Compared to these methods,
our SGSN leverages graph scattering techniques to explic-
itly preserve information in a wide-range graph spectrum
band, effectively alleviating the over-smoothing during joint
feature propagation for precise and reasonable prediction of
the highly dynamic motions.

3.3. Adaptive Graph Scattering Block
According to the SGSN framework, the core components

are a series of Adaptive Graph Scattering Blocks (AGSBs),
which extract features in large spectrum bands based on
pose graphs. In our AGSB, there are two key operations:
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1) graph scattering decomposition and 2) graph spec-
trum attention, which learn band-pass features and aggre-
gate them. The AGSBs have parameterized graph struc-
tures, feature extractors, and spectrum attentions to reflect
the flexible pose representations.

Graph Scattering Decomposition. To capture the in-
formative spectrum from the input motions, we propose our
graph scattering decomposition, which combines the math-
ematically designed filter banks and data-driven feature em-
beddings together to learn the graph spectrum.

Concretely, the graph scattering decomposition forms a
tree-structure network, having L layers that have exponen-
tially growing numbers of tree nodes. These tree nodes
carry different band-pass graph learner to extract corre-
sponding features in parallel channels. Here we consider
the first layer as an example, and we could expand the de-
sign to any layers. Let the DCT-formed pose feature be
X ∈ RM×C , and a graph adjacency matrix A ∈ RM×M

is built to connect related body-joints. We set A to be adap-
tively tuned to estimate the implicit spatial relations on the
entire body. Given the pose graph, we build the filter bank
{hk(A)|k = 0, 1, . . . ,K} and further obtain a series of fea-
tures {H(k) ∈ RM×C′}Kk=0 with any

H(k) = σ(hk(A)XW(k)),

where W(k) denotes the trainable weights corresponding
to the kth filter, and the nonlinear activation σ(·) disperses
the graph frequency representation on the spectrum [22]. In
this work, we set σ(·) to be Tanh function, which effectively
constrain the feature values for stable prediction.

Based on the same graph structure A, we employs a
series of mathematically designed graph filters to obtain
{hk(A)}Kk=0, including one low-pass graph convolution fil-
ter for k = 0 and K band-pass graph wavelet filters for
k = 1, . . . ,K, to explicitly focus on various bands. Math-
ematically, the graph convolution filter is directly defined
as h0(A) = A, which models the one-order joint relations
and similarities, and derives the graph convolution,

H(0) = σ
(
h0(A)XW(0)

)
= σ

(
AXW(0)

)
, (1)

where W(0) denotes the trainable weights and σ(·) is the
Tanh. Employing a graph-convolution-based information
propagation, the graph convolution filter averages related
nodes, capturing the low-frequency responses while impair-
ing much high-frequency features. To capture comprehen-
sive spectrums, the K graph wavelet filters are defined as

hk(A) = Ψk = I−P, k = 1;

hk(A) = Ψk = P2k−2

−P2k−1

, k = 2, . . . ,K,
(2)

where P = 1/2(I + A/‖A‖2F ) is the normalized propa-
gation matrix, which handles the amplitude of the values in
the freely trainable adjacency matrix A. In this way, given
the graph wavelet filter Ψk, the corresponding feature ex-

Figure 2. An example sketch of graph scattering decomposition,
where we consider multi-layer graph scattering with designed fil-
ters and trainable networks to learn the informative spectrum.

traction is formulated as

H(k) = σ
(
hk(A)XW(k)

)
= σ

(
ΨkXW(k)

)
, (3)

Combining Eq. (1) and Eq. (3) together, we obtain the
bank of spectrum features, i.e., {H(0),H(1), . . . ,H(K)},
which form the output of the first layer of the graph scat-
tering decomposition. Note that, besides the mathemati-
cally designed filters, we introduce trainable graph topolo-
gies and network weights to embed the inputs. The benefits
include that the graph information could be flexibly con-
verted, which improves dynamics learning effectively.

At the next layer of graph scattering, we leverage the
same filters {hk(A)|k = 0, 1, . . . ,K} and repeat graph
scattering on each Hk. Therefore, in the scattering tree,
we could index a tree node at the `th layer by the path
p(`) = {k(1), . . . , k(`)} to denote the sequence with ` fil-
terings on the inputs. The scattering at the channel indexed
by (p(`), k) at layer `+ 1 is

H(p(`),k) = σ
(
hk(A)H(p(`))W(p(`),k)

)
(4)

Thus, in this scattering tree, each non-leaf feature hasK+1
new branches, and the `th layer has (K+1)` responses. For
visual understanding, the architecture of the graph scatter-
ing decomposition is sketched in Figure 2, where we show
two layers and three filters as an example.

Different from previous deep graph convolution mod-
els [38, 34, 7, 37], we employ designed graph scatterings
to explicitly enrich the large-band graph spectrum. Previ-
ous Traj-GCN [38] is a special case of our methods which
just learn motion features by H(0) = σ(AXW(0)), thus
only low-pass information is preserved to potentially cause
the over-smoothing in this ‘fine-grained’ motion prediction
task. Different from previous Sc-GCN [40] which builds
trainable filtering in cascade, our scattering decomposition
methods preserve more comprehensive information for re-
liable pattern learning.

Graph Spectrum Attention. Since the graph scatter-
ing decomposition provides spectral features at different
bands, we need to leverage these information to abstract the
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Figure 3. The architecture of the graph spectrum attention mecha-
nism, where we compare the relations between individual channels
and the whole spectrum to reflect the feature importance.

core dynamics. A straightforward way is averaging all the
scattering channels, while this method cannot recognize the
most crucial frequency bands to improve prediction. To ad-
dress this problem, we propose a graph spectrum attention,
which calculates the attention scores of each scattering fea-
ture, and integrate the features weighted by the scores to
generate the final representation.

In our graph spectrum attention, we aim to compare
the similarities between each scattering feature and the full
bands to reflect the importance of one channel over the en-
tire spectrum. Let the scattering features obtained by the
L-layer graph scattering decomposition be {H(k)}

(K+1)L

k=0

for any H(k) ∈ RM×C . We first embed all the features and
aggregate them as a spectrum embedding Hsp ∈ RM×C ,
which is formulated as

Hsp = ReLU

(
1

(K + 1)L

∑(K+1)L

k=0
H(k)Wsp

)
, (5)

where Wsp denotes trainable parameters and ReLU(·) is
the ReLU activation function. Hsp carries the comprehen-
sive information over the full bands learned by the graph
scattering decomposition. Then, given the spectrum embed-
ding and individual scattering features, the attention score
vector α ∈ [0, 1](K+1)L is calculated, whose jth element is
obtained through a softmax function,

αj =
exp

(
w>atttanh

(
fch

(
[Hsp,H(j)]

)))∑(K+1)L

k=0 exp
(
w>atttanh

(
fch

(
[Hsp,H(k)]

)))
where watt ∈ RC denotes a trainable vector for feature pro-
jection; fch(·) is an MLP; tanh(·) is the Tanh function; and
[·, ·] denotes concatenation on the feature dimension. Con-
sidering the intermediate state learned by fch(·), we employ
underlying motion representation that are beneficial in guid-
ing the key spectral features. The architecture of the graph
spectrum attention is illustrated in Figure 3, where we show
the computation process of the importance of each spectral

feature over the spectrum.
Given the learned attention scores, we then make use of

them to weight spectral channels for information aggrega-
tion. Let the feature bank at theLth graph scattering decom-
position layer be {H(k)}

(K+1)L

k=0 , The aggregated spectrum
features H ∈ RM×C is formulated as

H =
∑(K+1)L

k=0
αkH(k), (6)

where a larger αk reflects a higher influence level of the
corresponding H(k) in the derived comprehensive feature,
which is further fed to the next AGSB as the input feature.

Compared to previous GSAN [41], which proposes self-
attension to measure the relations between the graph node
features before and after graph filtering, besides the differ-
ence from a series of detailed operations, our method em-
phasizes the influence level of scattering features over the
spectrum, thus we measure the relations between individual
scattering features with the spectrum embedding to reflect
the attention statuses.

3.4. Loss Function
To train the proposed SGSN, we here define the loss

function. Suppose that we take N samples in a mini-batch
as inputs, and let the nth ground-truth and predicted motion
sample be X+

n and X̂+
n . The loss function L is defined as

the average `2 distance between the targets and predictions:

L =
1

N

N∑
n=1

‖X+
n − X̂+

n ‖2 (7)

Given the loss function, all the parameters in our SGSN
are trained end-to-end, including the body graph structures,
weights in the graph scattering decomposition and the graph
spectrum attention module.

4. Experiments
4.1. Datasets and Model Configuration

Dataset 1: Human 3.6M (H3.6M) H3.6M dataset [23]
has 7 subjects performing 15 classes of actions. There
are 32 joints in each subject. Along the time axis, all
sequences are downsampled by two. Following previous
paradigms [39], the models are trained on 6 subjects and
tested on the specific clips of the 5th subject.

Dataset 2: CMU motion capture (CMU Mocap) CMU
Mocap consists of 5 general classes of actions, where each
subject has 38 joints and we preserve 26 joints with non-
zero exponential maps. Following [31], we use 8 actions:
‘basketball’, ‘basketball signal’, ‘directing traffic’, ‘jump-
ing’, ‘running’, ‘soccer’, ‘walking’ and ‘washing window’.

Dataset 3: 3D Pose in the Wild (3DPW) The 3D Pose
in the Wild dataset (3DPW) [53] is a large-scale dataset that
contains more than 51k frames with 3D poses for challeng-
ing indoor and outdoor activities. We adopt the training,
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Table 1. Comparison of the MPJPEs of various models for short-term motion prediction on H3.6M dataset. We also introduce an SGSN
variant called SGSN (no Att.), which replace the graph spectrum attention by averaging the spectrum information.

Motion Walking Eating Smoking Discussion Directions Greeting
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup [39] 23.8 40.4 62.9 70.9 17.6 34.7 71.9 87.7 19.7 36.6 61.8 73.9 31.7 61.3 96.0 103.5 36.5 56.4 81.5 97.3 37.9 74.1 139.0 158.8

CSM [31] 17.1 31.2 53.8 61.5 13.7 25.9 52.5 63.3 11.1 21.0 33.4 38.3 18.9 39.3 67.7 75.7 22.0 37.2 59.6 73.4 24.5 46.2 90.0 103.1
Traj-GCN [38] 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0
DMGNN [34] 9.3 15.1 28.6 35.2 8.5 15.4 37.2 46.8 8.5 14.4 27.1 30.4 10.2 20.8 39.7 46.3 12.9 26.2 48.8 58.0 14.3 29.6 74.5 87.8
HisRep [37] 8.4 15.6 27.4 32.1 8.1 17.6 37.0 44.3 7.1 14.7 26.0 28.7 9.2 21.3 38.3 43.2 11.9 23.0 45.9 57.7 13.1 28.3 72.2 88.2

LPJP [4] 7.9 14.5 29.1 34.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 8.3 21.7 43.9 48.0 11.1 22.7 48.0 58.4 13.2 28.0 64.5 86.9
SGSN (no Att.) 8.6 15.6 28.0 32.9 8.2 17.4 36.6 44.0 7.5 14.1 24.4 28.4 9.4 21.6 37.3 43.4 10.9 23.7 53.2 65.5 13.0 26.9 65.9 82.2

SGSN 8.3 15.0 26.7 31.5 7.9 17.4 35.8 43.7 7.0 13.8 23.6 28.2 8.0 19.1 34.7 40.4 10.6 21.6 45.4 56.3 12.6 26.5 63.8 79.6
Motion Phoning Posing Purchases Sitting Sitting Down Taking Photo

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup [39] 25.6 44.4 74.0 84.2 27.9 54.7 131.3 160.8 40.8 71.8 104.2 109.8 34.5 69.9 126.3 141.6 28.6 55.3 101.6 118.9 23.6 47.4 94.0 112.7

CSM [31] 17.2 29.7 53.4 61.3 16.1 35.6 86.2 105.6 29.4 54.9 82.2 93.0 19.8 42.4 77.0 88.4 17.1 34.9 66.3 77.7 14.0 27.2 53.8 66.2
Traj-GCN [38] 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6
DMGNN [34] 11.2 18.6 37.1 45.8 9.0 23.6 67.3 84.2 19.8 37.7 62.8 74.3 10.5 24.3 49.8 61.9 12.8 28.4 55.2 69.1 8.2 15.6 38.9 53.7
HisRep [37] 11.1 19.1 38.0 44.7 8.8 24.4 68.2 83.0 19.0 38.9 63.5 72.6 10.2 24.6 52.0 64.0 10.2 26.2 55.6 68.7 6.5 15.8 42.8 53.6

LPJP [4] 10.8 19.6 37.6 46.8 8.3 22.8 65.6 81.8 18.5 38.1 61.8 69.6 9.5 23.9 49.8 61.8 11.2 29.9 59.8 68.4 6.3 14.5 38.8 49.4
SGSN (no Att.) 11.3 18.7 36.0 41.8 8.6 23.2 67.2 83.7 18.8 38.4 65.9 72.1 10.2 24.0 50.1 60.6 10.3 26.0 51.9 59.2 6.4 14.8 39.3 51.4

SGSN 10.9 18.1 36.2 41.4 8.2 22.7 64.8 80.9 18.4 36.9 60.0 68.5 9.8 23.0 46.2 56.4 10.1 24.7 51.0 60.2 6.0 13.9 36.3 47.8
Motion Waiting Walking Dog Walking Together Average

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup [39] 29.5 60.5 119.9 140.6 60.5 101.9 160.8 188.3 23.5 45.0 71.3 82.8 30.8 57.0 99.8 115.5

CSM [31] 17.9 36.5 72.9 90.7 40.6 74.7 116.6 138.7 15.0 29.9 54.3 65.8 19.6 37.8 68.1 80.2
Traj-GCN [38] 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3 12.1 25.0 51.0 61.3
DMGNN [34] 9.0 21.4 56.7 72.8 30.4 57.2 105.6 120.8 8.6 19.0 35.7 45.2 12.2 24.5 51.0 62.1
HisRep [37] 9.2 22.6 58.7 73.9 27.1 49.4 98.8 118.3 8.6 18.4 33.6 39.8 11.2 24.0 50.5 60.9

LPJP [4] 8.4 21.5 53.9 69.8 22.9 50.4 100.8 119.8 8.7 18.3 34.2 44.1 10.7 23.8 50.0 60.2
SGSN (no Att.) 8.7 21.3 53.4 68.3 27.1 54.7 93.8 112.7 8.3 17.7 35.2 45.6 11.2 23.8 49.3 59.5

SGSN 8.1 20.1 52.8 67.8 25.7 53.0 93.0 111.4 8.1 17.6 34.5 43.8 10.6 22.9 47.0 56.9

Table 2. Comparison of the MAEs of various models for short-term motion prediction on H3.6M dataset. We also introduce an SGSN
variant called SGSN (no Att.), which replace the graph spectrum attention by averaging the spectrum information.

Motion Walking Eating Smoking Discussion Directions Average
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup [39] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09 0.26 0.47 0.72 0.84 0.36 0.67 1.02 1.15

CSM [31] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01 0.39 0.60 0.80 0.91 0.38 0.68 1.01 1.13
Traj-GCN [38] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85 0.26 0.45 0.71 0.79 0.27 0.52 0.83 0.95
DMGNN [34] 0.18 0.31 0.49 0.58 0.17 0.30 0.49 0.59 0.21 0.40 0.81 0.78 0.26 0.65 0.92 0.99 0.25 0.44 0.65 0.71 0.27 0.52 0.82 0.94
HisRep [37] 0.18 0.30 0.46 0.51 0.16 0.29 0.49 0.60 0.22 0.42 0.86 0.80 0.20 0.52 0.78 0.87 0.25 0.43 0.60 0.69 0.27 0.52 0.82 0.94

LPJP [4] 0.17 0.30 0.51 0.55 0.16 0.29 0.50 0.61 0.21 0.40 0.85 0.78 0.19 0.54 0.89 0.94 0.22 0.39 0.62 0.69 0.25 0.49 0.83 0.94
SGSN (no Att.) 0.17 0.31 0.50 0.56 0.16 0.29 0.49 0.60 0.22 0.41 0.83 0.80 0.21 0.52 0.80 0.86 0.24 0.41 0.63 0.73 0.26 0.51 0.82 0.93

SGSN 0.17 0.30 0.47 0.53 0.16 0.27 0.47 0.58 0.20 0.39 0.82 0.78 0.20 0.50 0.77 0.84 0.21 0.39 0.60 0.68 0.25 0.48 0.79 0.91

test and validation separation suggested by the official set-
ting. The frame rate of the 3D poses is 30Hz.

Model settings. We implement our SGSN with PyTorch
1.4 on one NVIDIA Tesla V100 GPU. We set 10 AGSBs to
form the entire model. In each AGSBs, we consider 2 layers
of graph scattering decomposition, and each tree node ap-
plies 1 graph convolution and K = 2 graph wavelets. The
hidden dimension in each AGSB is 256. We use Adam op-
timizer to train our model with batch size 16. The learning
rate is 0.0005 with a 0.96 decay for every two epochs, and
the gradients are clipped to a maximum `2-norm of 1.

4.2. Baselines and Evaluation Metrics
Baselines. We compare our model to several recent ef-

fective methods, including the RNN-based Res-sup [39],
CNN-based CSM [31], and graph-based Traj-GCN [38],
DMGNN [34], HisRep [37] and LPJP [4].

Evaluation Metrics. We consider two metrics. First, we
use the Mean Per Joint Position Error (MPJPE) in 3D Eu-
clidean space, where the input motions are formed in 3D
space. Second, we consider a more conventional metric
called Mean Angle Error (MAE) in angle space, where the
input motions are in form of exponential maps. We mainly
focus MPJPE, which covers larger ranges of error values for
clearer comparison.

4.3. Comparison to State-of-the-Art Methods
To validate the proposed SGSN, we show the quantita-

tive performance for both short-term and long-term motion
prediction on H3.6M, CMU Mocap and 3DPW. We also il-
lustrate the predicted samples for qualitative evaluation.

Short-term prediction. Short-term motion prediction
aims to predict the poses within 500 milliseconds. On
H3.6M, we compare SGSN to state-of-the-art methods
for predicting poses in 400 milliseconds. Table 1 shows
MPJPEs of various methods on 15 actions and the average
MPJPE over these actions. Besides the previous models, we
also present a degraded SGSN variant; that is, we replace
our graph spectrum attention by just averaging the spectrum
information (SGSN (no Att.)). We see that i) the SGSN
with graph spectrum attention obtains more precise predic-
tion than the variant with spectrum averaging, showing the
effectiveness of the graph spectrum attention for channel
aggregation; ii) compared to previous methods, SGSN has
much lower MPJPEs by 5.3% in average.

Moreover, we compare our SGSN to baselines on H3.6M
for short-term prediction in terms of MAE metric. We
present MAEs of the 5 representative actions and the av-
erage MPJPEs over all the 15 actions in Table 2. Compared
to previous methods, SGSN achieves lower MAEs by 3.3%
in average.
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Table 3. Prediction MPJPEs of different methods for long-term prediction on the 15 actions of H3.6M dataset. We also present the average
prediction results across all the actions.

Motion Walking Eating Smoking Discussion Directions Greeting Phoning Posing
milliseconds 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k
Res-sup. [39] 73.8 86.7 101.3 119.7 85.0 118.5 117.7 144.6 105.3 132.5 129.9 161.2 103.2 132.0 145.1 191.3

CSM [31] 59.2 71.3 66.5 85.4 42.0 67.9 84.1 116.9 92.8 122.1 110.7 139.4 93.0 120.6 124.2 179.8
Traj-GCN [38] 42.3 51.3 56.5 68.6 32.3 60.5 70.5 103.5 87.8 113.9 96.2 90.8 65.2 115.8 111.0 210.1
DMGNN [34] 41.9 49.6 57.0 68.4 36.4 65.7 71.1 99.8 88.4 116.2 100.5 97.1 66.7 118.3 113.6 215.8
HisRep [37] 41.5 49.0 59.6 73.0 37.9 68.8 66.6 96.5 86.0 105.8 99.5 93.4 63.5 110.2 107.3 213.1

SGSN 36.6 43.6 56.0 68.2 31.6 58.8 69.1 96.5 79.0 101.0 93.4 86.4 63.0 100.6 104.7 204.5
Motion Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Toge Average

milliseconds 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k
Res-sup. [39] 124.5 159.8 118.9 160.6 139.5 181.7 115.9 162.4 108.6 142.2 131.8 163.3 84.5 100.7 105.7 143.8

CSM [31] 110.5 146.3 104.2 129.3 119.7 162.0 96.9 135.2 89.1 121.4 117.0 153.5 74.1 96.5 85.6 123.2
Traj-GCN [38] 92.4 127.9 84.4 115.7 90.2 140.6 77.9 90.3 101.2 168.0 140.8 174.3 60.2 82.5 79.9 114.3
DMGNN [34] 94.8 126.5 86.1 114.4 92.8 147.5 75.6 93.4 103.3 171.9 144.7 172.6 57.9 82.8 82.1 116.0
HisRep [37] 95.4 126.1 83.6 110.2 88.3 143.8 76.7 91.9 100.8 166.5 138.4 162.1 56.5 79.8 74.1 112.7

SGSN 87.9 118.9 80.3 109.8 84.5 126.8 69.6 86.3 97.7 162.4 127.5 158.6 56.3 79.8 67.3 100.8

Table 4. Prediction MPJPEs of different methods on the 8 actions of CMU Mocap for both short-term and long-term motion prediction.
We also present the average prediction results across all the actions.

Motion Basketball Basketball Signal Directing Traffic Jumping Running
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000
Res-sup. [39] 18.4 33.8 59.5 70.5 106.7 12.7 23.8 40.3 46.7 77.5 15.2 29.6 55.1 66.1 127.1 36.0 68.7 125.0 145.5 195.5 15.6 19.4 31.2 36.2 43.3

CSM [31] 16.7 30.5 53.8 64.3 91.5 8.4 16.2 30.8 37.8 76.5 10.6 20.3 38.7 48.4 115.5 22.4 44.0 87.5 106.3 162.6 14.3 16.3 18.0 20.2 27.5
Traj-GCN [38] 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.3 7.4 15.1 31.7 42.2 152.4 16.9 34.4 76.3 96.8 164.6 25.5 36.7 39.3 39.9 58.2
DMGNN [34] 13.6 24.9 49.4 62.0 105.7 3.3 5.9 13.1 15.6 55.5 7.6 14.5 30.9 41.6 148.3 16.6 34.0 74.6 95.8 162.4 25.1 38.3 39.5 39.9 59.7

LPJP [4] 11.6 21.7 44.4 57.3 90.9 2.6 4.9 12.7 18.7 75.8 6.2 12.7 29.1 39.6 149.1 12.9 27.6 73.5 92.2 176.6 23.5 34.2 35.2 36.1 43.1
SGSN 11.1 20.2 41.3 52.9 89.1 2.2 4.1 9.7 14.7 51.5 5.8 11.0 24.7 32.1 137.6 13.8 29.9 71.5 90.8 160.2 19.8 24.7 26.6 30.2 44.2
Motion Soccer Walking Washing Window Average

milliseconds 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000
Res-sup. [39] 20.3 39.5 71.3 84.0 129.6 8.2 13.7 21.9 24.5 32.2 8.4 15.8 29.3 35.4 61.1 16.8 30.5 54.2 63.6 96.6

CSM [31] 12.1 21.8 41.9 52.9 94.6 7.6 12.5 23.0 27.5 49.8 8.2 15.9 32.1 39.9 58.9 12.5 22.2 40.7 49.7 84.6
Traj-GCN [38] 11.3 21.5 44.2 55.8 117.5 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3 11.5 20.4 37.8 46.8 96.5
DMGNN [34] 11.9 21.4 44.5 56.1 115.8 8.3 12.4 21.9 23.6 41.0 5.8 11.5 29.7 39.3 76.8 11.5 20.3 38.0 46.7 95.5

LPJP [4] 9.2 18.4 39.2 49.5 93.9 6.7 10.7 21.7 27.5 37.4 5.4 11.3 29.2 39.6 79.1 9.8 17.6 35.7 45.1 93.2
SGSN 9.2 18.1 38.8 49.5 103.3 5.9 9.6 18.6 22.8 31.2 4.9 10.1 28.1 37.3 71.1 9.1 16.0 32.4 41.3 86.0

Table 5. The average prediction MPJPEs across the test set of
3DPW at various prediction time steps.

Average MAE
milliseconds 100 200 400 600 800 900 1000
Res-sup. [39] 102.4 113.9 173.1 191.9 201.1 205.8 210.7

CSM [31] 57.3 71.6 124.9 155.4 174.7 183.1 187.5
Traj-GCN [38] 16.4 35.6 67.8 90.6 106.9 113.4 117.8
DMGNN [34] 17.1 37.3 70.1 94.5 109.7 117.8 123.6
HisRep [37] 15.7 35.9 66.5 91.2 105.4 111.6 114.9

SGSN 14.9 32.3 62.2 91.5 103.3 107.0 110.0

Long-term prediction. Long-term motion prediction
aims to predict the poses over 500 milliseconds, which is
challenging due to the action variation. Table 3 presents the
MPJPEs of models for prediction at the 560 ms and 1000 ms
on the H3.6M. SGSN achieves more effective prediction on
most actions and has lower MPJPEs by 11.1% in average.

We also test our SGSN for short-term and long-term pre-
diction on CMU Mocap. Table 4 shows the MPJPEs within
in the future 1000 ms. We see that, SGSN significantly
outperforms the state-of-the-art methods on most actions at
various prediction step, and the average prediction MPJPE
is much lower by 9.0% than previous methods.

Furthermore, we test our SGSN on 3DPW dataset for
both short-term (≤ 500 ms) and long-term motion predic-
tion (> 500 ms). We present the average MPJPEs across
all the test samples at different prediction steps in Table 5.
We see that, compared to the state-of-the-art methods, the
proposed SGSN outperforms previous methods, where the
prediction MPJPE is lower by 3.9% in average.

4.4. Ablation Studies
Here we study the effects of various configurations of our

SGSN, including different numbers of AGSBs, graph scat-
tering layers and spectral channels at each scattering node.

Effects of AGSBs and graph scattering decomposi-
tion layers. We analyze the SGSN with various numbers
(9-12) of AGSBs, where each AGSB use 1-3 layers of graph
scattering decompositions. We test all the architectures on
H3.6M for both short-term and long-term prediction, where
the average MPJPEs are presented in Table 6. We see that
the most effective motion prediction is achieved with 10
AGSBs and 2 scattering layers. The model performance
keeps stable when we use fewer AGSBs or scattering lay-
ers. However, a larger number of AGSBs and scattering
layers would cause over-fitting to damage the prediction.

Different spectral channels. Then, we investigate the
effects of the numbers of spectral channels generated by
each graph scattering node. We vary the numbers of chan-
nels from 1 to 5, and test these model variants on H3.6M;
see the average MPJPEs in Table 7. We see that 3 channels
lead to the lowest prediction errors. The model with only
1 channel indicates just using low-pass graph convolution,
which causes large prediction erros due to over-smoothing.
More than 3 channels introduce heavy parameters in the
graph scattering decomposition and cause over-fitting.

4.5. Visualization
Prediction Visualization. We compare the synthesized

860



Table 6. Performance analysis of SGSNs with different numbers
of graph scattering blocks, each of which uses different numbers
of graph scattering layers.

Scatter-layers Average MPJPE
Blocks 1 2 3 80 160 320 400 560 1000

9
! 10.5 23.2 47.2 57.0 67.6 103.2

! 10.8 23.1 47.0 57.2 67.6 101.4
! 10.7 23.8 47.7 58.2 68.9 105.7

10
! 10.6 22.8 47.2 57.3 68.2 103.6

! 10.6 22.9 47.0 56.9 67.3 100.8
! 11.4 24.3 47.7 57.8 69.6 105.5

11
! 11.1 23.1 47.6 57.5 69.0 107.7

! 10.8 22.9 47.3 57.1 68.4 107.2
! 11.2 23.8 48.3 59.2 70.9 110.1

12
! 11.3 23.2 47.4 57.3 68.8 108.3

! 11.4 23.3 47.6 57.6 69.3 110.0
! 12.0 24.5 48.7 59.7 72.1 113.5

Table 7. Comparison of SGSNs with different numbers of filtering
channels on each non-leaf scattering feature.

Average MAE
channel numbers 80 160 320 400 560 1000

1 12.1 25.0 51.0 61.3 79.9 114.3
2 10.8 22.9 47.2 57.4 68.5 102.1
3 10.6 22.9 47.0 56.9 67.3 100.8
4 11.1 23.4 47.6 57.9 67.9 105.3
5 11.4 23.7 48.0 58.8 70.4 109.3

Figure 4. Prediction samples of different methods on action ‘Walk-
ing’ of H3.6M for long-term prediction.

Figure 5. MPJPE of SGSN and Traj-GCN as a function of time on
H3.6M. SGSN outperforms more in the long-term prediction.

samples of SGSN to those of Traj-GCN on H3.6M. Fig. 4
illustrates the future poses of ‘Walking’ in 1000 ms with
the frame interval of 80 ms. Compared to the baseline,
SGSN completes the action more accurately. The predic-
tions of Traj-GCN start to suffer from large errors at the
280th ms (orange box); also, Traj-GCN converges to static
‘mean poses’ in long terms.

We further compare the SGSN to Traj-GCN by visual-
izing the average MPJPE at various timestamps; see Fig-
ure 5. At the short terms, the two models have similar

Figure 6. Learned spectrum attention scores on different actions.

MPJPEs since it is easy to model the short-term motions
that have relatively consistent dynamics with the observa-
tions; at longer terms, SGSN outperforms Traj-GCN with
large margins. Due to the complex dynamics far from the
limited observations in long terms, it is harder to learn the
highly nonlinear movements. Figure 5 reflects that SGSN
preserves much clearer dynamics especially in long terms.

Attention Visualization. We investigate the learned im-
portance of the spectrum for different actions; that is, the at-
tention scores in AGSBs on different actions. For SGSN on
H3.6M, we illustrate the attention scores calculated by the
last AGSB on actions ‘Sitting’ and ‘Walking’; see Figure 6,
where the x-axis denotes the filter combinations in branches
of the graph scattering decomposition. We see that, differ-
ent actions lead to different attention distributions. For ‘Sit-
ting’, the poses show slow movements, thus the low-pass
features dominate the spectrum to stabilize pattern learn-
ing; as for ‘Walking’, poses keep large movements, thus
some high-frequency information is preserved.

5. Conclusion
We propose a skeleton graph scattering network (SGSN),

which leverages graph scattering to extract motion infor-
mation from graph spectrum bands to achieve 3D skeleton-
based human motion prediction. The core of our SGSN is
the adaptive graph scattering block (AGSB), including i)
graph scattering decomposition, which decomposes infor-
mation into various graph spectrum bands and update the
trainable features, and ii) graph spectrum attention, which
aggregates those features via trainable attention weights.
Extensive experiments reveal the superiority of our SGSN
for both short-term and long-term motion prediction on Hu-
man3.6M, CMU Mocap and 3DPW datasets, respectively.
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[9] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), Dec. 2016.

[10] Lifeng Fan, Wenguan Wang, Siyuan Huang, Xinyu Tang,
and Song-Chun Zhu. Understanding human gaze commu-
nication by spatio-temporal graph reasoning. In ICCV, Oct.
2019.

[11] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-
tendra Malik. Recurrent network models for human dynam-
ics. In ICCV, pages 4346–4354, December 2015.

[12] Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Diffu-
sion scattering transforms on graphs. In International Con-
ference on Learning Representations (ICLR), May 2019.

[13] Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Sta-
bility of graph scattering transforms. In Advances in Neural
Information Processing Systems (NeurIPS), volume 32, De-
cember 2019.

[14] Feng Gao, Guy Wolf, and Matthew Hirn. Geometric scat-
tering for graph data analysis. In ICML, pages 2122–2131,
June 2019.

[15] Liangyan Gui, Yuxiong Wang, Xiaodan Liang, and Jose
Moura. Adversarial geometry-aware human motion pre-
diction. In The European Conference on Computer Vision
(ECCV), pages 786–803, Sept. 2018.

[16] Liangyan Gui, Kevin Zhang, Yuxiong Wang, Xiaodan Liang,
Jose Moura, and Manuela Veloso. Teaching robots to predict
human motion. In IEEE International Conference on Intelli-
gent Robots and Systems, Oct. 2018.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In Advances in Neu-
ral Information Processing Systems (NeurIPS), Dec. 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[19] Guyue Hu, Bo Cui, and Shan Yu. Skeleton-based action
recognition with synchronous local and non-local spatio-
temporal learning and frequency attention. In ICME, July
2019.

[20] Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Collabo-
rative motion prediction via neural motion message passing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[21] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and
Zhaoqi Wang. Stgat: Modeling spatial-temporal interactions
for human trajectory prediction. In ICCV, pages 6272–6281,
2019.

[22] Vassilis N. Ioannidis, Siheng Chen, and Georgios B. Gian-
nakis. Pruned graph scattering transforms. In International
Conference on Learning Representations (ICLR), Apr. 2020.

[23] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(7):1325–
1339, 2014.

[24] Ashesh Jain, Amir Zamir, Silvio Savarese, and Ashutosh
Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
5308–5317, June 2016.

[25] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junc-
tion tree variational autoencoder for molecular graph gener-
ation. In ICML, pages 2323–2332, 2018.

[26] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max
Welling, and Richard Zemel. Neural relational inference for
interacting systems. In ICML, pages 2688–2697, 2018.

[27] Thomas Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In International
Conference on Learning Representations (ICLR), Apr. 2017.

[28] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n,
Ian Reid, S Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-
gan and graph attention networks. arXiv preprint
arXiv:1907.03395, 2019.

[29] S. Lee, J. Lim, and I. H. Suh. Progressive feature match-
ing: Incremental graph construction and optimization. IEEE
Transactions on Image Processing, 29:6992–7005, 2020.

[30] A. Lehrmann, P. Gehler, and S. Nowozin. Efficient nonlin-
ear markov models for human motion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1314–1321, June 2014.

862



[31] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Con-
volutional sequence to sequence model for human dynamics.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[32] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho
Choi. Evolvegraph: Multi-agent trajectory prediction with
dynamic relational reasoning. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

[33] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng
Wang, and Qi Tian. Actional-structural graph convolutional
networks for skeleton-based action recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[34] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yan-
feng Wang, and Qi Tian. Dynamic multiscale graph neural
networks for 3d skeleton based human motion prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020.

[35] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard
Zemel. Gated graph sequence neural networks. In Interna-
tional Conference on Learning Representations (ICLR), May
2016.

[36] Xiankai Lu, Wenguan Wang, Martin Danelljan, Tianfei
Zhou, Jianbing Shen, and Luc Van Gool. Video object seg-
mentation with episodic graph memory networks. In The Eu-
ropean Conference on Computer Vision (ECCV), pages 661–
679, 2020.

[37] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History re-
peats itself: Human motion prediction via motion attention.
In The European Conference on Computer Vision (ECCV),
Aug. 2020.

[38] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong
Li. Learning trajectory dependencies for human motion pre-
diction. In ICCV, Oct. 2019.

[39] Julieta Martinez, Michael Black, and Javier Romero. On
human motion prediction using recurrent neural networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4674–4683,
July 2017.

[40] Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering
gcn: Overcoming oversmoothness in graph convolutional
networks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 14498–14508, Dec. 2020.

[41] Yimeng Min, Frederik Wenkel, and Guy Wolf. Geometric
scattering attention networks. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 8518–8522, 2021.

[42] Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkovl. Learning convolutional neural networks for
graphs. In ICML, June 2016.

[43] Chao Pan, Siheng Chen, and Antonio Ortega. Spatio-
temporal graph scattering transform. In International Con-
ference on Learning Representations (ICLR), May 2021.

[44] Vladimir Pavlovic, James M Rehg, and John MacCormick.
Learning switching linear models of human motion. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2001.

[45] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen,
and Song-Chun Zhu. Learning human-object interactions by
graph parsing neural networks. In The European Conference
on Computer Vision (ECCV), pages 401–417, 2018.

[46] M. Rizkallah, X. Su, T. Maugey, and C. Guillemot.
Geometry-aware graph transforms for light field compact
representation. IEEE Transactions on Image Processing,
29:602–616, 2020.

[47] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu.
Skeleton-based action recognition with directed graph neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019.

[48] Laurent Sifre and Stephane Mallat. Rotation, scaling and
deformation invariant scattering for texture discrimination.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1233–1240,
June 2013.

[49] Shazia Tabassum, Fabiola SF Pereira, Sofia Fernandes, and
João Gama. Social network analysis: An overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 8(5), 2018.

[50] Graham Taylor and Geoffrey Hinton. Factored conditional
restricted Boltzmann machines for modeling motion style.
In ICML, June 2009.

[51] Graham Taylor, Geoffrey Hinton, and Sam Roweis. Model-
ing human motion using binary latent variables. In Advances
in Neural Information Processing Systems (NeurIPS), De-
cember 2007.

[52] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
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