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Abstract

Novel solutions in the area of Explainable AI (XAI)
have made a significant breakthrough in increasing the
trust of end-users in Machine Learning (ML) models. How-
ever, validating the performance of these solutions remains
a challenging task. In this work, we focus on evaluating
the methods that attribute a model’s decision to their in-
put features. The prior metrics on this topic fail to con-
sider multiple properties that a usable explainability so-
lution should satisfy. Also, conducting experiments to as-
sess the concreteness of the explanations provided by these
solutions in large-scale datasets consumes excessive time
and resources. To overcome these shortcomings, we pro-
pose the Small-scale Visual Explanation Analysis (SVEA)
benchmark, which comprises the recent minimal MNIST-1D
dataset. Our proposed benchmarking tool aids the practi-
tioners and researchers to perform experiments on the Ex-
plainable AI methods without the need to access expensive
computational devices. Furthermore, we offer a framework
to evaluate various characteristics of the state-of-the-art
XAI methods and include several widely used interpretabil-
ity solutions in the SVEA benchmark to perform a thor-
ough analysis of their completeness and understandability.
The results obtained from our proposed evaluation metric
suggest that specific approaches lack the ability to transfer
the chosen model’s understanding to a second interpretable
model by the explanations generated. The users can repli-
cate our experiments within few minutes before working ex-
tensively on other larger datasets, thereby saving a lot of
experimental time and effort.

1. Introduction

As one of the considering directions in Trustworthy
AI [16], Explainable AI has become a highly demand-
ing field in a variety of real-world applications, such as
healthcare, autonomous driving, criminal justice, and fi-
nance [15, 4, 24]. The solutions proposed in this area lead
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Figure 1. Key features of the dataset and model employed in our
proposed benchmark.

a large group of developers, theorists, ethicists, and stake-
holders to achieve a more concrete understanding of the de-
cision mechanism of Machine Learning (ML) models and
increase their trust in the decisions made by these models
[22]. However, evaluating the performance of explanation
methods remains a significant challenge in both industrial
and academic research [11].

A concrete explainable AI method must accompany both
the target model and end-users as an interface between
computer-based predictors and humans. In general, expla-
nations are expected to be faithful from the model’s per-
spective. They should correctly depict the exact behavior of
the target model in a particular scope. From the users’ side,
explanations should be understandable and must provide
them with transparent and interpretable insights regarding
the model’s decision-making procedure [4]. If an explain-
able AI method’s output satisfies ‘faithfulness’ and ‘under-
standability’, it can be further extended for functional pur-
poses such as model understanding, model debugging, and
detecting dataset biases.

The expected properties of explanation algorithms are
organized more accurately in the “Explainability fact sheet”
proposed in [31]. According to this fact sheet, each explain-
ability solution should satisfy several properties to be con-
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sidered “usable” from the users’ point of view. Developing
a framework to assess these properties simultaneously is an
ambitious task, especially in large-scale applications such
as high-resolution image processing. The need for excessive
resources such as ample memory space and faster GPUs,
the training time, and providing feature-level annotations or
human feedback are common shortcomings among most of
these experiments that hinder the students and researchers
from taking advantage of these valuable frameworks.

To circumvent these limitations, we introduce a small-
scale framework to benchmark the attribution methods that
are functional in ML-based image and signal processing
applications. Attribution methods are a specific subgroup
of post-hoc and local explainability methods (according to
the terminologies defined in [31]) that take a trained tar-
get model and image (or signal data) as inputs and output
a heatmap with the same shape as the input that highlights
the features that are the most important towards the model’s
prediction.

Our proposed framework inherits the MNIST-1D dataset
[10], a low-dimensional analogous of the renowned MNIST
dataset [14]. This dataset was initially developed to enable
the researchers to study deep learning cases that mainly
focus on data recognition on a much small scale. Unlike
these objectives, we utilize the MNIST-1D dataset to in-
spect the faithfulness and understandability of the post-hoc
interpretability solutions in small scales. Carrying experi-
ments on such a scale aids in promoting future research in
this field as a whole. Our contributions in this work can be
summarized as follows:

• We present a low-memory and low-compute bench-
mark to compare the performance of state-of-the-art at-
tribution methods in various aspects. Our benchmark-
ing tool allows researchers and practitioners to ex-
plore solutions for model interpretability without deal-
ing with the burdensome problems in large-scale envi-
ronments.

• We propose a validation experiment that strictly mea-
sures the usability of attribution methods without the
need for complicated feature-level annotations or hu-
man resources.

2. Related Works
As stated in [7], the approaches to validate the explana-

tion algorithms are classified into three types: application
level, human level, and function level.

2.1. Application Level Validation

The explanations are evaluated on real tasks at this level
by comparing with the explanations provided by a domain
expert. In terms of attribution methods, the visual explana-
tions are compared with ground truth annotations such as

bounding boxes or segmentation masks. These metrics are
also termed as ground truth-based metrics [25].

For instance, evaluation metrics such as Pointing Game
(PG) [35] and its expanded version, Energy-based Point-
ing Game (EBPG) [33, 19], quantify the fraction of en-
ergy in a set of explanations that are located inside their
corresponding ground truth labels. Moreover, the Bounding
box metric [26] as an adaptive analogous for mean Intersec-
tion over Union (mIoU), calculates the portion of the most
highlighted features captured by the annotation masks. In a
more novel experiment designated in [34], attribution meth-
ods are evaluated by being applied on two different mod-
els trained on a crafted dataset containing foreground and a
background class.

2.2. Human Level Validation

Human-level validation experiments evaluate the under-
standability and satisfaction of the explanations by includ-
ing people in the loop. This type of evaluation, which re-
lies on getting direct feedback from the users engaged with
the model, can be performed by asking the users to rate the
explanations generated by explainability methods or utiliz-
ing the explanations to perform specific tasks [7, 13, 21].
To carry human-level validation experiments, some prior
works [24, 27] created interfaces that enable the individuals
to compare multiple explanations in various aspects, such
as class discrimination, visual clarity, and trustworthiness.

2.3. Function Level Validation

This type of validation primarily evaluates the explana-
tions’ correctness by measuring the correlation between the
model’s behavior and the provided explanations. When it
comes to evaluating attribution methods, function-level val-
idation can be conducted in several ways. For instance, pairs
of metrics such as “Drop and Increase rate” and “Insertion
and Deletion” validate the faithfulness of explanations by
observing the model’s output when it is fed only with the
input features indicated as important by the explanations
[18, 5, 6, 33, 9]. The Remove and Retrain (ROAR) met-
ric runs by retraining the target model from scratch using
only the features that scored the highest by an attribution
method [12]. The sensitivity-n experiment operates by sta-
tistical computation of the covariance of the explanations
and the model’s predictions by applying random perturba-
tions in the input domain [3]. Instead of pre-defined ground
truth labels, these experiments consider the model’s predic-
tion to the given input as an evaluation baseline. Hence, they
are termed as model truth-based metrics. Furthermore, an-
other series of function-level experiments focus on evalu-
ating the explanation algorithms’ sensitivity to the model’s
specifications and parameters [2].

Compared with the two former validation types, a signif-
icant advantage of function-level experiments is that they
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Figure 2. Samples from the MNIST-1D data [10] and their corresponding Regions of Explanation (ROEs) extracted using SISE method
[25].

do not require providing extravagant information such as
annotations and user feedback to operate. Hence, they are
compatible with any ML-based model regardless of their
application. Our proposed validation framework can be cat-
egorized into function-level experiments. Unlike the prior
experiments in the same category, our benchmark takes ac-
count for a broader range of properties to guarantee the us-
ability of attribution methods [31].

3. Small-scale Visual Explanation Analysis
(SVEA) Benchmark

The Small-scale Visual Explanation Analysis (SVEA)
benchmark is designed to perform the function-level valida-
tion tasks quickly and efficiently reproducible. To achieve
our defined goal, we utilize MNIST-1D [10], a synthetic
dataset containing low-dimensional encoded data. When a
non-interpretable model trained on this dataset is provided
to a well-performing attribution method, it can decode the
data in a representative manner by discovering the model’s
understanding of the underlying data. We also designate an
evaluation framework that works by asking an interpretable
model to replicate the target model’s task by employing the
baseline model’s explanation.

Our proposed benchmark includes four main compo-
nents: 1) The training and test data in the MNIST-1D
dataset, 2) A trained baseline predictive model, 3) An in-
terpretable linear classifier, and 4) A set of state-of-the-art
visual explanation algorithms. The significant advantage of
our proposed benchmark is that it allows simulations to run
without demanding an unreasonable amount of time, mem-
ory, and external acceleration devices like GPUs.

3.1. The MNIST-1D Dataset

As stated above, this minimal analogous for the MNIST
dataset was initially introduced to be applied in case studies
such as predicting lottery tickets, observing deep double de-
scent, and meta-learning [10]. However, this dataset has not
yet been employed for analyzing model interpretation tech-
niques in small scales. In this work, we utilize this dataset

to considerably decrease the computational overhead of our
validation experiments on novel attribution methods.

The MNIST-1D dataset is functional in real-world digit
classification. Though the training samples in this dataset
are 20 times smaller than MNIST, this dataset distinguishes
the critical machine learning models more broadly in terms
of test accuracy. In terms of structure, the main difference
between these datasets is that instead of handwriting images
representing the digits 0-9, the samples in the MNIST-1D
dataset are formed based on ten one-dimensional template
patterns, as shown in Fig. 2 which resemble the original dig-
its. Each MNIST-1D sample is created as follows:

1. Select the template for each class label. (Each template
is a one-dimensional pattern consisting of 12 points.)

2. Pad the template by randomly adding 36-60 points.

3. Apply random transformations such as translation, 1-D
shearing, and Gaussian noise addition.

4. Finally, scale and downsample the pattern to 40 points.

This procedure implies that in each MNIST-1D sample,
at least 70% of the data points do not represent the actual
template related to the sample’s correct label. Moreover,
since the samples are affected by random translation, the
spatial information of the patterns is not a reliable evidence
in the classification procedure. Hence, translation-variant
models such as linear classifiers fail to achieve a high classi-
fication accuracy in the MNIST-1D dataset. Fig. 3 illustrates
this massive gap between a logistic regressor and a Convo-
lutional Neural Network (CNN).

3.2. Region of Explanation (ROE)

To address the drawbacks of models with spatial induc-
tive biases, a simple but novel idea is to train them using the
visual explanations reached from a more complicated and
translation-invariant model instead of the original data. This
idea connects linear signal classification and Explainable
AI. The intuition behind this idea is to replace the noisy data
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Figure 3. The test accuracy for different classification models
trained on the MNIST-1D dataset, as reported in [10].

with their corresponding common features (CF) to avoid
manipulating the linear models in their learning process. As
defined in [34], a common feature is a set of points with
some semantic meaning that commonly appear in all exam-
ples of one class. In terms of the MNIST-1D dataset, com-
mon features are a set of connected data points representing
a template related to a specific digit. Hence, a usable ex-
planation method is expected to extract the common feature
from each given sample with a well-trained model on this
dataset.

Given a set of a model, input data, and attribution
method, we define the term Region of Explanation (ROE) as
a set of connected points in the input domain highlighted by
the attribution method as the most important in the model’s
prediction. Taking this definition into account, the ROEs de-
termined by an ideal attribution method should point out
the common features, which are the defined digit templates,
in our case. Thus, extracting ROEs using a well-performed
attribution method helps to learn an interpretable classifier
more accurately while eliminating the effect of spatial vari-
ation among the dataset.

3.3. Baseline Model

We trained an extremely shallow CNN with the same
architecture used in [10] as the baseline, shown in Fig. 1.
This selection allows us to evaluate the attribution methods
that are specialized to be applied only to CNNs (e.g., Grad-
CAM, Grad-CAM++, SISE [27, 5, 25]), as well as the pop-
ular model-agnostic methods (e.g., Integrated Gradients,
RISE [32, 18]). Considering that the baseline model con-
tains only 13,960 trainable parameters, training this model
from scratch is not a time-consuming process, even if done
without a GPU. For our use case, we trained this network
for 200 epochs using Stochastic Gradient Descent (SGD)

XAI algorithm

Yes

Yes

No

No
Region of

Explanation (ROE)

Template for
the predicted Class 6

Figure 4. The schematic diagram to extract the Region of Expla-
nation (ROE) for a given sample input. Each visual explanation
algorithm outputs a set of connected data points with dimension
l = 12 as the ROE associated with the input data given to the
baseline model.

optimizer and achieved a test accuracy of 87.7%. More de-
tails regarding the performance of the baseline CNN are
provided in the supplementary material.

Denoting the baseline model as Ψ : RL → R|C| and
the input as x ∈ RL, an attribution method generates the
explanation for the model’s top prediction indicated as s ∈
RL, whereL is the size of the data (40 in our case), andC =
{0, 1, ..., 9} is the set of output classes (digits). In particular,
we define the ROE for this pair as a window of size l = 12,
centered by the data point with the highest importance score
in s, based on the condition,

l < arg max
1≤i≤L

(s(i)) < L− l (1)

If this condition is not satisfied, it implies that the highest
scored point is adjacent to the signal’s origin or end. Then,
the window matches the first or last l points. Fig. 4 shows
the procedure to extract ROE for a given input.

3.4. ROE Understandability Test

The usability of attribution methods can be validated by
employing the ROEs they determine to learn and evaluate
a translation-variant model. Unlike the ground truth-based
metrics that measure the explanations’ understandability by
matching them with human-crafted annotations, our pro-
posed test evaluates the ability of the explanations to trans-
fer the baseline model’s understanding to a second model
whose functionality is easy to interpret. Also, similar to the
ROAR experiment [12], our test accounts for validating the
“completeness” of the explanations generated by attribution
methods and assess whether the explanations can be gener-
alized and framed into a specific context.
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Figure 5. The schematic of the Region of Explanation (ROE) Understandability Test. Linear classifiers are not able to reach a high test
accuracy, when trained on the original MNIST-1D training data (left subfigure). In the ROE understandability test, the original MNIST-1D
data are replaced with the ROEs obtained by applying a visual explainabilty algorithm to the baseline model. The increase in the test
accuracy of the linear classifier indicates the understandability of the employed visual explainability algorithm (the right subfigure).

We coin our proposed test as ROE Understandability
Test. To conduct this test, we choose a 10-class linear classi-
fier as the hypothesis set, which is denoted by Γ : RL → C.
The applied Support Vector Machine (SVM) [20] learning
algorithm is defined as A. This function receives the set of
hypotheses Γ and a training set as input and returns a trained
function γ ∈ Γ. Representing the training set of the MNIST-
1D dataset as D = {(x(i), y(i))|i ∈ {1, ..., N}} where
N = 4000 is the number of training samples and x(i) and
y(i) indicate the i-th training data and label respectively, the
trained classifier is formulated as,

γ = A(Γ,D) (2)

On the other hand, we denote the test set of the MNIST-1D
as D′ = {(x′(i), y′(i))|i ∈ {1, ..., N ′}} where N ′ = 1000
is the number of test samples and x′(i) and y′(i) represent
the i-th test data and label, the test accuracy of the trained
SVM is calculated as,

z(γ,D′) = Ei∈{1,...,N ′}[γ(x′(i)) 6= y′(i)] (3)

In our benchmark, we replace the original training and test
data with the ROEs derived by attribution methods when
applied to the baseline model Ψ(.). Each selected attribu-
tion method denoted as the function g : (Ψ(.),RL) → RL,
extracts the ROE from the input data as instructed in the
previous subsections. For each input x, this region of expla-
nation is notated as ROE(g(x,Ψ)). Hence, an attribution
method g reformats the datasets D and D′ as follows:

Dg = {(ROE(g(x(i),Ψ)), y(i))|i ∈ {1, ..., N}} (4)

D′g = {(ROE(g(x′(i),Ψ)), y′(i))|i ∈ {1, ..., N ′}} (5)

Considering these reformatted datasets, the linear classifier
model trained with the training set Dg is formulated as:

γg : RL → C = A(Γ,Dg) (6)

The model’s test accuracy Rg is evaluated by replacing the
original test set with only the ROEs for the test data. The
achieved accuracy rate is considered a metric to quantify
the extent to which the attribution method g can transfer the
baseline model’s understanding to a human-understandable
model.

Rg = Ei∈{1,...,N ′}[γ(ROE(g(x′(i),Ψ)) 6= y′(i)] (7)

The test accuracy reached from the Eqn. (7) is the output of
the ROE test when it is applied on the attribution method
g. The higher this value is, the more soundness, complete-
ness, contextfulness, and actionability (refer Sec. 5 for def-
initions) is offered by the method g.

The detailed methodology of the proposed ROE test is
depicted in Fig. 5. Using any attribution method g that offers
sound and complete explanations, the expected result is that
pre-processing the training and test data by extracting the
ROEs defined by the attribution method improves the linear
model’s classification accuracy (z(γg,D′g) > z(γ,D′)),
given that the baseline model is well-trained. The achieved
higher test accuracy Rg indicates the better ability of the at-
tribution method g in forming concrete, sound, and under-
standable explanations and its usability in real-world tasks.

4. Empirical Results
With the components introduced in the previous sec-

tion, we implement the SVEA framework for the MNIST-
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Figure 6. The qualitative results of six different attribution methods on multiple samples. The first four columns show the results for the
data correctly classified by the baseline model, while the two latter columns depict the explanations for the data incorrectly classified by
the baseline model.

1D dataset1 along with various attribution methods (how-
ever, we have converted the source code to TensorFlow 2.x
framework [1]). We have selected the following visual ex-
planation methods to evaluate in our benchmark.

• Backpropagation-based methods: operate by back-
propagating the signals from the model’s output to its
input or hidden features, e.g., Vanilla Gradient (VG)
[29, 8], Integrated Gradients (IG) [32], SmoothGrad
(SG) [30].

• Perturbation-based methods: run by feeding the tar-
get model with the perturbed copies of the input. e.g.,
Randomized Input Sampling for Explanation (RISE)
[18] and Semantic Input Sampling for Explanation
(SISE)2 [25].

• CAM-based methods: are specialized for CNNs and
aim to visualize the high-level features extracted by
the convolutional units of these networks in a specific
layer. e.g., Grad-CAM [27], Grad-CAM++ [5], Score-
CAM [33], XGrad-CAM [9].

For each attribution method, a summarized fact sheet ac-
cording to [31] is provided in the supplementary material
that includes their methodology and other notable imple-
mentation details in our proposed benchmark.

1https://github.com/greydanus/mnist1d
2As far as the baseline model consists of only one convolutional block,

we calculate SISE explanation maps by applying their framework only on
the last convolutional layer.

4.1. Qualitative Analysis

Fig. 6 represent the explanations generated by six differ-
ent attribution methods in few samples. Additional qualita-
tive results for more samples and methods are included in
our supplementary material. In summary, these results sug-
gest that 1) The methods such as Grad-CAM++ and SISE
[5, 25] that take account for the presence of smaller pat-
terns detected by the baseline model show a more extraor-
dinary ability in highlighting the related regions confidently,
2) In some cases, the “gradient saturation” problem which
is addressed in prior works like [28] hurdles the ability of
the methods such as Grad-CAM and Vanilla Gradient that
highly rely on signal backpropagation [27, 29] to concretely
estimate the importance of the input features, 3) The men-
tioned limitation in Grad-CAM and Vanilla Gradient are cir-
cumvented to a satisfying extent in some methods such as
Integrated Gradients and RISE, by employing unique ideas
such as perturbation-based analysis and calculating the path
integral of input gradients, 4) However, in some cases, In-
tegrated Gradients and RISE fail to explain the reason that
the model is unable to make a correct prediction.

4.2. Quantitative Analysis

In addition to the ROE Understandability Test, we cal-
culate a pair of model truth-based metrics named “Drop%”
and “Increase%”. It was initially introduced to compare
the performance between Grad-CAM and Grad-CAM++ [5]
and then expanded in later works [6, 33, 9]. This metric
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Metric Vanilla XGrad-CAM Score- Grad-CAM Grad- SISE Integrated RISEGradient CAM CAM++ Gradient

ROE Test 32.7 39.3 42.1 47.6 59.0 61.5 65.1 66.4
Drop% 29.54 24.69 27.03 26.18 17.81 12.19 9.85 7.64

Increase% 29.6 37.7 28.9 36.4 33.9 38.5 40.4 41.0
Table 1. Results of the quantitative metrics applied on the state-of-the-art visual explanation methods. For Drop%, the lower is the better.
For Increase% and our proposed metric (ROE Understandability Test), the higher is the better. All values are reported in percentage.

ROE Thresholding

       Attribution method

Figure 7. The framework for calculating Drop% and Increase% on
individual data in our proposed benchmark.

assesses the faithfulness of attribution methods by probing
the model’s behavior when fed only with the features high-
lighted by the attribution method.

The intuition for “Drop%” is that when the essential fea-
tures for the model’s prediction are retained while the other
features are masked, the model’s confidence score should
not drop significantly. In the same manner, the intuition
for “Increase%” is that in some cases, by perturbing the
unimportant features, the model’s confidence in a predic-
tion may increase. Unlike feature perturbation techniques
in prior works, we perturb the features that do not fall into
a region of explanation (ROE) as determined by the attribu-
tion method to be evaluated. The detailed methodology of
calculating these metrics for a given attribution method is
shown in Fig. 7.

To conduct the ROE Understandability Test, we em-
ployed an SVM learning algorithm to train 10 linear clas-
sifiers in a ‘one-vs-rest’ manner. We set the learning algo-
rithm A to minimize the square of a hinge loss by applying
10,000 steps of the gradient descent optimization method.
Since the learning algorithm configurations are fixed in the
training procedure, all attribution methods are evaluated in
this framework fairly. As reported in Fig. 5 and Table 1,
in case of the usage of original MNIST-1D data to train
the linear classifiers, the achieved test accuracy is too low
(29.7%). However, processing the data by extracting the
ROEs from the baseline model results in a remarkable im-
provement in training the linear classifiers. This improve-
ment is expected since the well-performed attribution meth-
ods help us discard the spatial information that manipulates
the linear classifiers while retaining the semantic patterns.

Moreover, the suggestions obtained through qualitative
evaluation are verified by the results presented in Table
1. For instance, “Vanilla Gradient” that reaches the low-

est scores in the ROE test also generates visually unclear
and confusing explanations, especially for few samples
whose template-related patterns are highly influenced by
the applied transformations. The attribution methods that
score features’ importance in a size-invariant manner reach
ROE test accuracy higher than 50%. Also, RISE and Inte-
grated Gradients, two model-agnostic methods that address
the “gradient saturation” problem in backpropagation-based
methods, reach the top ranks both in ROE Test and in terms
of Drop/Increase rates.

5. Discussion
According to the properties defined in [31], the highest

scores achieved in our quantitative evaluation framework
verifies the following properties in visual explainability al-
gorithms:

• Soundness: Attribution methods should be able to rep-
resent how the baseline model discriminates the pat-
terns related to different classes. The higher test ac-
curacy achieved by the linear model depicts more so-
lidity to represent the discrimination by the attribution
method.

• Completeness: ROE Understandability Test measures
how the explanations are generalized across the dataset
applied to the baseline model. Unlike metrics such as
Drop/Increase rates that score the faithfulness of the
explanations separately, the ROE test evaluates all gen-
erated explanations across the target dataset simultane-
ously and in a unified interpretable framework.

• Contextfulness: The ROEs that the linear classi-
fier fails to predict correctly indicate the explana-
tions that lack understandability. Observing the linear
model’s predictions can help the users estimate unre-
liable explanations generated by the evaluated attribu-
tion method.

• Actionability: Through the ROEs given to the linear
classifier, an actionable model can determine the im-
portance of the input features. Since the classifiers are
trained using the ROEs corresponding to the training
data, the classifier’s weight parameters corresponding
to the correct class may imitate the guideline for the
end-users in the visual explanations.
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Below we discuss the advantages and limitations of
our proposed benchmark and evaluation framework and its
functionality for the individuals interested in researching
Explainable AI.

5.1. Computational Complexity

In large-scale applications, applying evaluation metrics
such as Remove and Retrain (ROAR) [12] that operate
by training a network with a reformatted dataset require
an enormous amount of GPU time. However, in our low-
compute benchmark, the cost of performing this type of val-
idation decreases remarkably.

For conducting the ROE understandability test, the com-
putational cost of evaluating each attribution method is
equivalent to 1) applying the attribution method to the entire
data in the MNIST-1D dataset, 2) saving a dataset contain-
ing the extracted ROEs with a size of 30% of the MNIST-1D
dataset, 3) training a classifier with 130 trainable parame-
ters by the SVM algorithm. Using a CPU with a disk space
that is extremely larger than the overall size of the SVEA
benchmark components, training a multi-class linear classi-
fier with 10,000 iterations takes only 17.9 seconds, on aver-
age. Thus, performing this validation can not be considered
a time-consuming or resource-exhausting process.

5.2. Transfer Ranking

Compared with Drop and Increase rates, the ROE Un-
derstandability Test ranks attribution methods with a slight
variance. This slight variation in the standings is acceptable
since the aspects based on which the attribution methods are
evaluated differ (to some extent) between the ROE test and
the prior validation frameworks. The differences between
the rankings provided in Table 1 is because the Drop and
Increase metrics quantify the faithfulness that the explana-
tions had provided, while the scores assigned in the ROE
Understandability Test are sensitive to a broader range of
properties that attribution methods should satisfy.

5.3. The Limitations of the SVEA Benchmark

Despite that our proposed benchmark is functional for
measuring the concreteness and correctness of the visual ex-
planation algorithms in a small-scale experimental environ-
ment, some methods’ performance may fluctuate when ap-
plications with larger scales are included. Of course, inter-
preting deeper machine learning models with complicated
structures and millions of trainable parameters is a more
challenging task for all attribution methods compared to the
baseline model in the SVEA benchmark.

For instance, when CAM-based methods are applied to
deep CNNs with several convolutional blocks, they would
generate blurry and noisy explanation maps since they run
by visualizing the deepest convolutional layer of the CNN’s
feature extractor. Later works such as [23, 25, 17] attempt

to circumvent this issue by aggregating the information ob-
tained by visualizing multiple layers of the CNN. Also, the
RISE methods suffer from the same problem while dealing
with high-dimension inputs. In this method, generating ex-
planations using random perturbation masks distributes the
energy in explanation maps across the whole input domain.

Besides, in image processing applications where numer-
ous high-level features may be formed from the interaction
between image pixels, backpropagation-based methods like
Vanilla Gradient and Integrated Gradient usually produce
extremely sparse explanation maps. Though the method
Integrated Gradients shows outperforming soundness and
completeness in our small-scale benchmark, empirical re-
sults in prior works suggest that this method fails to analyze
abstract features detected by the target model in large-scale
applications [33, 25].

Another shortcoming of the SVEA benchmark is that
this framework cannot measure the complexity of attribu-
tion methods when applied in large-scale tasks. For exam-
ple, the RISE method ranked first in our leaderboard, op-
erates extremely slow in image recognition tasks, as this
method works by feeding the target model with numer-
ous masked copies of the input image [18]. The SISE
method decreases this computational overhead substantially
by eliminating the need for employing random masks and
replacing them with smaller sets of attribution masks [25].
This simplification is not apparent to measure in a compu-
tationally inexpensive setup.

6. Conclusion
In this work, we employed the MNIST-1D dataset to

create SVEA, a low-memory and minimalist benchmark
for evaluating the visual explanations generated by state-
of-the-art attribution methods in small scales, before trans-
forming the empirical results to large scales, such as im-
age processing experiments. The SVEA benchmark elim-
inates the need for conducting exhaustive experiments to
perform high-level quantitative evaluations. We also pro-
posed the ROE Understandability Test, a function-level val-
idation metric that compares an attribution method’s usabil-
ity from numerous aspects. Our experiments’ empirical re-
sults show a high correlation between our proposed metric
and the prior evaluation frameworks. We believe that our
proposed benchmark and evaluation metric becomes a step-
ping stone for future research in the field of Explainable AI.
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