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Abstract

Graph Convolutional Networks (GCNs), which can in-
tegrate both explicit knowledge and implicit knowledge to-
gether, have shown effectively for zero-shot learning prob-
lems. Previous GCN-based methods generally leverage a s-
ingle category (relationship) knowledge graph for zero-shot
learning. However, in practical scenarios, multiple types of
relationships among categories are usually available which
can be represented as multiple knowledge graphs. To this
end, we propose a novel dual knowledge graph contrastive
learning framework to perform zero-shot learning. The pro-
posed model fully exploits multiple relationships among dif-
ferent categories for zero-shot learning by employing graph
convolutional representation and contrastive learning tech-
niques. The main benefit of the proposed contrastive learn-
ing module is that it can effectively encourage the consisten-
cy of the category representations from different knowledge
graphs while enhancing the discriminability of the generat-
ed category classifiers. We perform extensive experiments
on several benchmark datasets and the experimental results
show the superior performance of our approach.

1. Introduction

In recent years, zero-shot learning has attracted
widespread attention in computer vision and machine learn-
ing areas. It aims to recognize the new categories that have
never been appeared during the training process. The key
of zero-shot learning is to leverage the knowledge from
seen categories to describe unseen categories. In the past
decade, researchers have proposed a large number of meth-
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ods for zero-shot learning problems [4, 5, 8, 12, 20, 29]. For
zero-shot tasks, it is usually necessary to explicitly explore
the correlation relationships among different categories for
knowledge transferring. To this end, Graph Convolutional
Networks (GCNs) [15], which have powerful capabilities
in exploiting category relationships, have been common-
ly employed for zero-shot learning tasks [12, 16, 19, 29].
Wang et al. [29] propose a GCN method to integrate im-
plicit knowledge and explicit knowledge for zero-shot tasks.
Kampffmeyer et al. [12] employ the dense graph propaga-
tion module to alleviate the over-smoothing problem in GC-
N for zero-shot classification. Liu et al. [19] propose a novel
Attribute Propagation Network (APNet) to learn the clas-
sifier representation for each unseen category. The above
methods [12, 16, 19, 29] explicitly exploit the relationships
among different categories and demonstrate their effective-
ness for zero-shot learning. However, the category relation-
ships used in these models are relatively single type, which
are unable to capture some more inherent category relation-
ships (known as multiple knowledge graphs) in practical s-
cenarios. To overcome this issue, recent works [3, 18] also
explore multiple relationships among categories to perform
zero-shot classification. For example, in work [3], a multi-
relational GCN that integrates three category relationships
(i.e., hierarchy, attribute and co-occurrence) is developed to
generate the classifiers of unseen categories for zero-shot
recognition tasks. Liu et al. [18] propose a novel Isometric
Propagation Network (IPN) to combine the category repre-
sentations from visual space and semantic space. Howev-
er, previous methods [3, 18] generally employ an attention
mechanism to perform the interaction and fusion for mul-
tiple knowledge graphs, which cannot fully exploit the in-
herent correlation and complementarity information across
different knowledge graphs. Also, they usually lack of con-
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sidering the discriminability of the generated classifiers of
different categories which may lead to weak optimal perfor-
mance for zero-shot learning.

Recently, contrastive learning has been demonstrated ef-
fectively for multi-view learning [10, 11, 30, 33]. Inspired
by these works, we propose a novel zero-shot learning
approach which aims to fully exploit multiple knowledge
graphs for category representation and classifier prediction
via contrastive learning. The proposed contrastive knowl-
edge graph learning module can effectively encourage the
consistency of the category representations obtained from
different knowledge graphs while enhancing the discrim-
inability of the generated category representations and clas-
sifiers. Overall, the main contributions of this paper are
summarized as follows,

• We propose a novel dual knowledge graph contrastive
learning approach to address the zero-shot classifica-
tion tasks. The proposed approach can exploit multiple
knowledge relationships among categories simultane-
ously to learn robust and discriminative classifiers for
unseen categories.

• We introduce a graph contrastive learning scheme to
address the general multiple knowledge graph repre-
sentation and learning.

Experimental results on several benchmark datasets demon-
strate the effectiveness of our method and show the benefits
of the proposed dual graph contrastive learning module.

2. Related Works
2.1. Zero-shot Learning

Many of existing works [4, 8, 22, 24, 26, 32] are based on
the implicit knowledge (i.e., semantic embeddings), which
aim to learn a mapping function between semantic and vi-
sual representations. For example, Frome et al. [8] propose
a novel DeViSE model that maps image features to seman-
tic space for zero-shot classification. Norouzi et al. [22]
leverage convex combination to achieve the mapping from
visual feature to semantic feature space. In addition, ex-
plicit knowledge (i.e., knowledge graph) has also been em-
ployed for zero-shot learning, which aims to directly mod-
el the relationships among different categories [5, 25]. For
example, Deng et al. [5] employ Hierarchy and Exclusion
(HEX) graphs to capture the relationships among objects.
Salakhutdinov et al. [25] adopt a novel hierarchical classifi-
cation model, which effectively performs knowledge trans-
fer from seen classes to unseen classes.

Recently, Graph Convolutional Networks (GCNs) based
approaches that integrate both implicit knowledge and ex-
plicit knowledge have shown excellent performance on
zero-shot learning tasks [12, 16, 19, 29]. As demonstrated

in works [12,29], with the semantic embedding and catego-
ry hierarchical relationships, the visual classifiers of unseen
categories can be effectively learned for zero-shot classi-
fication. Liu et al. [19] propose an Attribute Propagation
Network (APNet) to generate unseen category representa-
tions for zero-shot classification. Li et al. [16] use a graph
neural network to model the structural relationships among
different categories and obtain better visual features of un-
seen categories. Recent works [3, 18] also exploit multiple
knowledge graphs on zero-shot learning tasks. For exam-
ple, in work [3], a multi-relational GCN model that com-
bines three type category relationships is employed to gen-
erate the unseen class classifiers. Liu et al. [18] propose
Isometric Propagation Network (IPN) to fuse category rep-
resentations in both semantic and visual spaces.

2.2. Contrastive Learning

As a kind of self-supervised learning method, contrastive
learning has been widely employed in multiple view learn-
ing tasks, such as node classification [27, 33], graph classi-
fication [10, 30] and few-shot learning [13, 17] etc. For ex-
ample, Zhu et al. [33] adopt a novel GCA model for graph
node classification by enhancing the consistency of node
representations among different graph views. Velickovic et
al. [27] propose Deep Graph Infomax (DGI) to learn robust
graph node representations by maximizing the mutual infor-
mation between the local and global graph representation-
s for node classification task. Hassani et al. [10] propose
to contrast local and global representations across differen-
t views for graph classification problems. Recently, some
contrastive learning methods [9, 28] have also been em-
ployed for zero-shot learning tasks. Han et al. [9] propose
a generalized zero-shot learning framework that uses con-
trastive embedding model to generate more discriminative
visual samples. Wang et al. [28] employ Dual-Contrastive
Embedding Network (DCEN) to learn more discriminative
image feature representations for zero-shot learning tasks.

3. The Proposed Approach
Problem Formulation: In zero-shot learning, there are

a total of n categories, which contain T seen/training cat-
egories (denoted as YT = {y1, y2 · · · yT }) and U unseen
categories (denoted as YU = {yT+1, yT+2 · · · yT+U}), i.e.,
n = T + U . There is no overlap between training seen cat-
egories YT and unseen categories YU , i.e., YT ∩ YU = ∅.
The training categories include V labeled images D =
{(xi, yi)}Vi , where xi denotes the i-th image instance and
yi ∈ YT represents the corresponding category. Note that,
there are no labeled images for the unseen categories YU .
Meanwhile, let S ∈ Rn×p be the semantic embedding vec-
tors for all n categories, where p denotes the dimension of
semantic vectors. The goal of zero-shot learning is to pre-
dict classifiers W̃U ∈ RU×d of unseen categories based on
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Figure 1. Overall framework of the proposed zero-shot recognition model. It is composed of three main parts, i.e., dual knowledge graph
construction, graph contrastive learning and classifier learning.

the seen categories and perform classification for the testing
unseen images, where d denotes the dimension of classifier
weight vectors.

3.1. Overview

The overall architecture of our model is shown in Fig-
ure 1. Given two kinds of knowledge graphs as input-
s whose nodes refer to specific categories, our goal is to
learn effective visual classifiers for the unseen classes and
then perform zero-shot classification, as suggested in work-
s [12, 29]. The proposed zero-shot framework contains
three main modules, i.e., dual knowledge graph construc-
tion, graph contrastive learning and classifier learning.

• Dual knowledge graph construction. We construct
two knowledge graphs from different perspectives to
capture more inherent relationship information among
different categories.

• Graph contrastive learning. The purpose of graph
contrastive learning module is to enforce the represen-
tations of corresponding nodes from different graphs to
be consistent and the feature representations of differ-
ent nodes within the same graph to be discriminative.

• Classifier learning. We obtain the final visual classi-
fiers by fusing the graph node embeddings from two
different knowledge graphs, and further employ the

error loss function to learn the classifiers in a semi-
supervised manner.

3.2. Dual Knowledge Graph Construction

Hierarchy knowledge graph. In order to exploit the
hierarchical structure relationships among different cate-
gories, we adopt WordNet [21] hierarchy graphGh(Ah, S),
as used in works [12,29], which is constructed based on ex-
pert knowledge. Here, S ∈ Rn×p represents the semantic
embedding representations of all n categories, where n, p
denote the category number and semantic feature dimen-
sion, respectively. Ah ∈ Rn×n encodes the hierarchical
relationships among different categories.

Semantic correlation knowledge graph. In addition to
the above hierarchy knowledge graph, we further explore
the semantic correlations among different categories in the
semantic feature space and construct a semantic correlation
knowledge graph (K-nearest neighbor graph) Gf (Af , S)
based on semantic embeddings S. Here, Af ∈ Rn×n repre-
sents the structural relationships among different categories
in the semantic correlation knowledge graph Gf . Specifi-
cally, the adjacency matrix Af ∈ Rn×n is defined as

Af (i, j) =

{
1 if j ∈ NK(i)
0 otherwise

(1)

where NK(i) denotes the top K nearest neighbors of node
i in the semantic feature space.
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3.3. Graph Contrastive Learning

3.3.1 Graph convolutional module

Similar to previous works [12, 29], we employ Graph Con-
volutional Networks (GCNs) [15] to conduct knowledge
graph representation and learning. Specifically, given hier-
archical graph Gh(Ah, S) containing n nodes, we perform
graph convolution propagation as follows

H
(l+1)
h = σ

(
D−1h ÂhH

(l)
h Θ(l)

)
(2)

where l = 0, 1 · · ·L − 1 and L represents the number of
convolutional layers. H(0)

h = S denotes the input node fea-
tures and H(l)

h denotes the output feature representations of
the l-th hidden layer. Âh = Ah + I and Dh is the diagonal
matrix with Dh(i, i) =

∑
j Âh(i, j) and I is the identity

matrix. Θ = {Θ(0),Θ(1) · · ·Θ(L−1)} refer to the trainable
weight matrices of GCN model.

In addition, for semantic correlation knowledge graph
Gf (Af , S), let H(0)

f = S as input. Then, we employ the
same graph convolution paradigm as in hierarchy graph Gh

and conduct layer-wise propagation as

H
(l+1)
f = σ

(
D−1f ÂfH

(l)
f Θ(l)

)
(3)

where l = 0, 1 · · ·L − 1 and σ refers to the Leaky Re-
LU activation function. Âf = Af + I and Df (i, i) =∑

j Âf (i, j). Θ = {Θ(0),Θ(1) · · ·Θ(L−1)} are the train-
able weight matrices of the GCN model. Note that, the
weight parameter matrix set Θ for both Gh and Gf are
shared, as suggested in works [1, 7].

3.3.2 Contrastive learning

Let Zh = H
(L)
h and Zf = H

(L)
f be the outputs of the above

two GCN branches. When the graph node representation-
s Zh = {z(1)h , z

(2)
h · · · z

(n)
h } and Zf = {z(1)f , z

(2)
f · · · z

(n)
f }

are obtained from knowledge graphsGh andGf respective-
ly, inspired by works [10,27,33], we can use the contrastive
learning module to constrain Zh and Zf . Specifically, the
contrastive module encourages the representations of corre-
sponding nodes in Zh and Zf to be more consistent and the
representations of different nodes within knowledge graph
node representations Zh or Zf to be more discriminative.

Formally, each node embedding representation z(i)h gen-
erated from graph Gh can be regarded as an anchor, em-
bedding z(i)f generated from graph Gf forms the positive
sample, and the other m node embeddings obtained by ran-
dom sampling in graph Gh are treated as the negative sam-
ples. Then, for each positive pair (z

(i)
h , z

(i)
f ), following the

similar strategy [27], the objective function of contrastive

learning is formulated as

L(z(i)h , z
(i)
f ) = −

(
logϕ(z

(i)
h , z

(i)
f )+

m∑
j 6=i

log
(
1−ϕ(z

(i)
h , z

(j)
h )
))
(4)

where ϕ(z
(i)
h , z

(i)
f ) = σ(z

(i)
h · z

(i)
f ) denotes the critic func-

tion and σ refers to the sigmoid nonlinearity function. Since
both knowledge graphs Gh and Gf are symmetric, similar
to positive pair (z

(i)
h , z

(i)
f ), we can also define the loss func-

tion on positive pair (z
(i)
f , z

(i)
h ) as follows,

L(z(i)f , z
(i)
h ) = −

(
logϕ(z

(i)
f , z

(i)
h )+

m∑
j 6=i

log
(
1−ϕ(z

(i)
f , z

(j)
f )
))
(5)

Finally, the overall loss function of the proposed graph con-
trastive learning model is defined as

Lcontrast =
1

2n

n∑
i=1

(
L(z

(i)
h , z

(i)
f ) + L(z

(i)
f , z

(i)
h )
)

(6)

3.4. Classifier Learning for Zero-shot Classification

In this section, we present how to obtain a visual classi-
fier for each unseen category and employ the learned classi-
fiers to perform zero-shot classification, as shown in Fig-
ure 1. Specifically, we first obtain the visual classifiers
W̃ ∈ Rn×d for all n categories by fusing both the graph
node embeddings Zh and Zf together as

W̃ = (1− α)Zh + αZf (7)

where α is the weight parameter. Note that W̃ consists
of both T training and U unseen category classifiers, i.e.,
W̃ = {W̃T , W̃U}. Then, inspired by works [12, 29], the
loss function based on T training categories can be formu-
lated as

Lclassifier =
1

2T

T∑
i=1

d∑
j=1

(
WT

ij − W̃T
ij

)2
(8)

where W̃T ∈ RT×d denotes the learned visual classifiers of
T training categories. We can extract the last layer weight
matrix of the pre-trained CNN as the ground truth classifi-
er weights WT ∈ RT×d for the T training categories, as
suggested in previous works [12, 29]. Finally, our model
contains graph contrastive learning and classifier learning
modules. Therefore, the total loss is

Lall = Lclassifier + λLcontrast (9)

where λ is the weight parameter.
Inference Process. As shown in Figure 1, for a test-

ing image from the unseen categories, we first use the pre-
trained CNN to extract the image feature xt ∈ Rd. Then,
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we employ the learned unseen category classifiers W̃U to
obtain its category label as

y = W̃Uxt (10)

4. Experiments
4.1. Experimental Settings

We conduct experiments on ImageNet dataset [6], which
is a large-scale dataset widely used in zero-shot learn-
ing tasks [8, 12, 22, 29]. Following the training and test-
ing split settings used in works [8, 12, 22, 29], we employ
three benchmark datasets, i.e., “2-hops”, “3-hops” and “Al-
l” for evaluation. Note that the classes in the above three
datasets and ImageNet 2012 1K classes (1K seen classes)
are disjoint. Moreover, we employ the same Hit@k met-
ric [8, 12, 22, 29] which represents the percentage of hitting
the ground truth labels in the top k predictions. Meanwhile,
we compare the proposed approach with several recen-
t state-of-the-art methods including EXEM [2], GCNZ [29],
SGCN [12] and DGP [12].

4.2. Implementation Details

We employ recent ResNeSt-50 [31] model as CNN fea-
ture extractor which has been pre-trained on the ImageNet
2012 1K dataset [6]. Following the strategy in previous
works [12, 29], we adopt GloVe text model [23] trained
on Wikipedia dataset as semantic word features S for all
n categories. The GCN module in our model contains t-
wo convolutional layers and the weight α is set as 0.2. In
constructing K-NN semantic correlation graph Gf , we set
K to 2. The number m of negative samples is set to 7 in
graph contrastive learning module. For each convolutional
layer, we employ Dropout operation and leaky ReLUs with
a dropout rate of 0.5 and a negative slope of 0.2 respectively.
Our model is trained for 3000 epochs based on Adam [14]
algorithm with the learning rate of 0.001 and the weight de-
cay of 0.00005.

4.3. Performance Comparison

We summarize the comparison results on three dataset-
s in Table 1. Here, we can observe that, on all datasets
our model performs better than the other related approach-
es including EXEM [2], GCNZ [29], SGCN [12] and DG-
P [12]. More specifically, on the “2-hops” dataset, we ob-
tain an obvious improvement than EXEM [2] on top-1 ac-
curacy. Moreover, our model achieves better performance
than some other zero-shot learning methods which combine
both implicit knowledge (semantic embeddings) and explic-
it knowledge (knowledge graph) together, i.e., GCNZ [29],
SGCN [12] and DGP [12]. This clearly shows the effective-
ness and benefit of the proposed graph contrastive learning
module to generate more effective and discriminative clas-
sifiers for zero-shot classification.

Test Set Model Hit@k(%)
1 2 5 10 20

2-hops

EXEM [2] 12.5 19.5 32.3 43.7 55.2
GCNZ [29] 19.8 33.3 53.2 65.4 74.6
SGCN [12] 26.2 40.4 60.2 71.9 81.0
DGP [12] 26.6 40.7 60.3 72.3 81.3
Ours 28.4 43.0 62.6 74.5 82.9

3-hops

EXEM [2] 3.6 5.9 10.7 16.1 23.1
GCNZ [29] 4.1 7.5 14.2 20.2 27.7
SGCN [12] 6.0 10.4 18.9 27.2 36.9
DGP [12] 6.3 10.7 19.3 27.7 37.7
Ours 7.0 11.7 20.7 29.2 39.0

All

EXEM [2] 1.8 2.9 5.3 8.2 12.2
GCNZ [29] 1.8 3.3 6.3 9.1 12.7
SGCN [12] 2.8 4.9 9.1 13.5 19.3
DGP [12] 3.0 5.0 9.3 13.9 19.8
Ours 3.3 5.6 10.1 14.7 20.5

Table 1. Top-k performance for different methods on three dataset-
s. Only testing on the unseen classes.

Test Set Model Hit@k(%)
1 2 5 10 20

2-hops(+1K)

GCNZ [29] 9.7 20.4 42.6 57.0 68.2
SGCN [12] 11.9 27.0 50.8 65.1 75.9
DGP [12] 10.3 26.4 50.3 65.2 76.0
Ours 7.0 26.8 52.5 67.5 77.9

3-hops(+1K)

GCNZ [29] 2.2 5.1 11.9 18.0 25.6
SGCN [12] 3.2 7.1 16.1 24.6 34.6
DGP [12] 2.9 7.1 16.1 24.9 35.1
Ours 2.0 7.1 17.3 26.2 36.5

All(+1K)

GCNZ [29] 1.0 2.3 5.3 8.1 11.7
SGCN [12] 1.5 3.4 7.8 12.3 18.2
DGP [12] 1.4 3.4 7.9 12.6 18.7
Ours 1.0 3.4 8.5 13.2 19.3

Table 2. Top-k performance for different methods on three dataset-
s. Testing on both the unseen and seen classes.

Some qualitative comparison results are shown in Fig-
ure 2. Intuitively, from the top-5 classification results of
each testing image, we can observe that our model obtain-
s better performance on zero-shot classification. Further-
more, following the strategy in works [8, 12, 22, 29], we al-
so conduct the experiments in which the classifiers include
both seen class classifiers and unseen class classifiers to-
gether for testing. The comparison results of different meth-
ods are summarized in Table 2. We can observe that, (1) s-
ince the seen class classifiers are added to the classifiers, the
performance of all methods drops partly. (2) our model stil-
l maintains comparable performance when comparing with
GCNZ [29], SGCN [12] and DGP [12]. This further demon-
strates the effectiveness of the proposed zero-shot learning
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Figure 2. The top-5 classification results on some unseen categories. The correct category is marked as bold.

approach.

4.4. Model Analysis

We conduct ablation study to verify the effectiveness of
each component in our proposed method. As shown in Ta-
ble 3, we implement some variants of the proposed model
and report the comparison results. Here, one can note that,
(1) the model with WordNet hierarchy knowledge graphGh

performs better than the model with semantic correlation
knowledge graphGf . (2) The model that integrates bothGh

andGf achieves better performance than the model with ei-
ther Gh or Gf only. This shows that combining both Gh

and Gf can capture more complete correlation information
among categories. (3) The performance of our model is bet-
ter than other variants. This demonstrates the capability of
our graph contrastive learning module to generate discrimi-
native and effective classifiers.

5. Conclusion

In this paper, we propose a novel graph contrastive con-
volutional learning method for zero-shot learning tasks. It
explicitly explores multiple relationships among differen-
t categories for category classifier learning via dual graph
convolutional representation and contrastive learning. The
introduced graph contrastive learning module effective-
ly encourages the consistency of category representations

Gh Gf
Contrastive Hit@k(%)
Learning 1 2 5 10 20

X × × 27.7 42.8 62.5 74.2 82.8
× X × 19.2 31.1 47.8 58.6 67.5
X X × 27.9 42.8 62.5 74.3 82.8
X X X 28.4 43.0 62.6 74.5 82.9

Table 3. Results of ablation study for the 2-hops dataset. Gh and
Gf represent WordNet hierarchy graph and semantic correlation
graph, respectively.

from different knowledge graphs while enhancing the dis-
criminability of the predicted category classifiers. Experi-
mental results on several benchmark datasets verify the ef-
fectiveness of our zero-shot framework.
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