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Abstract

Can convolutional neural networks pre-trained without
natural images be used to assist natural image understand-
ing? Formula-Driven Supervised Learning (FDSL) auto-
matically generates image patterns and their category la-
bels by assigning a well-organized formula. Due to the
characteristics of not using natural images in pre-training
phase, FDSL is expected to develop a trustworthy vision-
based system in terms of human-annotation-free, fairer and
more transparent datasets. In this paper, we propose TileDB
which consists of recursive tiling patterns in the whole im-
age and evaluates the family of FDSL such as the datasets
consist of Perlin noise and Bezier curves. Experimental re-
sults show that our proposed TileDB pre-trained model per-
forms much better than models trained from scratch, sur-
passes a similar self-supervised learning (SSL), and per-
forms similarly to the models pre-trained with 100k-order
natural image datasets such as ImageNet-100 and Places-
30. By comparing to the FractalDB pre-trained model, the
TileDB pre-trained model achieves better performances in a
compact dataset (< 1,000 categories). Moreover, the image
representation trained on TileDB can extract similar fea-
tures to the ImageNet pre-trained model even though the
training images are non-trivially different.

1. Introduction
The potential of image recognition has been greatly ex-

panded with the introduction of sophisticated pre-training
image representation. Undoubtedly, in the field of com-
puter vision, an image representation with, for example, the
ImageNet/Places pre-trained convolutional neural network
(CNN), has become the most important breakthrough [6,
38]. We have gained much from the ImageNet project for
constructing large scale image datasets. However, recent

discussions have revealed that these datasets have problems,
namely privacy-violating and ethics-related labels [36]. In
other words, the ImageNet dataset is limited only to non-
commercial usage because the images involved in ImageNet
cannot mitigate problems related to copyrights. We believe
that this aspect of pre-trained models restricts the prospects
of vision-based recognition.

The frontier in vision-based learning has been shift-
ing to self-supervised learning (SSL), which labels im-
ages without human intervention. More recent approaches
(e.g., DeepCluster [4], MoCo [12], and SimCLR [5]) are
closer to a human-based supervision on ImageNet. Au-
tomatic annotation based on SSL is a highly promising
method for replacing human supervision in the pre-training
phase. In the context of SSL, large-scale image datasets,
such as ImageNet, are usually employed. However, en-
tire large-scale image datasets (80M Tiny Images [34] as
well as human-related labels in ImageNet [36]) were re-
cently removed due to the previously mentioned reasons re-
garding ethical concerns. In terms of supervised and self-
supervised learning, we cannot overlook the fact that most
image datasets consist of natural images. Hence, we must
consider how to replace the natural image datasets in or-
der to create more ethical models. How can we get a good
representation to improve recognition with a natural im-
age dataset through pre-training without any natural im-
ages or human annotations? Unlike the conventional frame-
works with supervised, self-supervised, and other learning
approaches, Kataoka et al. introduced Formula-Driven Su-
pervised Learning (FDSL) [17]. The learning framework
creates a sophisticated pre-trained CNN model without us-
ing any natural images or human annotations. In relation
to synthetic image datasets, FDSL is also different from
Domain Randomization (e.g., [33, 31]). Though most syn-
thetic image datasets are defined by properties such as ob-
ject models, background images, light conditions and view-
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(a) ImageNet. (b) Tiles. (c) Fractals. (d) Perlin noise. (e) Bezier curves.

(f) PT on ImageNet. (g) PT on tiles. (h) PT on fractals. (i) PT on Perlin noise. (j) PT on Bezier curves.

Figure 1. Comparisons of feature representations between pre-training with supervised dataset (a) and FDSL datasets (b)–(e). According
to our experimental results, the models pre-trained with FDSL can be a close representation to a model pre-trained with human-annotated
dataset. Surprisingly, pre-training (PT) representations on tiles [27] are “obviously” similar to the representations of PT on ImageNet,
while the two image sets (a) and (b) are quite different. Also, the performance rates with the TileDB pre-trained model are relatively close
to those from the ImageNet/Places pre-trained models (e.g., TileDB 78.0 vs. ImageNet 79.5 on Places-30).

points, FDSL does not require manual definition of, for ex-
ample, object category and background. In light of these
discussion, Baradad et al. proposed the concept of ‘learn-
ing to see by looking at noise’ which supports the FDSL
framework. They employed external training labels with
SSL in addition to the usage of a large amount of synthetic
images [2].

If we could improve the framework of pre-training mod-
els without natural images, then human-annotated dataset
pre-trained models may be replaced to preserve privacy
and decrease annotation labor. The original FDSL pa-
per [17] explained how to automatically construct a synthet-
ics dataset and create pre-trained CNN models with frac-
tal geometry. We believe that the concept has great poten-
tial. However, on the other hand, the FractalDB pre-trained
model heavily relied on a large amount of parameter tuning
in the original paper. We highly require a knowledge how to
generate a compact FDSL dataset without heavy parameter
tunings, and with a fewer parameters. Therefore, we pro-
pose a new principle for FDSL which does not involve frac-
tal geometry. As shown in Figure 1, we implemented and
compared three types of formulas, namely Tile [27] (ours),
PerlinNoise [28] and BezierCurves [9]. We assigned au-
tomatic texture- and edge-renderers in the proposed meth-
ods [17]. In the present paper, we propose Tile DataBase
(TileDB) which simultaneously implements both character-
istics (texture and edge). Perlin noise and Bezier curves
then correspond to texture and edge features, respectively.

Here, the pre-training feature representation on TileDB is
clearly similar to that of the ImageNet pre-trained model
(see Figure 1(f) and 1(g)), even though the two input images
are non-trivially different (see Figure 1(a) and 1(b)). This
allows us to construct ImageNet-like basis feature (Convo-
lutional layer 1 in ResNet-50) without any natural images
in the pre-training phase.

The present paper makes the following contributions.
(1) We propose a new FDSL family, namely, TileDB,

which can be constructed from fewer hyperparameters com-
pared to FractalDB, the conventional FDSL. The proposal
of FDSL family is worthwhile to propose such a new pre-
text task in SSL. (2) Through experimental results, we con-
firmed that TileDB performs similarly to a related labeling
method based on DeepCluster and 100k-order supervised
training with ImageNet-100 and Places-30 (see Table 2).
Further, TileDB is superior to FractalDB in relatively small
dataset configurations (see Figure 5(a)). (3) Our TileDB
acquires a good feature representation through pre-training
without any natural images or human annotations. In the
visualization of the first convolutional filter, TileDB pre-
trained features are similar to ImageNet pre-trained features
on ResNet-50.

2. Related Work

Learning Frameworks. In image classification, the most
promising framework is supervised learning with human-
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annotated datasets, such as ImageNet [6], Places [38],
OpenImages [18], Pascal VOC [8], and MSCOCO [22]. On
the one hand, CNN models have contributed to the extrac-
tion of well-defined feature representations in a large-scale
image dataset [20, 30, 32, 13, 35, 15, 29, 14]. The research
community is considering how to replace the human anno-
tations with self-generated labels, namely the SSL research
sub-field. The learning framework can be used to automat-
ically self-generate labels for unlabeled images. The re-
search community already has simple yet effective methods
for performing pre-text tasks [7, 24, 26, 37, 25, 11]. More
recent SSL methods, such as DeepCluster [4], MoCo [12],
and SimCLR [5], have been improving the pre-text tasks
to make them closer to pre-training with human-annotated
datasets.

Unlike the studies on SSL, the proposed learning frame-
work can be done without any (pre-)training images and la-
bels. A more recent study discussed SSL with single im-
ages [1]; therefore, we believe that the pre-training (pre-
text task in SSL) can be done without any natural images.
In addition to the self-generated labels that SSL creates, our
training on FDSL enables the automatic rendering of train-
ing images based on a mathematical formula.

Moreover, in the experimental section, we compare our
proposed method with ImageNet and Places pre-trained
models as a representation for human-annotated datasets.
We additionally assign ImageNet-100 and Places-30 which
are randomly selected 100/30 categories on ImageNet and
Places, respectively. We let the dataset contain over 100k-
order images in order to evaluate the pre-training effects.
On one hand, we mainly compare our proposed method
with DeepCluster in the context of SSL. Our method is simi-
lar to DeepCluster in terms of automatic labeling under cer-
tain rules. Our TileDB follows the tiling parameters, and
DeepCluster is categorized based on K-means clustering in
features of training images.
Formula-Driven Supervised Learning (FDSL). To pro-
mote a learning framework without any human supervision,
self-supervision, or natural images, we replaced the method
of annotation and image representation with well-defined
mathematical formulas. There are two representative work
in this topic [17, 2]. Kataoka et al. originally proposed
the concept of ‘pre-training without natural images’ in or-
der to replace the conventional annotatioin and image rep-
resentation. Their work achieved that a CNN was allowed
to pre-train with a large number of synthetic fractal images
and their corresponding labels. The more recent study has
reported the architecture can be effectively used by vision
transformers [23]. Baradad et al. have followed the work
with several types of noise images (e.g. Dead Leaves [21],
StyleGAN images [16]) in order to train visual representa-
tions from synthetic images [2]. The research tried to im-
plement the combination of synthetic noise images and SSL

labels with MoCoV2.
In the present paper, though detailed descriptions are

given for dataset generation (Section 3), we here introduce
the three types of mathematical formulas. One of the well-
organized FDSL is tiling patterns with various colors [27]
(see Figure 1(b)). For dataset creation with tiling patterns,
we use images with clear edges, colors, and textures. The
image patterns are flexibly changed after starting from ba-
sic hexagon patterns. The other well-known FDSL are Per-
lin noise [28] and Bezier curves [9], both of which are em-
ployed to render any pattern in computer graphics. We rep-
resent a textured feature with Perlin noise and an edge fea-
ture with Bezier curves.

The success of studies that relied on FDSL supports our
assumption that tiles, Bezier curves, and Perlin noise can
help make learning image representations for recognizing
natural scenes and objects without any natural images or hu-
man annotations. Our idea in FDSL is that the intervals of
parameters are equivalent to the image categories for train-
ing an image classifier with a CNN.

3. Proposed method
3.1. Overview

In this section, we introduce how to construct TileDB
which consists of recursive tiling patterns. An overview
of our method is shown in Figure 2(a). Both training im-
ages and their categories are automatically generated with a
mathematical formula. In the example in Figure 2(a), ba-
sic hexagon patterns and their randomly changing points
(parameters a, b, and c) generate image patterns and their
categories as a TileDB. Based on the parameter intervals,
the various (pre-)training categories are assigned in the
mathematical formula. Moreover, the effects of FDSL are
shown in Figure 2(b). We compare the TileDB pre-trained
model with the other FDSL approaches, scratch training and
ImageNet pre-trained model. Similar to the conventional
work [17], the accuracy is higher than scratch training and
it becomes to be a close accuracy in a longer training.

3.2. Dataset generation

The TileDB shown in Figure 1(b) comprises patterns cre-
ated with tiles [27]. A tile is a wallpaper group that is a
mathematical classification of a two-dimensional repetitive
pattern and complex textures are created by adding three
operations to regular hexagonal tiles: moving vertices, de-
forming edges, and moving symmetrically in a specular di-
rection. Using this simple method we created a dataset with
1,000 categories and 1,071 images per category.

Patterns are created based on arranged regular hexagonal
clusters. More complex textures can be expressed by specu-
lar inverting and edge deforming to these regular hexagons.
Specular inverting is horizontally flipping for each column
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(a) Overview of FDSL. We automatically generate a large-scale labeled image dataset
based on mathematical formulas.

(b) The pre-training effect under the supervision of FDSL. The
figure indicates the accuracy transitions on CIFAR-10 dataset
with ImageNet, TileDB pre-training models and training from
scratch.

Figure 2. FDSL and the effects of pre-training.

of tiles in Figure 3(a). We define each side of an ordinary
regular hexagon (F ) as a ∼ f clockwise, and it can be seen
that the order is reversed for the inverted regular hexagon
( F). As shown in Figure 3(a), the six parameters make the
tiling shapes with the combination of curves in a hexagon.
The parameters indicate the amount of shifting in an angle.

Next, these three pairs of sides are deformed. The de-
formation is performed using Bezier curves, which changes
from a straight line to a cubic curve. In Bezier curves, the
shape of a curve is determined by the position of points. The
actual transformations were performed using four points to
generate a cubic curve. Therefore, since two rotation angles
are required for each of the three transformations, the pat-
tern of the tile is determined by 6 values, which is the class
in TileDB.

To create a dataset from FDSL, we define the categories
of images and the way to create instances within each of
the categories. The categories in TileDB were determined
by the shape patterns of the tile edges. We assign cate-
gories in TileDB based on the parameters set (a-f ). In
TileDB pre-training phase, a CNN solves a classification
task to categorize the tiling categories. TileDB has 1,000
categories to determine the parameters randomly. To create
instances within each of the categories, we moved vertices
of hexagons horizontally and vertically. To maintain the
shape of the tiles, if a vertex is moved, it is moved in the
opposite direction by the same amount as the vertex located
diagonally. In the actual dataset, 51 horizontal and 21 ver-
tical movements were determined, and each of them was
combined to produce 1,071 images per category.

3.3. Training configuration

We assign a standard training and validation step in
image classification (training: 90 epochs / validation: 90

epochs). That is, we simply pre-train TileDB containing
automatically labeled images. In the fine-tuning step, we
additionally train with the pre-trained parameters on target
datasets. The flow is based on the conventional transfer
learning in CNNs, such as ImageNet / Places pre-trained
models.

Our FDSL is different from the standard SSL testing in
terms of freezing layers. Since our proposed method is not
pre-trained by natural images, full-layer fine-tuning is re-
quired in contrast to the setting of the standard SSL testing.
At the same time, in our experiments, we assign the full-
layer fine-tuning even if the approach is SSL method.

To confirm the properties of TileDB and compare the
pre-trained models with results of previous studies, we used
the ResNet-50 [13]. We simply replaced the pre-training
phase with our FDSL without changing the fine-tuning step.
For pre-training and fine-tuning, we assigned a value of 0.9
to the momentum of the stochastic gradient descent [3], and
a basic batch size of 256. The initial learning rate is set to
0.1 for pre-training and 0.01 for fine-tuning. Both learn-
ing rates were multiplied by 0.1 when the learning epoch
reached 30 and 60. Training was performed up to epoch 90.
Moreover, the input image size was cropped to 224 × 224
pixels from an input image with 256× 256 pixels.

4. Experiment

We evaluated the pre-training effectiveness of the
TileDB pre-trained model. The performance rates during
the fine-tuning phase are shown in Tab. 1 (in FDSL), and
2 (comparisons). With these experimental results, we veri-
fied the effectiveness of our FDSL without natural images,
SSL, and human annotations for (natural) image recogni-
tion tasks. We also show the feature representations with
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(a) Deformation of a regular hexagonal tiling. (b) Curve on two corresponding edges by tiling. In this tile, Edge a+ and f− correspond, and
the inverted pair is f+ after rotation.

Figure 3. Method for making tile images.

Table 1. Classification accuracies of TileDB (proposed), Per-
linNoiseDB, BezierCurveDB pre-trained models with respect to
CIFAR-10/100 (C10/C100) [19], Places30 (P30) [38] and Pascal
VOC 2012 (VOC12) [8] datasets.

Pre-training C10 C100 P30 VOC12
From scratch 87.6 62.7 70.7 58.9
BezierCurveDB [17] 89.7 68.1 73.6 65.4
PerlinNoiseDB [17] 90.9 70.4 74.2 69.9
TileDB (proposed) 92.3 73.5 75.0 69.4

initial convolutional maps (see Figure 1).
Through the experiments, we assign representative

datasets (CIFAR-10/100 [19] 1, Places-30 [38], and Pascal
VOC 2012 [8]]) in image recognition. Places-30 is a sub-
set of Places dataset which consists of 30 randomly selected
categories out of 365 categories.

4.1. Exploration study

First, we compare the proposed TileDB pre-trained
model with from-scratch training from random parameters
in Tab. 1. Regarding PerlinNoiseDB (Figure 1(d)) and
BezierCurveDB (Figure 1(e)), these two datasets have dif-
ferent characteristics, namely, texture- and edge-based pro-
jection with mathematical formulas. The BezierCurveDB
pre-trained model outperformed training from scratch.
Here, we can see the PerlinNoiseDB pre-trained model is
better than the BezierCurveDB pre-trained model. As dis-
cussed in [10], the texture-based representation tends to be
advantageous in image recognition tasks.

The TileDB pre-trained model tends to achieve better
rates than that of the PerlinNoiseDB. A reason why TileDB
is more accurate than PerlinNoiseDB is the representa-
tion with Gabor-like and color-based features in the Conv1
maps. From the ImageNet map (Figure 1(f), the accuracy

1For the experimental setting on CIFAR-10/100, our implementation is
different in terms of input, kernel, stride, and padding sizes. We aligned all
architectures and their hyperparameters for a fair comparison. The experi-
mental settings is following to the previous paper [17].

tends to increase with textured patterns [10]. Moreover, the
Gabor-like features are said to be good representation for
natural image recognition. Although the BezierCurveDB
has Gabor-like features, the representation is quite partial
and grayscale. TileDB also utilizes color representation in
addition to the textured patterns. These characteristics al-
low us to acquire representations similar to those of the Im-
ageNet pre-trained model. Indeed, imitating the representa-
tion in the basis filter of the ImageNet pre-trained model is
one of our objectives.

Figure 4 illustrates the relationships between accuracy
and category/instance in the configuration of TileDB on
CIFAR-10 / 100 datasets. We confirm that the constant
#category (1,000 categories) and varied #instance {16, 32,
64, 128, 256, 512, 1000} is better than vice versa. That is,
#category is more effective for improving the TileDB. We
further evaluate larger categories of 3,000 and 5,000. Al-
though the accuracies were partially improved with 3,000
categories in TileDB, reaching 92.54 on CIFAR-10, the ac-
curacies were saturated with 5,000 categories at 91.6.

4.2. Comparisons

Comparisons with conventional work. We com-
pared our proposed method with representative pre-trained
models in supervised and self-supervised learning. The
models compared are from-scratch training using ran-
dom parameters, Places-30/365 [38], ImageNet-100/1k
(ILSVRC’12) [6], DeepCluster [4], and TileDB. ImageNet-
100 is a model trained on a random selection of 100
categories from ImageNet-1k. For DeepCluster, we pre-
trained the model with both natural images of ImageNet
and formula-generated images of TileDB with 1,000-means
clustering. The properties of pre-training and fine-tuning
followed Section 3.3. Note that the accuracy of the fine-
tuning for the from-scratch and ImageNet pre-trained mod-
els could be different from the related papers since the train-
ing was performed under identical conditions for compari-
son.

Table 2 lists the comparisons between these pre-trained
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Table 2. Classification accuracies of TileDB (proposed), from-scratch, DeepCluster, ImageNet-100/1k and Places-30/365 pre-trained mod-
els. We show the types of pre-trained image (Image) and annotated label (Label).

Pre-training dataset Image Label C10 C100 P30 VOC12
From scratch – – 87.6 62.7 70.7 58.9
DeepCluster Natural Image Self-supervision 89.9 66.9 75.1 67.5
DeepCluster Formula Self-supervision 83.1 57.0 72.8 60.4
Places-30 Natural Image Human-supervision 90.1 67.8 – 69.5
Places-365 Natural Image Human-supervision 94.2 76.9 – 78.6
ImageNet-100 Natural Image Human-supervision 91.3 70.6 – 72.0
ImageNet-1k Natural Image Human-supervision 96.8 84.6 79.5 85.8
TileDB (proposed) Formula Formula-supervision 92.5 73.7 78.0 71.4
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(b) CIFAR-100.

Figure 4. Parameter tuning in #category/#instance on CIFAR

models. The proposed pre-trained model tends to be more
accurate than ImageNet-100/Places-30 pre-trained models,
for example, TileDB 92.5 vs. ImageNet-100 91.3/Places-
30 90.1 on CIFAR-10 and TileDB 73.7 vs. ImageNet-100
70.6/Places-30 67.8 on CIFAR-100. Based on these re-
sults, the performance of the model pre-trained with TileDB
reaches that of a model pre-trained with 100k-order natural
images (ImageNet-100 and Places30 pre-trained models).

Pre-training with TileDB achieved good scores in some
respects. The TileDB pre-trained model achieved similar
values with the Places-365 pre-trained model on CIFAR-10
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(a) TileDB vs. FractalDB in category.
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(b) TileDB vs. FractalDB in instance.

Figure 5. Relationship between accuracy and category/instance on
CIFAR-10. We compare the TileDB and FractalDB pre-trained
models.

(TileDB 92.5 vs. Places 94.2), the ImageNet pre-trained
model on Places-30 (TileDB 78.0 vs. ImageNet 79.5). In
this way, natural image recognition can be enhanced by
TileDB pre-trained model.

We assigned the DeepCluster since the automatic cate-
gorization is similar to our method which is based on a sim-
ple mathematical rule. TileDB varies the parameters to cre-
ate tiling patterns. On one hand, DeepCluster assigns cat-
egories under K-means clustering. The TileDB pre-trained
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models outperform DeepCluster with natural and formula
images. Therefore, the way that categories are defined in
TileDB is more effective than clustering.

Comparisons with FractalDB. Figure 5 illustrates the
relationship between performance rates on CIFAR-10 and
#category/#instance configurations in pre-training. Note
that the we made these figures in our implementation.
The final accuracy in FractalDB-10k (94.1%) [17] is bet-
ter than the TileDB pre-trained model, however, TileDB
pre-training with fewer #category/#instance surpasses the
FractalDB pre-training on CIFAR-10 dataset. This shows
that TileDB does not require a relatively large dataset like
FractalDB to create a pre-trained model. According to the
results, we confirmed the TileDB pre-trained model can be
made without any difficult parameter tunings like a Frac-
talDB pre-trained model. There contains only three main
parameters in TileDB (see Figure 3). Moreover, the graphs
describe that the TileDB tends to be compact dataset con-
figuration in pre-training phase. It is better way to easily
construct a pre-trained model.

Visualization of initial convolutional layer. Moreover,
we compared both FDSL and ImageNet in terms of the ini-
tial convolutional maps. In TileDB, PelinNoiseDB, and
BezierCurveDB, these representations are different from
each other. This means that FDSL is capable of being
activated by different features in an image, depending on
the type of mathematical formula. This feature has sig-
nificant potential for flexibly changing feature representa-
tions in the future. In this paper, our focus is on repro-
ducing an ImageNet-like feature representation; therefore,
the TileDB pre-training is visualizing very similar patterns
(see Figure 1(f) and 1(g)). In fact, the TileDB pre-trained
model performed better than a model pre-trained on Frac-
talDB in a relatively compact (< 1,000 categories) dataset
configuration. On the other hand, in a different way from
the ImageNet-like features, FractalDB enabled to a better
image representation than TileDB pre-training in a larger
10,000 categories × 1,000 instances dataset.

5. Conclusion
We proposed TileDB, a Formula-Driven Supervised

Learning (FDSL) that consists of tiling patterns. Our
TileDB pre-trained model performed much better than a
model trained from scratch and performed similarly to
pre-trained models with 100k-order supervised datasets
(ImageNet-100 and Places-30 pre-trained models). More-
over, visualizations of the first convolutional maps between
TileDB and ImageNet pre-trained models are similar to
each other even though the pre-training images are non-
trivially different.

The framework of FDSL enables to construct a trustwor-
thy pre-trained model in an annotation-free, fairer and more
transparent dataset. The framework of FDSL is defined as

“automatically generate image patterns and their category
labels by assigning mathematical formula”, therefore, we
do not require any human annotation in addition to natu-
ral images. A fairness problem must be alleviated in pre-
training phase since any human-related labels do not appear
in a dataset. Obviously, a dataset transparancy is clear due
to the creation can be done by mathematical formula.
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