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Abstract

We propose an end-to-end model-based cross-view gait
recognition which employs pose sequences and shapes ex-
tracted by human model fitting. Specifically, we consider a
problem setting where gait sequences from single different
views are given as a pair to match in a test phase, while
asynchronous multi-view gait sequences are given for each
subject in a training phase. This work exploits multi-view
constraint in the training phase to extract more consistent
pose sequences from any views in the test phase, unlike
the existing methods do not consider them. For this pur-
pose, given asynchronous multi-view gait sequences, we in-
troduce a phase synchronization step in the training phase
so that we can impose pose consistency at each synchro-
nized phase in a temporally up-sampled phase domain. We
then train our network by minimizing a loss function based
on the synchronized multi-view pose constraint as well as
shape consistency, temporal pose smoothness, recognition
accuracy, etc in an end-to-end manner. We also intro-
duce the synchronization step in a test phase to reduce
intra-subject variations caused by asynchronous pose fea-
tures. Experimental results on the OU-MVLP and CASIA-B
datasets show that the proposed method achieves the state-
of-the-art performance for both gait identification and veri-
fication scenarios, especially a great improvement in terms
of the pose representations.

1. Introduction

Gait recognition [36, 31, 7] aims to identity a walking
person through his/her way of walking. Compared with
other biometrics, it is more advantageous in some real-
world applications such as surveillance, forensics [4, 30],
and criminal investigation [ 8], because of the remote avail-
ability and non-contact properties.

Previous approaches to gait recognition are mainly di-
vided into appearance-based and model-based ones. The
appearance-based approach usually uses silhouette-based
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Figure 1. Examples of pose estimation results. Given multi-view
input images with almost the same phase (gait stance), a state-of-
the-art method (i.e., ModelGait [24]) independently estimates the
3D and 2D body joints in the image-based coordinate, which is
subject to the view variation. Even after transforming them to a
unified human-centered coordinate, the body joints still have cer-
tain differences among the multiple views. On the other hand, our
method could narrow the differences and get more similar body
joints by the synchronized multi-view pose constraint.

representations (e.g., gait energy image (GEI) [13]) and has
been popular in the last two decades due to its simplicity
and effectiveness. The appearance-based approach is, how-
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ever, easily affected by various covariates (e.g., view angles,
carrying status, and clothing).

On the other hand, the model-based approach is gen-
erally more invariant to the covariates, particularly for
view variation when using a 3D human model. More-
over, the model-based gait recognition accuracy has been
improving for the last few years [10, 26, 27] thanks to re-
cent advancement of deep learning-based human model fit-
ting [5, 19]. Especially, a recent model-based gait recog-
nition approach [24] (denoted as “ModelGait”’) which uses
a skinned multi-person linear (SMPL) model [29] as a hu-
man model and integrates the human model estimation and
recognition in an end-to-end framework, outperformed the
state-of-the-art cross-view appearance-based methods.

The existing model-based cross-view gait recognition
methods do, however, not make the most of multi-view gait
sequences in a training phase. More specifically, in a prob-
lem setting of cross-view gait recognition, while gait se-
quences from single different views are given as a pair to
match in a test phase, multi-view gait sequences are usu-
ally given for each subject in a training phase. The existing
approaches independently treat a gait sequence from each
different view in the training phase, and hence estimated
pose sequences from different views cannot be necessarily
similar to each other (see SOTA in Fig. 1).

In this study, we make the most of the multi-view pose
constraint in the training phase so as to infer a more view-
consistent pose sequence (i.e., with less intra-subject varia-
tion) even from a gait sequence of a single arbitrary view.
One of challenges to realize this is that multi-view gait
sequences in the training phase are not necessarily syn-
chronous and hence existing multi-view approaches to hu-
man pose and shape reconstruction [25, 40] cannot be
directly applied. We therefore introduce a synchroniza-
tion process to cope with asynchronous multi-view gait se-
quences. Contributions of this study are threefold.

(1) A view-consistent pose estimator with a synchronized
multi-view pose constraint.

We propose a training framework to estimate a more
view-consistent pose sequence by making the most of asyn-
chronous multi-view gait sequences in the training phase
(denoted as “MvModelGait”). Unlike the existing meth-
ods that independently treat each of the asynchronous gait
sequences in the image-based coordinate, the proposed
method synchronizes pose sequences in a unified human-
centered coordinate to impose multi-view consistency at the
same synchronized phase. As such, we can infer a more
view-consistent pose sequence even from a single arbitrary-
view gait sequence in a test phase (see Ours in Fig. 1).

(2) Better recognition with synchronized pose sequences.

Unlike existing model-based approaches that use asyn-
chronous pose sequences (e.g., pose sequences starting with
different gait stances) for recognition, we introduce the

phase synchronization step to the test phase too. This leads
to better recognition accuracy since we can reduce the intra-
subject variations induced by asynchronous gait sequences.
(3) State-of-the-art performance.

We achieve the state-of-the-art cross-view gait recogni-
tion accuracy by the ensemble of a body shape feature and
the synchronized pose feature on the largest gait dataset
with view variations (i.e., OU-MVLP [43]), and the most
frequently used gait dataset with view, carrying and cloth-
ing variations (i.e., CASIA-B [53]).

2. Related work
2.1. Appearance-based gait recognition

Appearance-based gait recognition methods mainly use
silhouette-based representations as gait features, e.g.,
GEI [13], frequency-domain feature [32], chrono-gait im-
age [45], and even silhouette themselves [38]. Because var-
ious real-life covariates can easily affect these representa-
tions, many efforts have been made to improve their dis-
criminative capability, such as traditional metric learning-
based techniques [50, 11, 33], transformation-based tech-
niques [32, 34, 35], deep convolutional neural networks [4 ],

, 43,48, 54, 6,21, 55,9, 23, 16, 49, 28] and generative
adversarial networks [52, 14, 22]. Among them, the deep
learning-based methods have become the main research di-
rection and achieved the state-of-the-art performance. For
example, Chao et al. [6] proposed the GaitSet network
which regards gait silhouettes as a set. Zhang et al. [55] and
Li et al. [23] proposed disentanglement networks that sep-
arate identity related and unrelated features. Fan et al. [9]
proposed the GaitPart network which makes full use of part
features. Hou et al. [16] proposed the gait lateral network
(GLN) to learn discriminative and compact features.

2.2. Model-based gait recognition

Model-based gait recognition methods mainly consider
pose sequences and body shape parameters obtained by hu-
man model fitting as gait features. Early approaches [44,

, 3, 8, 2] faced difficulties in robustly and accurately fit-
ting a human model, and hence got less satisfactory results.
On the other hand, recent studies [10, 26, 27, 24] overcome
the difficulties by using state-of-the-art human pose estima-
tion methods (e.g., OpenPose [5] and human mesh recov-
ery (HMR) network [19]), and hence are competitive with
appearance-based approaches. For example, Liao et al. [26]
first used OpenPose to extract 2D body joints as the pose
feature, and then fed it to the pose-based temporal-spatial
network. Because the 2D body joints are not invariant to
the view variation, Liao et al. [27] further extended the work
by estimating 3D joints from the 2D ones. Moreover, Li et
al. [24] exploited body shape parameters as well as pose se-
quences extracted in a form of an SMPL model by using the
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HMR network, and optimize the HMR network jointly with
recognition network in an end-to-end manner.

These methods, however, do not make the most of multi-
view gait sequences in the training phase as discussed in
the introduction section unlike the proposed method which
employs the synchronized multi-view pose constraint.

2.3. 3D human pose and shape estimation

Studies on 3D human pose and shape estimation often
infer parametric 3D human body models (e.g., SMPL [29])
from 2D images. Most of them [37, 19] use learning-based
regression models that focus on single-view images. How-
ever, estimation from a single-view image is often subject to
ambiguity. For example, if a person walks towards a cam-
era (i.e., observed from frontal view), estimated forward-
backward motion (e.g., stride length) gets more ambiguous
than that observed from side-view. Naturally, the 3D human
body models could be more accurately estimated by using
multi-view images. Liang and Lin [25] proposed a multi-
view multi-stage framework, which iteratively transfers es-
timated pose and shape across views while the estimated
camera calibration parameters across iteration stages. Shin
and Halilaj [40] proposed a learnable volumetric aggrega-
tion approach to reconstruct 3D human body pose and shape
from calibrated multi-view images.

Note that the above-mentioned multi-view approaches
require multi-view images in the test phase, while the pro-
posed method tackles a cross-view gait recognition scenario
where multi-view gait sequences are given only in the train-
ing phase and gait sequences from single different views are
given in the test phase.

3. MvModelGait
3.1. Overview

We build the proposed MvModelGait upon a state-of-
the-art model-based gait recognition, ModelGait [24] as
a backbone. An overall framework is shown in Fig. 2.
Asynchronous multi-view RGB sequences are first inde-
pendently fed into the backbone ModelGait to extract pose
(3D and 2D body joints) and shape features. The pose fea-
tures are then transformed from image-based coordinate to
the unified human-centered coordinate and further synchro-
nized based on estimated phases. The synchronized pose
features from multiple views are forced to be consistent
by the synchronized multi-view pose constraint L,y _pose a8
well as fed into a CNN to extract more discriminative pose
features for recognition.

3.2. ModelGait to extract pose and shape features

We will briefly explain our backbone ModelGait so that
this paper can be self-contained. Readers may refer to [24]

for more details. Given a cropped RGB sequence, Mod-
elGait extracts pose & € R™ and shape 8 € R!'° param-
eters of the SMPL [29] as well as weak-perspective cam-
era parameters k € R?3, based on the HMR network [19].
The SMPL can generate a triangulated body mesh which
is composed of 6,890 vertices and is differentiable with re-
spect to the SMPL parameters 8 and 3. The silhouettes de-
rived from the SMPL parameters can be rendered by a dif-
ferentiable renderer [15]. Moreover, the pose parameter 3
is converted into 3D and 2D body joint positions as more in-
tuitively understandable pose features, while the shape pa-
rameters are averaged over frames within a sequence so as
to produce a common shape parameter.

Finally, a loss function Ly;g for ModelGait is shown as

LMG = )\innerLinner + )\recontLrecont + Ajoin‘csLjoin‘nSa (1)

where the inner 10ss Linner ensures temporal continuity
of pose and camera parameters as well as consistency of
shape parameters within sequences, the reconstruction loss
Lyecont keeps the consistency between renderer silhouettes
by the SMPL parameters and ground-truth silhouettes so as
to preserve more identity information, the joints 10ss Ljqints
avoids the pose corruption by over-fitting to the ground truth
silhouettes, and coefficients Ainner, Arecont, and Ajoints are
the weight parameters for each corresponding term.

Since the shape features are essentially independent of
phase (gait stance), we can simply introduce multi-view
consistent shape constraint L,y shape just by minimizing
variance of the shape parameters over views regardless of
phases (see Fig. 2), which is defined as

Ny Ny

2 m n 2
Lmv,shape = m mzzjl ng;ﬂ”fshape - fshape”27
2

where Ny is the number of gait sequences from different
views for a certain subject, and fshape is the corresponding
shape feature for a sequence.

3.3. Synchronized multi-view pose constraint

Coordinate transformation. As shown in Fig. 1, the
initial pose features (body joints) estimated from Model-
Gait are defined in the image coordinate, which depends on
observation views and hence induces inconsistency among
different views even for the same pose in 3D. More specifi-
cally, the first three dimensions of the 72-dimensional pose
parameter @ correspond to the 3D root rotation which ro-
tates the remaining 69-dimensional pose parameters defined
in a default coordinate (call it a human-centered coordinate
later) into those in the input image coordinate. We there-
fore simply replace the 3D root rotation with a pre-defined
fixed one (typically, no rotation) to get pose features in the
unified human-centered coordinate (see Fig. 1), which are
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Figure 2. Overall framework of the proposed MvModelGait in the training. The gray-background part indicates the backbone network,
ModelGait, which independently extracts initial pose (body joints) and shape features for multi-view RGB input sequences. The blue-
background part indicates the phase estimator, which estimates the phase information of the input sequences for the latter synchronization.
Lya, Linv_pose and Ly shape are the losses to ensure the unified pose and shape feature extraction from multi-view sequences. Lrecog 1S
the recognition loss computed based on the shape/pose features. Networks parameters are shared for different view angles.

unaffected by the view variation and therefore more suitable
for the view consistency.

Phase estimation and synchronization. Because we
cannot directly impose multi-view consistency on asyn-
chronous multi-view gait sequences, we first apply a phase
synchronization step. Since the ground-truth phase labels of
the training set are generally unavailable and manual phase
annotation is costly, we employ a baseline algorithm [38]
for phase estimation as a pre-processing step in both train-
ing and test stages. In addition, we assume that each subject
has silhouette sequence whose length is the same as his/her
gait cycle.

At first, a certain subject in the training set is chosen as
a standard one for phase estimation, and a silhouette se-
quence whose gait cycle is Ty q frames, is up-sampled so
that a new gait cycle has more frames (let it be Ty, (> Tsta))
by interpolation with free-from deformation-based geomet-
ric transformation [39]. We assign a phase label ¢ to the
i-th up-sampled silhouette I,,;,(¢), and define a set of phase
labels as Py, = {0,1,...,Typ — 1}

We then assume another non-standard subject whose gait

period is T frames (T' < T;,) and whose j-th silhouette
is I(j). If a phase (gait stance) of the initial frame (j =
0) of the non-standard subject corresponds to the phase s
of the standard subject in the up-sampled domain, a phase
of the j-th frame of the non-standard subject corresponds
to the phase (s + |dj|) mod T, of the standard subject,
where d = T,,,/T. Based on the baseline algorithm [38],
we obtain the optimal phase s* by minimizing the sum of
silhouettes differences over frames as
T—1
5" = argmin Y [|Tup((s + [dj]) mod Top) — ()] %

j=0
3)

After obtaining the phase label of the input sequences,
we synchronize all body joints by linear interpolation to
make them temporally consistent with a pre-defined canon-
ical phase label with T" frames in the up-sampled domain
(i.e., asetof labels {|dj] | j =0,...,T —1}).

Loss function. Suppose that we have gait sequences
from Ny different views with T" frames for a certain subject,
and that their corresponding synchronized body joint from
n-th view at the j-th frame is p7 € RM(j = 0,...,T —
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I;m = 1,..., Ny), where pj is an M-dimensional con-
catenated 1D vector of synchronized 3D and 2D body joint
locations, the synchronized multi-view pose constraint is
defined as the following loss function

Ny Ny T-—

=00 lepj - pyli3.

m=1n>m i=0
“)

Lmv,pose = N 1
—

3.4. Recognition

Given a mini-batch of sequences that consists of P sub-
jects and each subject has K sequences from different view
angles (i.e., PK sequences in total), we first extract a
10-dimensional SMPL shape parameter fi,, . = 8 €
R averaged over frames of the i-th gait sequence (i =
1,..., PK) as a shape feature. We then extract a synchro-
nized pose sequence P’ = [p{,...,p% ;] € RM*T from
the i-th gait sequence. The synchronized pose sequence P*
is further fed into a CNN to extract more discriminative
spatio-temporal feature in the same way as [27, 24]. The
CNN architecture is the same as that used in [24], which
is also shown in Table 1. After going through the CNN, a
52-dimensional output vector is used as a final pose feature

! ose € R7? for recognition.

Gait recognition has two different tasks: gait identifi-
cation and verification, thus we use different loss func-
tions Lyecog € {Ltrip, Leont} for different tasks similar
to [43]. Regarding gait identification, all triplet sequences
(Query, Genuine, Imposter) from the mini-batch are se-
lected, and their corresponding features are fed into a triplet
loss function [46] , which is defined as,

N
1
Ltrip = N Z max(m - Dgame + Dgiffv O)a (5)

n=1

where m is a pre-defined margin, D, = If$, — f&3
and D2, = |f& — f7l3 are the squared L2 distances
of the same and different subject pairs in the n-th triplet,
respectively.

Regarding gait verification, all pair sequences
(Probe, Gallery) from the mini-batch are selected,
and their corresponding features and labels are fed into a
contrastive loss function [12] , which is defined as,

Npa:r Npalr
— yp)max(m — D", 0),

cont N ZynDn+7Z
(6)

where m is a pre-defined margin, N, IV, are the number of
same and different subject pairs, and D" = || f% — &3
is the squared L2 distances of the n-th pair, y,, is the corre-
sponding label (if the pair is from the same subject, y,, = 1;
otherwise, y, = 0).

Table 1. The architecture of the CNN for pose features. Each con-
volutional layer is followed by a batch normalization layer and
ReL.U activation function.

Layers Filters Stride Output Size

Convl 64x3x3 2, 1) I xT

Conv2 128%x3%3 2, 1) IxT

Conv3 256x3%3 2,1 ExT
FC 52 - 52

3.5. Training and inferring

The whole network is trained in an end-to-end manner
with a weighted linear sum of the aforementioned losses as

= LMG + /\mv,shapeLmv,shape + )\mv,poseLmv,pose
+ )\recogLrecogy

Ltotal

(N
where Ay shapes Amv_poses aNd Arecog are the weight pa-
rameters, and Liccos is chosen based on the recognition
tasks.

When inferring for a test case, according to the feature
(pose or shape) and tasks to be evaluated, we apply the cor-
responding trained model to extract the required feature f
for the input RGB sequences, then compute the L2 distance
between f for two sequences as a dissimilarity score for
matching.

4. Experiment
4.1. Datasets

We evaluated the proposed method with two publicly
available datasets: OU-MVLP and CASIA-B.

OU-MVLP [43] is the largest database with various view
variations at present. It contains 10,307 subjects with 14
view angles (0°, 15°,...,90°; 180°, 195°, ..., 270°). Each
subject has two sequences with normal walking status per
view. We followed the protocol as [43], and set 5,153 sub-
jects for training, while the rest 5,154 subjects for testing.

CASIA-B [53] is one of the most frequently used gait
databases. It contains 124 subjects with 11 view angles (0°,
18°, ..., 180°). Each subject has 10 sequences with three
walking conditions per view, which are divided into six nor-
mal walking (NM), two bag carrying (BG) and two coat
wearing (CL) sequences. We followed the one of the proto-
cols as [47], and set the first 74 subjects for training, while
the rest 50 subjects for testing. For evaluation, NM #1-4
were assigned as galleries, and the other six were divided
into three probes: NM #5-6, BG #1-2, and CL #1-2.

4.2. Implementation details

Input data. The cropped RGB sequences and their cor-
responding silhouette sequences in a gait period were the
required input data for training. We followed the methods
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Figure 3. Visualization of pose estimation results under different views and walking conditions on CASIA-B. The left part shows the
synchronized RGB input sequences of the half gait period, the middle and right parts are the estimated synchronized 3D and 2D joints in

the human-centered coordinate, respectively.

in [24] to obtain these data. The RGB and silhouette se-
quences were then scaled to 224 x 224 and 64 x 64 for
HMR regression and differentiable renderer, respectively.
The temporal up-sampled frame number 73,, was set to 150
for fine-grained phase estimation. The frame number 7" in a
period was set to 15 to save the memory. Thus, we generally
chose 15 frames at equal intervals from the real gait period,
while ignoring those with less than 15 frames. The dimen-
sion M for the pose feature was set to 120 as we chose 24
joints (23 joints + 1 root joint) and each of them has 5D (3D
+ 2D) locations.

Training detail and parameters. The proposed Mv-
ModelGait has the same number of network parameters as
ModelGait [24], and shares a similar training strategy. First,
the HMR was initialized with a pre-trained model in [19],
while other layers was initialized with default values. Then,
the optimizer Adam [20] was initialized with the learning
rate 10~%. After a certain number of iterations, the learning
rate was reduced by 10 times. For OU-MVLP, our model
ran for a total of 60K iterations and the learning rate was
reduced at 30K. For CASIA-B, our model ran for a total of
15K iterations and the learning rate was reduced at 10K.

In a mini-batch, (P, K') was set to (8, 8). The margin m
in Egs. (5) and (6) was set to 0.2. The hyper-parameters in
Eqgs. (1) and (7) were basically set to 1, except for Ajoints =
100 and Ay _pose = 0.01.

Evaluation metrics. The rank-1 identification rate (de-
noted as Rank-1) and the equal error rate (denoted as EER)
were used for performance evaluation on identification and
verification tasks, respectively.

4.3. Pose visualization

Figure 1 shows the comparison of pose estimation results
between the backbone alone (i.e., ModelGait [24]) and the
proposed method. For RGB input sequences from four view
angles with a similar pose, ModelGait estimates the 3D and
2D body joints in the image-based coordinate, which is vari-
ant to the view variation and causes a lot of difficulties for
recognition. Even if they are transformed to the unified

human-centered coordinate, there still exists relatively large
differences. On the other hand, the proposed method could
make the most of the multi-view pose constraint so as to
narrow the differences and generate more consistent joints.

In addition, we visualize the cases under different views
and walking conditions in Fig. 3. The RGB input sequences
are coarsely selected frames from nearly a half gait period
(8 frames). The 3D and 2D joints are synchronized to be
temporally consistent with a pre-defined canonical phase
label, which starts with a double-support phase. Note that
there might exist discretization error between actual phases
for the RGB input sequences and assigned discrete phases
for the 3D/2D joints (chosen from T, discrete phases).
This figure shows the proposed method could well handle
different walking conditions (NM, BG or CL) and estimate
consistent body joints of the same subject. Regarding dif-
ferent views, the body joints are successfully transformed
into the unified human-centered coordinate, which are more
suitable for the pose constraint and recognition.

Regarding the difficult case (0°vs. 90°), the estimated
3D joints show some bias, especially for the stride length.
This may because the initial 3D pose estimation of the pro-
posed method is still dependent on the input view to some
extent, thus the ill-pose problem in the 3D pose estimation
cannot be completely solved only by the proposed multi-
view pose constraint. Despite this, the 2D joints are much
more similar and may occupy more weights for recognition.

4.4. Comparison with the state-of-the arts

OU-MVLP. Table 2 shows the comparison of the pro-
posed method and the baseline ModelGait [24] based on
the angular differences of four typical views (i.e., 0°, 30°,
60°, 90°). We also introduce an ensemble version of pose
and shape features by averaging their dissimilarity scores.

From the results, the proposed method shows large im-
provement on the pose feature, i.e., 3.8% higher Rank-1
identification rate and 0.12% lower EER, and the perfor-
mance degradation from 0°to 90°angular difference is also
reduced from 23.8% to 16.4%, which indicates the effec-
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Table 2. Rank-1 identification rates and EERs of our method and ModelGait [

] on OU-MVLP based on the angular differences. Models

are trained using all view angles, while tested based on the angular differences of four typical views (i.e., 0°, 30°, 60°, 90°). Bold indicates
the best accuracy. This convention is consistent throughout this paper.

Rank-1 [%] EER [%]

Methods Angular difference Angular difference
0° 30° 60° 90° Mean 0° 30° 60° 90° Mean
ModelGait (pose) [24] 98.3 91.9 81.9 74.5 88.8 0.19 0.30 0.41 0.58 0.33
Ours (pose) 98.9 94.7 88.0 82.5 92.6 0.13 0.20 0.25 0.31 0.21
ModelGait (shape) [24] 99.6 97.7 95.0 91.4 96.7 0.12 0.19 0.23 0.29 0.19
Ours (shape) 99.5 97.8 95.3 91.8 96.8 0.11 0.17 0.21 0.31 0.18
ModelGait (ensemble) [24] | 99.5 98.2 95.2 91.3 96.9 0.12 0.19 0.14 0.28 0.17
Ours (ensemble) 99.6 95.8 99.0 93.4 97.3 0.10 0.14 0.11 0.19 0.13

Table 3. Rank-1 identification rates and EERs for each probe view averaged over the 14 gallery views on OU-MVLP, where the identical

view is excluded. “-” means not provided. The upper and lower blocks of Rank-1 identification rates are the results without and with
non-enrolled probes, respectively.
Methods Probe view
0° 15° 1 30° | 45° | 60° | 75° | 90° | 180°| 195°| 210°| 225°| 240°| 255°| 270° | Mean

PTSN-O [1] 64 | 11.0| 154 | 188 | 176 | 151 | 88 | 52 | 10.6 | 105 | 173 | 146 | 11.6 | 7.7 | 122

PTSN-a [1] 11.8 | 19.0| 239 | 265| 249 | 206 | 147 | 6.1 | 11.6 | 142 | 22.1 | 21.3 | 179 | 143 | 17.8

GaitSet [0] 84.7 | 93.6 | 96.7 | 96.7 | 93.6 | 953 | 942 | 869 | 92.8 | 96.0 | 96.1 | 93.0 | 945 | 92.8 | 93.3

ACL [54] 74.0 | 883 | 94.6 | 954 | 88.0 | 91.3| 90.0 | 76.7 | 89.5| 95.0 | 949 | 88.0 | 90.8 | 89.8 | 89.0

GaitPart [9] - - - - - - - - - - - - - - 95.1

Rank- GLN [ ] 893 | 958 | 979 | 97.8 | 96.0 | 96.7 | 96.1 | 90.7 | 953 | 97.7 | 97.5 | 95.7 | 96.2 | 953 | 95.6

1 [%] ModelGait [24] | 92.8 | 96.2 | 96.8 | 963 | 94.7 | 96.6 | 96.6 | 93.5| 954 | 96.3 | 96.7 | 96.5 | 96.5 | 96.2 | 95.8

Ours 93.5| 96.5| 97.1 | 969 | 957 | 968 | 97.1 | 93.7 | 95.6 | 96.6 | 97.0 | 97.1 | 97.1 | 97.0 | 96.2

GaitSet [6] 79.5| 879 | 899 | 90.2 | 88.1 | 88.7| 87.8 | 81.7 | 86.7 | 89.0 | 89.3 | 87.2 | 87.8 | 86.2 | 87.1

GaitPart [9] 82.6 | 889 | 90.8 | 91.0 | 89.7 | 89.9 | 89.5| 852 | 88.1 | 90.0 | 90.1 | 89.0 | 89.1 | 88.2 | 88.7

GLN [16] 83.8190.0 | 91.0| 91.2 | 90.3 | 90.0 | 89.4 | 853 | 89.1 | 90.5 | 90.6 | 89.6 | 89.3 | 88.5 | 89.2

Ours 87.7 | 89.7| 91.1 | 90.1 | 89.8 | 90.3 | 90.3 | 88.1 | 89.4 | 89.4 | 90.0 | 90.8 | 90.0 | 89.7 | 89.7

PTSN-O [1] 160 | 133 | 13.0 | 11.2 | 11.6 | 128 | 17.1 | 17.6 | 149 | 189 | 123 | 132 | 149 | 182 | 14.6

EER PTSN-a [1] 151 | 125 ] 119 | 11.1 | 11.2 | 12.5| 148 | 222 | 17.8 | 21.3 | 11.8 | 11.9 | 13.0 | 14.7 | 144

(%] GaitSet [0] 1451 093 | 076 | 0.75]| 0.99 | 0.79 | 0.86 | 2.80 | 1.61 | 1.53 | 2.20 | 1.83 | 1.15| 1.00 | 1.33

ModelGait [24] | 0.34 | 0.34 | 0.20 | 0.18 | 0.31 | 0.26 | 0.17 | 0.28 | 0.28 | 0.36 | 0.34 | 0.21 | 0.20 | 0.20 | 0.26

Ours 029029 0.18| 0.14 | 0.24 | 0.23 | 0.15| 0.24 | 0.22 | 0.27 | 0.24 | 0.18 | 0.17 | 0.17 | 0.21

tiveness of the proposed synchronized multi-view pose con-
straint in solving the view covariate. For the shape fea-
ture, the proposed method achieves similar performance as
the baseline because the proposed synchronized multi-view
pose constraint has almost no effects on it. Whereas for the
ensemble, the proposed method achieves better results ow-
ing to the improvement of the pose feature.

Table 3 shows the comparison of the proposed method
and other state-of-the-arts. Because probe sets contain some
subjects that are not in the gallery, we provide both results
with and without non-enrolled probes for rank-1 identifi-
cation rates. The results of ModelGait and the proposed
method are from the ensemble ones, while those of indi-
vidual pose and shape features are reported in the supple-
mentary material. From the results, the proposed method
achieves the best performance for both scenarios.

CASIA-B. Table 4 shows the comparison of the pro-
posed method and other state-of-the-arts. For three different
settings (i.e., NM, BG and CL), the proposed method was
trained on three different training set including the corre-

sponding probe and gallery sets. Similar to OU-MVLP, the
results of ModelGait and the proposed method are from the
ensemble ones, while those of individual pose and shape
features are reported in the supplementary material. For
NM setting, the proposed method achieves the best rank-
1 identification rate of 98.1%. For BG and CL settings,
the proposed method yields the second best rank-1 identi-
fication rates of 93.4% and 80.7%, respectively. This may
because the influence of carrying and clothing changes on
the SMPL model estimation is relatively greater than the
normal walking status. Note that the proposed method is
still comparable with the best benchmarks (e.g., 0.6% lower
than GLN [16] for BG, 0.8% lower than MT3D [28] for
CL), and the two benchmarks are worse than the proposed
method for the other two settings. On average over the three
settings, the proposed method achieves the best accuracy.

4.5. Ablation study

The proposed method has two important components:
synchronized multi-view pose constraint in the training
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Table 4. Rank-1 identification rates [%] of comparison methods on CASIA-B using the first 74 subjects for training. The mean result over
all 10 gallery views for each probe view is given, where the identical view is excluded.

Probe view
Probe Methods 0° | 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean
ViDP [17] : : T 642 | - 604 - [650] - - ; -
CNN ensemble [47] | 88.7 | 95.1 | 982 | 96.4 | 94.1 | 91.5 | 93.9 | 975 | 98.4 | 958 | 85.6 | 94.1
Takemura’s [43] 832 1912|958 | 934 | 912 | 87.8 | 89.4 | 93.6 | 96.0 | 958 | 81.6 | 90.8
PSTN [48] 870 | 938 | 962 | 944 | 922 | 91.8 | 92.0 | 95.0 | 96.0 | 96.4 | 848 | 92.7
Song’s GaitNet [42] | 75.6 | 91.3 | 91.2 | 92.9 | 92.5 [ 91.0 | 91.8 | 93.8 | 929 | 94.1 | 81.9 | 89.9
Zhang’s GaitNet [55] | 91.2 | 92.0 | 90.5 | 95.6 | 86.9 | 92.6 | 93.5 | 96.0 | 90.9 | 88.8 | 89.0 | 91.6
NM s | Gaitset [6] 90.8 | 97.9 | 99.4 | 96.9 | 93.6 | 91.7 | 95.0 | 97.8 | 98.9 | 96.8 | 858 | 95.0
GaitPart [0] 94.1 | 98.6 | 993 | 985 | 940 | 923 | 959 | 98.4 | 99.2 | 97.8 | 90.4 | 962
GLN [16] 932993 | 995 | 987 | 96.1 | 95.6 | 97.2 | 98.1 | 99.3 | 98.6 | 90.1 | 96.9
ACL [54] 92.0 | 98.5 | 100.0| 989 | 957 | 91.5 | 945 | 97.7 | 984 | 96.7 | 91.9 | 96.0
MT3D [28] 95.7 | 9821990 | 975 | 95.1 | 93.9 | 96.1 | 98.6 | 99.2 | 982 | 92.0 | 96.7
PoseGait [27] 553 | 69.6 | 73.9 | 75.0 | 68.0 | 682 | 71.1 | 72.9 | 76.1 | 704 | 554 | 687
ModelGait [24] 96.9 | 97.1 | 985 | 984 | 97.7 | 982 | 97.6 | 97.6 | 98.0 | 98.4 | 98.6 | 97.9
Ours 975 | 976 | 986 | 988 | 97.7 | 98.9 | 98.9 | 973 | 97.6 | 97.8 | 97.9 | 98.1
B[] 642 | 80.6 | 827 | 769 | 648 | 63.1 | 68.0 | 769 | 82.2 | 754 | 613 | 72.4
Zhang’s GaitNet [55] | 83.0 | 87.8 | 88.3 | 93.3 | 82.6 | 74.8 | 89.5 | 91.0 | 86.1 | 81.2 | 85.6 | 85.7
GaitSet [0] 83.8 | 912 | 91.8 | 88.8 | 83.3 | 81.0 | 84.1 | 90.0 | 922 | 944 | 79.0 | 872
GaitPart [] 89.1 | 948 | 967 | 95.1 | 883 | 949 | 89.0 | 93.5 | 96.1 | 93.8 | 858 | 91.5
BG#1-2 | GLN[16] 91.1 | 977 | 97.8 | 952 | 925 | 912 | 92.4 | 96.0 | 97.5 | 950 | 88.1 | 94.0
MT3D [28] 91.0 | 954 | 975 | 942 | 923 | 869 | 91.2 | 95.6 | 97.3 | 96.4 | 86.6 | 93.0
PoseGait [27] 353 | 472 | 524 | 469 | 455 | 439 | 46.1 | 48.1 | 494 | 43.6 | 31.1 | 445
ModelGait [24] 94.8 | 929 | 93.8 | 945 | 93.1 | 92.6 | 94.0 | 94.5 | 89.7 | 93.6 | 90.4 | 93.1
Ours 93.9 | 925 | 929 | 94.1 | 93.4 | 93.4 | 95.0 | 94.7 | 92.9 | 93.1 | 92.1 | 934
LB [1]] 377 | 572 ] 666 | 61.1 | 552 | 54.6 | 552 | 59.1 | 58.9 | 48.8 | 39.4 | 54.0
Zhang’s GaitNet [55] | 42.1 | 582 | 65.1 | 70.7 | 68.0 | 70.6 | 653 | 69.4 | 51.5 | 50.1 | 36.6 | 58.9
GaitSet [0] 614 | 754 | 807 | 773 | 721 | 70.1 | 715 | 73.5 | 73.5 | 68.4 | 50.0 | 70.4
GaitPart [9] 70.7 | 855 | 869 | 833 | 77.1 | 725 | 76.9 | 82.2 | 83.8 | 802 | 66.5 | 787
CL#1-2 | GLN[16] 706 | 82.4 | 852 | 827 | 792 | 764 | 762 | 789 | 77.9 | 7187 | 643 | 775
MT3D [28] 76.0 | 87.6 | 89.8 | 850 | 812 | 75.7 | 81.0 | 84.5 | 854 | 822 | 68.1 | 81.5
PoseGait [27] 243 [ 297 | 413 | 38.8 | 382 | 385 | 41.6 | 449 | 422 | 334 | 225 | 36.0
ModelGait [24] 78.2 | 81.0 | 82.1 | 828 | 803 | 769 | 755 | 77.4 | 723 | 735 | 742 | 776
Ours 77.0 | 80.0 | 83.5 | 86.1 | 84.5 | 84.9 | 80.6 | 80.4 | 77.4 | 76.6 | 769 | 80.7

phase and temporally synchronized pose features in the test
phase. We analysis the contributions of each component
and provide their respective results in Table 5. The pose
feature was used to conduct the ablation study since the
effect of these two components is larger on the pose than
on the shape. As results, it turns out that both components
contribute to the proposed method, and the best accuracy is
achieved when both of them are employed.

5. Conclusion

This paper describes an end-to-end model-based gait
recognition approach using the synchronized multi-view
pose constraint. Specifically, we make the most of asyn-
chronous multi-view gait sequences in the training phase
so that we can generate more view-consistent pose se-
quence from arbitrary single-view gait sequence in the train-
ing phase. As a direct benefit from the synchronization,
temporally aligned pose features are employed not only in
the training phase but in the test phase to further improve

Table 5. Ablation study using pose feature under different walking
conditions on CASIA-B. The mean Rank-1 rate [%] of all cross-
view results is presented. “TSP” means temporally synchronized
pose features.

Methods NM BG CL
Ours (W/0 Ly _pose) 91.8 86.2 60.7
Ours (w/o TSP) 91.5 86.8 61.8
Ours 93.1 88.0 64.3

the accuracy. Experimental results show that the proposed
method outperforms other state-of-the-art methods.

Because pose and shape features are separately treated
in the training and test phases in this work, the integration
of both features is worth exploring in the future. We will
also replace the baseline algorithm for phase synchroniza-
tion with deep learning-based phase sequence estimator.
Acknowledgment This work was supported by JSPS KAK-
ENHI Grant No. JP19H05692 and JP20H00607, MEXT
“Innovation Platform for Society 5.0” Program Grant Num-
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