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Abstract

We present a novel graph convolutional layer that is con-
ceptually simple, fast, and provides high accuracy with re-
duced overfitting. Based on pseudo-differential operators,
our layer operates on graphs with relative position infor-
mation available for each pair of connected nodes. Our
layer represents a generalization of parameterized differen-
tial operators (previously shown effective for shape corre-
spondence, image segmentation, and dimensionality reduc-
tion tasks) to a larger class of graphs. We evaluate our
method on a variety of supervised learning tasks, includ-
ing 2D graph classification using the MNIST and CIFAR-
100 datasets and 3D node correspondence using the FAUST
dataset. We also introduce a superpixel graph version of
the lesion classification task using the ISIC 2016 challenge
dataset and evaluate our layer versus other state-of-the-art
graph convolutional network architectures.

The new layer outperforms multiple recent architectures
on graph classification tasks using the MNIST and CIFAR-
100 superpixel datasets. For the ISIC dataset, we outper-
form all other graph neural networks examined as well as
all of the submissions to the original ISIC challenge de-
spite the best of those models having more than 200 times
as many parameters as our model.

1. Introduction

Convolutional neural networks (CNNs) have performed
incredibly well on tasks such as image classification, seg-
mentation, and object detection [16]. While there have
been diverse architectural design innovations leading to im-
proved accuracy across these tasks, all share the common
property that they operate on structured Euclidean domain
inputs. A growing body of research on transferring these
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successes to non-Euclidean domains, such as manifolds and
graphs, has followed [36].

We focus on unstructured graphs which represent dis-
cretizations of an underlying metric space. These data types
are ubiquitous in computational physics, faceted surface
meshes, and images. Previous efforts to extend CNNs to
this type of data have involved parameterized function ap-
proximations on localized neighborhoods, such as MoNet
[24] and SplineCNN [12]. These function approximations
(Gaussian mixture models in the case of MoNet and B-
spline kernels in the case of SplineCNN) are complex and
expensive to calculate relative to CNN kernels.

Inspired by earlier work in shape correspondence [6],
image segmentation on the unit sphere [17], and low-
dimensional embeddings of computational physics data
[31] we seek to utilize parameterized differential opera-
tors (PDOs) to construct convolution kernels. In contrast
to MoNet and SplineCNN, parameterized differential op-
erators are cheap to compute and involve only elementary
operations. Boscaini et al. [6] used anisotropic diffusion
kernels while Jiang et al. [17] included gradient operators
in addition to an isotropic diffusion operator. Tencer and
Potter [31] performed an ablation study of the differential
operators used and demonstrated that including the gradient
operators in addition to the Laplacian is broadly beneficial,
but that little is gained by including additional terms.

Prior work [17, 31] used differential operators precom-
puted for specific meshes which has two drawbacks: (1)
precomputing operators is not practical for datasets where
the connectivity graph varies between samples, and (2) dif-
ferential operators place restrictions on graph connectivity.
Differential operators defined for mesh topologies rely on
element connectivity information which is unavailable for
more general graphs. In contrast to these prior works, we
do not precompute any operators and we do not directly
use differential operators. Instead, we formulate pseudo-
differential operators which are cheap and easy to compute
at run-time for a more general class of graphs.
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While our approach only applies to graphs with relative
position information for each node, the set of graphs with
the required positional information is large, encompassing
nearly all physical systems as well as a significant number
of other graphs, such as graph representations derived from
image data. Our method is especially well-suited for ana-
lyzing graph image representations in addition to being ap-
plicable to the datasets used by prior investigators [17, 31]
to demonstrate PDO-based approaches. For regular meshes,
our pseudo-differential operators closely approximate the
differential operators used in those works.

1.1. Our contributions

We created a novel layer architecture inspired by PDOs.

• We improve upon the static matrix approach of pre-
vious works [17, 31] with a dynamic method that en-
ables support for variable graph forms and eliminates
the need to precompute matrices.

• Our method utilizes pseudo-differential operators in
contrast to the differential operators used in prior
works. Pseudo-differential operators are cheap to com-
pute and are applicable to a broader class of graphs
than differential operators.

• Our novel mixing layer is conceptually simple and
easy to code (integrating painlessly with existing graph
libraries). (Section 4.1)

• The new approach is accurate for both sparsely and
densely connected graphs, including state-of-the-art
results for the MNIST superpixel dataset even with re-
duced edge connection input data. (Section 5.1)

• The new approach is faster than common approaches
for equivalent numbers of features owing to the sim-
pler mathematical functions involved. (Section 5.1.2)

2. Problem
Many real world datasets may be treated as attributed un-

structured graphs with positional information provided for
the nodes or relative positional information provided for the
edges. In physics and engineering, high-fidelity simulation
tools represent continuous spatial functions using unstruc-
tured spatial discretizations. In computer vision, surface
meshes and point cloud image representations are common.

Operating directly on these unstructured graphs has
proven challenging. Our ideal solution, would be fast, sim-
ple, scale well, make efficient use of information, and oper-
ate effectively on sparsely connected graphs. While a num-
ber of existing approaches are applicable to this class of
dataset, all have some limitation that makes them ill suited
for our use cases such as requiring the evaluation of expen-
sive patch operators [24, 12], the precomputation of many

(potentially high-dimensional) operators [17, 31], or dis-
carding either graph connectivity information [14] or po-
sitional information [18, 4]. We seek a scalable approach
that supports heterogeneous graphs.

3. Related work

Early approaches showed that CNNs could be used on
non-Euclidean domains by introducing new intrinsic con-
volutional methods [23, 6] that operate on input manifolds.
More recent approaches [24] are capable of performing well
on both manifolds and general graphs by creating pseudo-
coordinates for either the vertices of a graph or points on a
manifold, and then learning a kernel in that space.

Graph convolutional neural networks (GCNs) form the
basis for other approaches that have shown great results
[36]. The literature has been split among methods based
on spectral graph theory [9, 18, 21, 24, 31] and methods
that operate with spatial filters [12, 14, 32] . Our method
falls into the latter category of spatial approaches.

4. Method

Our layer works by calculating several quantities that are
analogous to the sets of differential operators used as convo-
lutional filters by previous authors [17, 31]. For each node
of a layer, each input channel has multiple values calculated
(4 items for 2-dimensional and 5 for 3-dimensional graphs):

• Value of the node in the prior layer (identity)

• Average values at the 1-ring neighbors of the node

• Average gradient components (i.e. ∂
∂x , ∂

∂y ) along each
connected edge weighted by inverse edge length

These items are then mixed by a neural network yielding
the desired number of output channels.

4.1. Convolutional Neural Networks Based on Pa-
rameterized Pseudo-Differential Operators

In contrast to previous methods utilizing PDOs, the
method presented here generalizes to heterogeneous
datasets in which the number of nodes, the connectivity, and
positions vary across samples. Additionally, by relaxing the
definitions of the gradient operators, our implementation
is applicable to overconnected graphs (such as superpixel
image representations) rather than only meshes suitable for
common PDE solution methods (finite element, finite vol-
ume, etc.). A consequence of this generalization is slightly
more computational overhead from dynamically generating
the required operators on the fly rather than precomputing
them offline. However, as seen in Figure 2, this overhead
does not slow training time relative to other methods.
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The key components of our network architectures are
mixing and pooling layers. Our mixing layer is im-
plemented using pytorch-geometric’s MessagePassing
base class [11]. For pooling layers, we evaluated
two clustering method implementations from pytorch-
geometric: voxel_grid [27] and graclus [10]. The
voxel_grid implementation gave the best accuracy in all
our trials and was used to generate all of the following re-
sults.

The MessagePassing class operates by calculating
new values x(k)

i for each node i on layer (k) with informa-
tion from their prior node values x(k−1)

i , prior values at con-
nected nodes x(k−1)

j , and/or the edge attributes ei,j .

x
(k)
i = γ(k)

(
x
(k−1)
i ,□j∈N (i) ϕ

(k)
(
x
(k−1)
i ,x

(k−1)
j , ei,j

))
(1)

□j∈N (i) is an aggregation method (we chose mean) that ag-
gregates ϕ(k) for each node j connected to node i in layer
(k − 1) into a specific number of values independent of the
amount of edge connections. ϕ(k) and γ(k) are arbitrary
differentiable functions.

4.1.1 Choosing ϕ(k) and γ(k)

For γ(k), we chose to use a neural network. Convenient
and physically motivated choices for ϕ(k) are derived from
mesh differential operators, e.g. I , ∇, or ∆. The identity
operator I simply passes the value forward. For the others,
let f : Ω → R be a smooth scalar function for which only
the values f1, . . . , fn at the nodes are known and fi corre-
sponds to the value of f at node i. The Laplacian operator
∆ may be expressed as the difference between fi and the
average value of fj , j ∈ N (i). For triangle meshes, the
nodal gradient operator ∇ is often expressed as the aver-
age gradient in the adjacent facets which is equivalent to a
weighted sum over the connected edge gradients:

∇fi ≈
∑

vj∈N (i)

wi,j∇f(ei,j). (2)

with ∇f(ei,j) =
fi−fj
ri,j

êi,j . We denote the Euclidean dis-
tance between the two nodes as ri,j , and the unit vector ori-
ented along the edge ei,j as êi,j . For a 2D mesh without
intersecting edges wi,j =

Ai,j∑
j∈N(i) Ai,j

, where Ai,j is the
total area of the 2 facets connected to ei,j [22]. For an over-
connected graph, these facet areas are not defined.

If we weight the contributions of each edge equally (to
bypass the facet area problem), our choice for ϕ(k) becomes

(
x
(k−1)
i − x

(k−1)
j

)
rx,i,j

r2i,j
,

(
x
(k−1)
i − x

(k−1)
j

)
ry,i,j

r2i,j
,x

(k−1)
j

(3)

Figure 1: Depiction of downsampling module based on our
graph convolutional layer and voxel grid pooling [27]. Each
feature map is operated on by the 4 (5 for 3-D) operators
before being mixed via a nodewise neural network. A non-
linear activation is applied and finally it pools the result.

where rx,i,j and ry,i,j are the differences in positions of
nodes i and j in the x- and y-dimensions, respectively. ϕ(k)

returns a stack of these values for every node’s connected
nodes. The first 2 terms of (3) are the x- and y-components
of the gradient. The 3rd term results in the average of the
neighboring nodes, a precursor to the Laplacian operator.
Given that the next step after aggregation is to mix these
components using our γ(k) function (a neural network) the
Laplacian can be reconstructed from these terms plus the
identity (if found useful by the network). The identity term
x
(k−1)
i is concatenated after aggregation of (3) by taking the

mean over j. Like the Laplacian, the gradients give edge de-
tection along the primary axes but with a linear combination
can be discriminative in any direction (if beneficial).

We can easily extend these to more than 2 dimensions
by adding gradient terms for each new dimension. This
handles higher dimensionalities very well, as the parameter
count scales linearly with the number of dimensions. 3 (or
more) dimensional inputs can be handled without memory
concerns, at least from exploding parameter counts.

Note that none of these values require complex calcu-
lations, which contributes to the layer’s superior computa-
tional performance (Section 5.1.2). We hypothesize that by
limiting the representational space for each node such that it
knows only about the local gradient and itself the network is
forced to find simple representations that generalize better.

5. Experiments
We evaluate our method on graph classification and node

correspondence tasks from a variety of datasets. We con-
sider 3 different classification datasets, including MNIST
[24], CIFAR-100 [20], and ISIC2016 lesion classification
[15]. In all cases, classification is performed based on a
compressed superpixel graph representation. For MNIST
we explore the effect of various hyperparameters on accu-
racy, convergence rate, and performance. To evaluate the
performance of our method for node correspondence tasks,
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we use the FAUST dataset [5].
In the absence of validation sets, we selected test results

based on the best training accuracy in order to avoid bias-
ing our model selection to the test set. For our models, this
is often comparable to the overall best test accuracy (Fig-
ure 2). While there is some variation in results across our
model initializations, the trend of high test performance fol-
lowing high training set accuracy was robust. This allowed
a bias-free way of selecting performant models from multi-
ple runs of the same hyperparameters. While we considered
using k-fold cross validation, we found that our method was
effective in picking out generally applicable models without
biasing to the test set or introducing additional complexity
to the training procedure. For all training runs, our models
had training accuracies on par with test accuracies.

We compare our model performance against published
results from the literature as well as implementations of
other published models. We used the implementations of
SplineCNN [12] and graph attention layers (GATConv) [32]
available from pytorch-geometric [11] and utilized early
stopping to avoid overfitting. In addition, we apply mod-
els from Gray et al. [14] and Knyazev et al.’s [19] to the
MNIST and CIFAR datasets and report the results.

All models were trained with Adam optimization using
a learning rate of 0.0002 and cross entropy loss for our ar-
chitecture and the published options for comparison models
unless otherwise noted. Learning rates were reduced by a
factor of 10 on a plateau of 5 epochs without improving
training loss up to a limit of 1/1000th the original learning
rate.

5.1. MNIST

We test against 3 variants of the MNIST superpixel 75
dataset [24], a compressed graph representation of MNIST
in which each superpixel graph contains 75 nodes. The first
variant uses all of the edges present in the original graph
which we call the raw dataset. The second is a variant of
the hierarchical set used by Knyazev et al. [19] with sets
of approximately 75, 21, and 7 superpixels forming the fea-
ture hierarchy for each sample. The number of edges for
each node was limited to its 32 nearest neighbors by Eu-
clidean distance. The third variant, which we refer to as
pruned is obtained by discarding all of the edge data from
the original graph and applying Delaunay triangulation to
the nodes, which reduces the number of edge connections
by around 70% on average.

Our network architecture (Figure 3) is comprised of up
to 7 layers of downsampling modules (Figure 1) followed
by 2 fully connected layers with an exponential linear unit
activation after the first fully connected layer and softmax
on last layer. The deepest (7 of our layers) network is
used for all main results because it provides the best ac-
curacy. Each downsampling module consists of our intro-

Figure 2: Accuracy compared to training time. While some
of the other methods perform slightly better than our 7 layer
deep model in time per epoch, we achieve higher accuracies
per training minute (in addition to achieving a higher overall
accuracy). Of note, using a wider network is not a penalty
in accuracy vs training time. Plots show the mean test ac-
curacy/time over 10 runs — except Gray et al. [14], which
shows the median results from 10 runs due to their higher
variability.

duced graph convolutional layer followed by a voxel grid
pooling operation [27] outputting a reduced set of nodes
with a selectable count of features. Pooling is done with
voxel size halved at each step. Initial voxel size is set such
that a 3 × 3 set of nodes is present after the downsampling
operations prior to flattening for the fully connected layers.

We used no normalization methods in the downsampling
modules (e.g. batch normalization, dropout, edge dropout),
but standard dropout of 0.5 is applied prior to each of the
fully connected layers.

Our model with the best performance on all the MNIST
variants used 7 downsampling layers starting with 128 fea-
tures. Features doubled each layer until a maximum width
of 512 — which was used for the remaining layers. Edges
were dropped out on the input to prevent overfitting to the
training set (Section 5.1.1).

Our architecture achieves a state-of-the-art test error of
0.80% against the raw dataset using our best training accu-
racy as a selector among 32 runs. This compares to the prior
best reported value of 0.95% from Gray et al. [14]. We were
able to reproduce the Gray result [14] but only by selecting
the best overall test accuracy out of 5 runs. The average re-
sults for ours and several competitors are shown in Table 1.
Our results correspond to an input edge dropout rate of 0.45
and a learning rate of 0.002.

For the hierarchical variant, we note a slight drop in ac-
curacy relative to the raw dataset. The hierarchical dataset
adds additional nodes for various scales of abstraction (par-
ent, grandparent, etc) with each level being progressively
coarser. Knyazev et al. [19] explicitly treats each of these
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Figure 3: Depiction of classification model architecture. Edge dropout at a specified rate is performed before model input
(Section 5.1.1). Multiple downsampling modules (Figure 1) are stacked. Voxel grid size is set for each module to result in a
3× 3 grid prior to flattening for input to the fully connected layers. Nodes located in the same grid are collapsed into a single
node during pooling.

Table 1: MNIST superpixel image classification results. Our model and Fey et al.’s [12] were trained for 100 epochs on
the MNIST dataset. Knyazev et al.’s [19] was trained for 30 epochs and Gray et al.’s [14] for 400 epochs, keeping to
their implementations. To avoid biasing to the test set, we selected the models by best training accuracy for a given set of
hyperparameters — with the exception of Fey et al.’s for which we chose the overall best for each particular run. Average
and standard deviation values taken across 32 runs for the raw and hierarchical variants, and against 10 for the pruned variant.
Given that Knyazev et al.’s was highly dependent on the extra information from their hierarchical representation, we did not
run their code against the pruned version. Veličković et al. [32] produced a graph attention convolutional layer but when
applied to MNIST it performed poorly (and was worse without embedding positions into the input vector). Gray et al. [14]
reports an accuracy of 99.05% on the raw dataset, which we were only able to replicate by taking the overall maximum test
accuracy out of 5 runs, rather than the average.

Ours Veličković Fey Knyazev Gray

Raw 99.12±0.06 94.70±0.23 97.05±0.22 97.11±0.22 98.81±0.04
99.201 95.012 97.452 97.441 98.861

Hierarchical 99.04±0.05 98.29±0.21 98.26±0.09
99.121 69.752 98.551 98.381

Pruned 98.78±0.13 96.95±0.11 98.82±0.07
98.961 97.192 98.891

levels differently, recognizing that the edge connection is
between a child-parent, siblings, etc. as part of its multi-
graph convolution approach. None of the other methods
differentiate between these edge relationships. The extra
nodes have reduced quality information which we believe
can act as a confuser to the networks when the connection
type is ignored. For SplineCNN [12], the extra information
causes extreme overfitting to the training set.

5.1.1 Input edge dropout

To understand how eliminating edge connections through
pruning impacts accuracy, we train against the raw MNIST
dataset with varied rates of edge dropout applied to the input

data. As shown in Figure 4, our method beats the compari-
son models on the raw dataset for a range of rates.

At dropout rates above 0.6, orphan nodes, with no edges
connected to them, become much more likely and above
0.8 such nodes are a significant portion of all nodes. These
orphan nodes negatively impact our performance as the only
information left to pass forward at each orphaned node is
the identity function.

Given that position information is required by our
method, an appropriate and effective edge network can
be acquired using Delaunay triangulation for 2D graphs.
Pruning the MNIST graphs in this way results in approx-
imately a 70% reduction in edges without generating any
orphan nodes. Using the pruned dataset, our code performs
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Figure 4: MNIST graph classification error rates as graph
edges are dropped on input. Our model performs signifi-
cantly better for a range of input edge dropout rates. Gray et
al. [14] use a technique which ignores the input edges which
leads to it being unaffected by edge dropout. SplineCNN
[12] sees some benefit from low input edge dropout rates
(probably from reduced overfitting).

competitively with prior reported state-of-the-art test accu-
racy (against models trained and evaluated using the raw
dataset). We achieved an error rate of 1.04% using a 0.1
edge dropout applied on the pruned input graph as shown in
Table 1.

Moderate levels of input edge dropout seem to provide
a data augmentation effect, leading to greater test accuracy
and less overfitting. (Our train and test accuracies remain
comparable when sufficient input edge dropout is used.) In
all cases, our architectures perform better with some level of
input edge dropout than with the original graph. In addition,
reduced edge counts have a beneficial impact on training
times (Section 5.1.2).

Gray et al. [14] use a method which ignores incom-
ing edge information. Because of this, their accuracy is
the same for all levels of input edge dropout and pruning
(within their normal variance). While this eliminates any
accuracy penalty for overly sparse graphs, it also eliminates
the data augmentation and performance benefits of input
edge dropout.

5.1.2 Performance

Our network is faster on a per epoch of training time
per layer basis. After adding layers to create a deeper,
wider, and more accurate network, it remains competitive
in training time and superior when looking at test accuracy
achieved per training time as shown in Figure 2. Surpris-
ingly, adding extra width to the network did not worsen

Figure 5: Effect of hyperparameters on training time per
epoch performance of our architecture. We modify a de-
fault set of parameters — 7 layers deep, 256 initial & max
features, no pruning, and 0.5 input edge dropout. Each was
run for 5 epochs on an nVidia V100 and average times per
epoch are shown.

Table 2: CIFAR-100 superpixel image classification test ac-
curacy (%). We show the average and maximum test accu-
racies for the best training epoch over 32 runs.

Model Superpixel Hierarchical

Ours 40.39±0.27 41.16±0.32
40.713 41.413

Knyazev 30.46±1.07 32.34±0.84
31.413 33.543

Gray 34.28±0.44 34.57±0.45
34.883 35.193

convergence time until a slight dip is observed going from
256 to 512 features wide. While each epoch takes longer, it
converges faster.

We also show the impact of various hyperparameters on
our time per epoch performance in Figure 5 . Of note, our
pruned dataset running with 0.05 input edge dropout has
similar performance to the raw dataset with 0.8 input edge
dropout. The pruned dataset has around 70–75% fewer edge
connections than in the original which accounts for the in-
crease in speed.

5.2. CIFAR-100

1 Test accuracy selected from best training epoch
2 Best overall test accuracy selected
3 Test accuracy selected from best training epoch
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Table 3: Our results and previously published ISIC Skin Le-
sion Classification results using deep convolutional neural
networks.

Model Balanced
Multiclass
Accuracy

Number of
Parameters

Inception-ResNet-v2 [2] 0.692 56M
SDL [35] 0.681 92M

Ours 0.660 104k

ResNet-50 [35] 0.628 23M
DRN-50 [34] 0.626+ 23M
Modified VGG-16 [1] 0.622+ 138M
GoogLeNet [30] 0.581* 6.4M
VGG-16 [28] 0.529* 138M
* Accuracy reported by Yu et al. [34]
+ ISIC 2016 contest submission

The CIFAR-100 dataset [20] consists of 32× 32 labeled
color images belonging to one of 100 classes. The dataset
contains 600 images per class with a 5:1 train:test ratio.

The graph versions of the dataset are obtained by ap-
plying SLIC transformations as described in Knyazev et al.
[19]. Each graph is constructed with approximately 150 su-
perpixels with node edges restricted to its 32 nearest neigh-
bors by Euclidean distance. The nodes were constructed
from levels of approximately 150, 75, 21, and 7 superpix-
els in the same manner as the hierarchical MNIST dataset
(Section 5.1). As with MNIST, classification using the su-
perpixel graphs represents a much more challenging learn-
ing task than classification with the original dataset. This
is due to the significantly reduced quantity of information
available in a superpixel graph relative to a full-resolution
image.

The CIFAR-100 experiments use the same architecture
as the MNIST experiments, with the exception of additional
input channels for color and output channels for the larger
number of classes. The CIFAR-100 results are shown in
Table 2. We achieved a best accuracy of 40.71% on the raw
variant and 41.41% on the hierarchical variant.

5.3. ISIC Challenge 2016

For a more practical application, we evaluate our method
on the 2016 International Skin Imaging Collaboration
(ISIC) 2016 challenge dataset [15]. This dataset consists
of 1279 labeled images of skin lesions (with a 900/379
train/test split). The task is to predict disease state (benign
or malignant) given a segmented image.

Our approach to this dataset is unique among the algo-
rithms on the current leaderboard in that we first decom-
pose the image into superpixels and then apply a GCN to

Table 4: ISIC Skin Lesion Classification results. Using
various graph convolution layers operating on a SLIC su-
perpixel representation. The graph representation allows
for significantly smaller networks while our novel convolu-
tional layer enables enhanced accuracy relative to existing
alternatives.

Layer Balanced Multiclass Accuracy

Our layer 0.660
GATConv [32] 0.634
TransConv [26] 0.630
ChebConv [9] 0.614

Table 5: FAUST node correspondence results. All results
(except ours) as reported by authors. We did not perform an
extensive hyperparameter search and our results are mostly
to show that the method is generally applicable.

Model Reported Accuracy

Boscaini et al. [6] 62.4%
Monti et al. [24] 73.8%
Sun et al. [29] 96.9%
Verma et al. [33] 98.7%
Ours 99.20%
Fey et al. [12] 99.20%
Gong et al. [13] 99.8%
Haan et al. [8] 99.89%

derive classification results from the superpixel graph. This
is similar to an approach that has recently been proposed for
another lesion classification dataset [3]. While we do lose
some information in the superpixel transformation, this al-
lows us to significantly reduce our model size. Our network
uses substantially fewer parameters than other proposed ar-
chitectures without sacrificing performance (see Table 3).

Balanced accuracy [7] is used for this dataset because
the training data possesses an extreme class imbalance. We
use only RGB features for input consistent with the CNN
approaches listed in Table 3. However, using additional
features has been demonstrated to enhance performance for
lesion classification tasks [3, 25] and this is an area of po-
tential future research.

In Table 4 we compare results for this task using var-
ious graph convolution layers operating on the superpixel
graphs. Our layer provides enhanced accuracy relative to
other GCN approaches. The performance of our method
(including the superpixel preprocessing step) on this medi-
cal dataset bodes well for the applicability of this method to
larger datasets where compression of the input data is vital.
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5.4. FAUST

Finally, we test our method on a shape correspondence
task using the FAUST [5] dataset, which contains 100 3D
meshes with 6, 890 nodes each depicting 10 scanned human
bodies in 10 different poses. Each node corresponds to a
particular part of each body and the task is to identify which
node corresponds to what body part. We use the standard
80/20 training/test split.

As FAUST is a mesh with no values assigned to each
node, it lacks an inherit meaningful field which is required
for our pseudo-differential method to work, (see Equation
4.1.1). Since the identity vector is not meaningful we tried
adding the position vector and/or the surface normal to each
node. The position vector alone performed the best. But
there is a degree of translational invariance as everything
but the node’s identity term has only relative information.

A modified version of the architecture used in the other
experiments was used with 3D gradients, 8 layers, 16 ini-
tial features doubling each layer to a maximum of 128, and
ending with 2 fully connected layers applied to each node
separately (dropout applied before each). Scaled exponen-
tial linear units are used between each mixing layer. No
flattening or pooling operations are used. The final output
is a softmax with 6, 890 channels per node.

The model is trained using a batch size of 4, dropout of
0.3, learning rate of 0.01, and cross entropy loss. For this
task, input edge dropout causes a significant performance
drop and is not used. Our model achieves an accuracy
performance comparable with recent results of 99.20% as
shown in Table 5.

6. Conclusion

We introduce a simple graph convolutional layer that
outperforms every published result we are aware of for
graph classification on the MNIST and CIFAR-100 super-
pixel datasets with faster performance and reduced overfit-
ting tendencies. In addition, we test our new layer on the
FAUST shape correspondence and ISIC 2016 challenge le-
sion classification datasets.

For ISIC 2016 our new layer outperforms other graph
convolution layers operating on superpixel graph represen-
tations and is significantly smaller than competitive models.
We achieve this model size reduction without loss of accu-
racy by leveraging two innovations: (1) the use of super-
pixel graph representations of the image providing a signif-
icantly compressed version of the input, and (2) our novel
graph convolution layers which enable enhanced accuracy
on graph classification tasks.

Input edge dropout provides positive impacts on our ac-
curacy except at extreme values. The dropout provides a
significant data augmentation effect at even moderate levels
as the network sees a combinatoric scale effect. For sparse

graphs this had a minimal impact, but it was significant for
highly connected graphs.

The performance drop observed when using hierarchi-
cal versus raw graphs suggests another area for research.
Our current implementation does not take advantage of ad-
ditional edge information available within the hierarchical
dataset. This results in a small but meaningful reduction
in accuracy. The additional information seems particularly
useful for large image cases (such as CT) where it would
be advantageous to inform the network of a broader region.
Our convolutional layer could be modified to incorporate
this information.
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