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Abstract

Face anti-spoofing (FAS) is important to securing face
recognition. Most of the existing methods regard FAS as a
binary classification problem between bona fide (real) and
spoof images, training their models from only the perspec-
tive of Real vs. Spoof. It is not beneficial for a compre-
hensive description of real samples and leads to degrad-
ed performance after extending attack types. In fact, the
spoofing clues in various attacks can be significantly differ-
ent. Furthermore, some attacks have characteristics simi-
lar to the real faces but different from other attacks. For
example, both real faces and video attacks have dynamic
features, and both mask attacks and real faces have depth
features. In this paper, a Multi-Perspective Feature Learn-
ing Network (MPFLN) is proposed to extract representative
features from the perspectives of Real + Mask vs. Photo
+ Video and Real + Video vs. Photo + Mask. And using
these features, a binary classification network is designed to
perform FAS. Experimental results show that the proposed
method can effectively alleviate the above issue of the de-
cline in the discrimination of extracted features and achieve
comparable performance with state-of-the-art methods.

1. Introduction
In recent years, with the wide application of face recog-

nition technology [10] in identity authentication systems,
such as financial payment and access control unlock, the
attempts of presentation attacks (PAs) against it are also
increasing. Using PAs like photo-print, video-replay, and
3D masks [11] , attackers can deceive the face recognition
system easily, thus posing a severe threat to users’ private
property and even the public security of society. Therefore,
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It is needed to develop an effective face anti-spoofing (FAS)
method.

Presentation attack detection (PAD) has been studied
for over a decade. In the early days, researchers attempt-
ed to use human liveness cues [13, 21, 17] or handcraft-
ed texture features [3, 6, 5, 15, 22, 27] to perform binary
classification on bona fide (real) and spoof faces. Recent-
ly, with the rapid development of deep learning technol-
ogy, convolutional neural networks (CNN) based method-
s [7, 16, 34, 18, 32] have shown significant performance
improvement compared with traditional methods. Feng et
al. [7], Li et al. [16] trained a deep neural network to learn
real/spoof faces classification. Face depth map and rPPG
signal were utilized in [18] as the auxiliary supervision to
train the proposed model. A well-designed Central Dif-
ference Convolutional Network (CDCN) was used in [34]
to extract face depth information for PAD which achieved
competitive performance.

However, most existing methods considered FAS as a bi-
nary classification problem between real faces and spoof
faces, ignoring the differences between different attack
types and their commonness with real faces. Although
some methods utilize auxiliary information as supervision,
their perspective of group-level classification is still Real vs.
Spoof in the training stage. It is feasible when there are on-
ly photo-print and video replay attacks due to their similar
spoofing clues. However, when the 3D mask attack is con-
sidered, the limitation of binary classification is distinctly
presented because 3D masks have quite different spoofing
clues from photo and video attacks.

In fact, different attack types present different spoofing
features, and spoofing features that can detect one particular
attack type well (features this type of attack has while real
faces do not) may not exist in another attack type, and try-
ing to find some universal features that can detect multiple
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Figure 1. Sample division from different perspectives. Taking photos, videos, and masks as examples, both real faces and 3D masks have
depth information while photos and videos do not, both real faces and videos have dynamic information while photos and 3D masks do
not.

attack types possibly is a tradeoff of different attacks, which
may not be optimal to each attack type. On the other hand,
considered from different perspectives, there are common
features between the attack types and real faces. For exam-
ple, as shown in Fig.1, both real faces and 3D masks have
depth information while photos and videos do not; both re-
al faces and videos have dynamic information while photos
and 3D masks do not. Therefore, by selecting appropriate
perspectives, it is possible to obtain a more comprehensive
description of real faces and avoid the network neglecting
some features that have a strong discriminating ability be-
tween real and spoof faces yet are not universal among a va-
riety of attack types, thus improve the performance of FAS.

Motivated by the discussions above, we propose a Multi-
Perspective Features Learning strategy to extract more com-
prehensive description to real faces using a Real + 1 vs.
Rest group-level classification training strategy, i.e., images
of real faces and a given attack type are used as positive
samples, and images of the rest of the attack types are used
as negative samples for group-level classification. Further-
more, considering the wide application of depth and tem-
poral information in PAD, two perspectives of Real + Mask
vs. Rest and Real + Video vs. Rest are selected, and a novel
Multi-Perspective Features Learning Network (MPFLN) is
designed to extract the common features between real faces
and video or mask attacks for FAS. The proposed network
consists of two components: the Common Features Extrac-
tion Unit (CFEU) to extract the representative features and
the Binary Classification Unit (BCU) that utilizes common
features to classify real and spoof faces.

The main contributions of this work can be summarized
as follows:

• We find the limitation of binary classification to FAS
and propose a novel idea of Multi-Perspective Feature

Learning, which can extract the features of real faces
more comprehensively. These features have a strong
discriminating ability between real and spoof faces yet
are not universal among a variety of attack types.

• A novel neural network called Multi-Perspective Fea-
tures Learning Network (MPFLN) is designed, which
can simultaneously detect multiple types of attacks, in-
cluding photos, videos, and masks, and effectively car-
ry out the FAS task.

• The proposed MPFLN achieves competitive perfor-
mance in the test database. Well-designed compara-
tive experiments demonstrate the negative impact on
the model’s classification performance of retraining
with the introduction of new attack types and the ef-
fectiveness of the method of Multi-Perspective Feature
Learning to alleviate this problem.

2. Related work
Traditional approaches. Traditional methods usually fo-
cus on the texture difference between real and spoof faces
brought by spoof media, using handcrafted features extract-
ed from images, such as LBP [3, 5], HOG [15], SIFT [22],
and DoG [27], to carry out binary classification of real and
spoof faces. However, these features are usually based on
2D features, such as the noise brought by printing paper or
video replay equipment, which is difficult to be applied on
the 3D mask attacks. Similarly, the texture features extract-
ed for masks [23, 1] are also difficult to be applied to the de-
tection of photos and videos. There are also several methods
considering temporal information and using dynamic tex-
ture [14, 28] or spontaneous human movement [13, 21] like
blinking and head motion to perform PAD. These method-
s have achieved good performance in detecting photos and
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Figure 2. The overall framework of the proposed MPFLN (Taking photos, videos, and masks as examples).

static videos, and mask attack detection methods using dy-
namic information [24, 25] also have certain effects. Still,
these methods are difficult to detect attacks that naturally
contain dynamic information such as video replay.

Deep learning approaches. With the rapid development
of deep learning, some deep learning based approaches
were proposed. Feng et al. [7], Li et al. [16] using
pre-trained CNN as a feature extractor to distinguish
real and spoofing faces. Xu et al. [31] using LSTM
architecture to combine spatial information with temporal
information for attack detection. In addition to methods
considering FAS as a simple binary classification problem
supervised by the binary cross-entropy loss, some works
using pseudo depth label [2, 35], rPPG signal [20], binary
mask label [9, 26, 19], Fourier map [12], LBP texture
Map [35], etc., as auxiliary supervision, have also achieved
good performance. Liu et al. [18] introduced face depth
map and rPPG signal as auxiliary supervision guiding
feature extraction. Yu et al. [34] using a well-designed
Central Difference Convolutional Network (CDCN) to
extract face depth information for PAD and achieved good
performance.

However, most existing work only focuses on dealing
with photo and video attacks and has difficulty covering
mask attacks. Also, approaches aimed to mask attacks can
not deal well with the former attacks either. The reason is
that the differences between them are so significant that it’s
hard to find some universal clues which can identify multi-
ple attacks at the same time. Trying to find such clues can
lead to a decline in the discrimination on spoofing features
of each attack type. Therefore, we use a Multi-Perspective
Feature Learning method to retain clues that have a strong
discriminating ability for each attack type, thus preventing
a decrease in the discrimination on features.

3. Methodology

The main idea of the proposed method is to extract the
representative features from multiple perspectives to de-
scribe real faces more discriminatively. As shown in Fig.2,
the proposed network consists of two modules: Common
Features Extraction Unit (CFEU) and Binary Classification
Unit (BCU). For the convenience of description, we only
take common attacks, including photo-print, video-replay,
and 3D mask as examples, to introduce the proposed net-
work in this paper.

3.1. Common Features Extraction Unit

The Common Features Extraction Unit is used to
extract the common features with strong discrimination
between real faces and various attack types from multiple
perspectives. Therefore, unlike the traditional binary
classification, CFEU uses the perspective of Real + 1 vs.
Rest instead of Real vs. Spoof for group-level classification
training. In addition, considering the wide application
of depth information and timing information in PAD, we
only build two parts in CFEU: Real Mask part (RM) and
Real Video part (RV), which are beneficial to the extraction
of depth and temporal information, respectively, but not the
Real Photo part whose features are not prominently.

Real Mask part. The function of RM is to extract the com-
mon features with strong discrimination between real faces
and mask attacks. For this purpose, we adopt the Real +
Mask vs. Rest group-level classification training strategy.
Specifically, let IR, I

p
S , I

v
S , I

m
S denote the set of the real face

images, photo attack images, video attack images, and mask
attack images in the whole sample space respectively. For
any input image X ∈ I , we use PRNet [8] to generate its
pseudo depth map D ∈ Rd×d, and its corresponding group-
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level classification label Yrm can be formulated as

Yrm =

{
D, X ∈ (IR ∪ ImS )

Z, X ∈ (IpS ∪ IvS)
, (1)

where Z ∈ Rd×d is a ‘zero map’ with the same shape as D.
Then, we extract the feature map Prm = Erm(X) as

the predicted depth map of X by RM Features Extractor
(Erm), and Yrm is used as the supervision to train the ex-
traction capacity of group-level classification features (the
common features between Real and Mask) of Erm. Here,
Erm uses the famous CDCN [34] as the backbone network.
Therefore, the loss function of RM can be formulated as

Lrm =

N∑
i=1

LMSE(P
i
rm, Y i

rm) + LCDL(P
i
rm, Y i

rm), (2)

where N is the total samples number of the training set,
LMSE and LCDL denote mean square error loss and
contrastive depth loss [29], respectively. Notice that,
although the network structure and the loss function of
RM are basically the same as the backbone network, the
meaning of RM’s group-level classification label (Real +
Mask vs. Rest) has a completely different meaning than the
traditional one (Real vs. Spoof).

Real Video part. Similar to RM, RV is used to extract the
common features with strong discrimination between real
faces and video attacks by adopting a Real + Video vs. Rest
group-level classification training strategy. Since CDCN is
mainly used to extract depth information but is not good at
extracting temporal information, we use 3D-CDCN [30], a
variant of CDCN, as the backbone network of Erm. Com-
pared with CDCN, 3D-CDCN can extract the temporal in-
formation of input frame sequences, which is more suitable
for the group-level classification criterion of RV.

Therefore, the process of RV is modified as: for any
input frame sequence X ∈ I , we extract the feature map
Prv = Erv(X) of X by RV Features Extractor (Erv) and
use Yrv as the supervision to train the extraction capacity of
group-level classification features (the common features be-
tween Real and Video) of Erv. Consistent with 3D-CDCN,
the corresponding group-level classification label Yrv of X
can be formulated as

Yrv =

{
O, X ∈ (IR ∪ IvS)

Z, X ∈ (IpS ∪ ImS )
, (3)

where O ∈ Rd×d is a ‘one map’ with the same shape as Z.
The loss function of RV can be formulated as

Lrv =

N∑
i=1

LMSE(P
i
rv, Y

i
rv), (4)

Figure 3. Input images and their corresponding pseudo depth maps
and 1/0 maps. Here, samples of bona fide faces, photo-prints, and
video-replays are from OULU-NPU, and samples of 3D masks are
from CASIA-SURF 3DMask.

3.2. Binary Classification Unit

BCU is used to classify the real faces and the spoof
attacks through the Erm and Erv obtained from CFEU.
Specifically, for any input X , we concatenate its corre-
sponding Prm, Prv obtained from CFEU, then fed them into
the fusion network F consisting of three convolution layers
and get the output Pf = F (Prm, Prv). The corresponding
real/spoof classification label Yf of X can be formulated as

Yf =

{
O, X ∈ IR

Z, X ∈ (IpS ∪ IvS ∪ ImS )
, (5)

The loss function of BCU module formulated as

Lf =

N∑
i=1

LMSE(P
i
f , Y

i
f ), (6)

In the testing stage, we calculate the mean value of Pf

as the final score of the real/spoof binary classification task.

Notice that, we suggest that CFEU and BCU should be
trained in two-stage rather than end-to-end format, i.e., the
CFEU part should be trained first, and its parameters should
be fixed during training the BCU part. The reason is that
the classification labels of RM, RV conflict with F, thus op-
timizing F leads to an offset towards the corresponding neg-
ative samples of the mask class in RM and the video class
in RV, which is contrary to the motivation of our proposed
method.
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4. Experiments
4.1. Datasets and Protocols

Databases. Two datasets, including OULU-NPU [4]
and CASIA-SURF 3DMask [33], are used in our experi-
ments. Oulu-NPU contains high-resolution attack samples
of photo-prints and video-replays, but does not contain 3D
mask attack samples. To this end, we introduce the mask
attack samples from CASIA-SURF 3DMask as a supple-
mentary set to the former dataset.
Protocols. Based on the four test protocols of OUlU-NPU,
we extend the attack type of the 3D mask and design t-
wo sets of experiments. In the first set, we only expand-
ed the training set by mask samples with the same number
of photos and videos, while the validation set and testing
set remained unchanged. This set of experiments is named
Experiment-O, which is used to prove that our method
can achieve comparable performance with state-of-the-art
methods. In the second set, we expanded mask samples in
not only the training set but the validation set and the test-
ing set also. This set of experiments is named Experiment-
M, which is used to prove that, by extracting representative
features from multiple perspectives, the decline in the dis-
crimination after extending attack types suffered by existing
methods can be alleviated effectively.
Performance Metrics. We adopt Attack Presentation Clas-
sification Error Rate (APCER), Bona Fide Presentation
Classification Error Rate (BPCER), and Average Classifi-
cation Error Rate (ACER) as the performance metrics.

4.2. Implementation Details

Ground Truth Generation. Although MPFLN adopts the
fully convolutional structure and has no requirements on the
size of input images, for the convenience of analysis, we
detect the face regions of input images then crop and re-
size their scales to 256 × 256. Consistent with CDCN, we
adopt PRNet [8] to generate pseudo depth maps of images,
resize their scales to 32× 32, and normalized them to [0, 1].
Accordingly, the scales of all the 1/0 maps used in the mod-
el are also 32 × 32. Input images and their corresponding
pseudo depth maps and 1/0 maps are shown in Fig.3.
Experimental Setting. Our proposed method is imple-
mented with Pytorch. In the training stage, RM, RV, and
BCU are trained with Adam optimizer, and the initial learn-
ing rate (lr) is 1e-4, 1e-3, and 5e-4, respectively, and weight
decay (wd) is 1e-5. We train RM, RV with a maximum
of 600 epochs while lr halves every 300 epochs and set
500/200 for BCU. The batch size is 16.

4.3. Experimental Comparison

Experiment-O. Since most of the comparison method-
s only used photo and video attacks in training, although
MPFLN has the ability to detect mask attacks, we still only

Prot. Method APCER(%) BPCER(%) ACER(%)

1

STASN [32] 1.2 2.5 1.9
Auxiliary [18] 1.6 1.6 1.6
FaceDs [12] 1.2 1.7 1.5

Disentangled [35] 1.7 0.8 1.3
CDCN [34] 0.4 1.7 1.0

MPFLN 1.0 1.7 1.3

2

FaceDs [12] 4.2 4.4 4.3
Auxiliary [18] 2.7 2.7 2.7

Disentangled [35] 1.1 3.6 2.4
STASN [32] 4.2 0.3 2.2
CDCN [35] 1.5 1.4 1.5

MPFLN 2.2 0.6 1.4

3

FaceDs [12] 4.0±1.8 3.8±1.2 3.6±1.6
Auxiliary [18] 2.7±1.3 3.1±1.7 2.9±1.5
STASN [32] 4.7±3.9 0.9±1.2 2.8±1.6
CDCN [34] 2.4±1.3 2.2±2.0 2.3±1.4

Disentangled [35] 2.8±2.2 1.7±2.6 2.2±2.2
MPFLN 2.2±4.0 1.1±3.9 1.7±1.5

4

Auxiliary [18] 9.3±5.6 10.4±6.0 9.5±6.0
STASN [32] 6.7±10.6 8.3±8.4 7.5±4.7
CDCN [34] 4.6±4.6 9.2±8.0 6.9±2.9
FaceDs [12] 1.2±6.3 6.1±5.1 5.6±5.7

Disentangled [35] 5.4±2.9 3.3±6.0 4.4±3.0
MPFLN 10.0±15.0 5.0±5.0 7.5±5.0

MPFLN+ 7.1±7.1 5.0±10.0 6.0±3.5

Table 1. Results of Experiment-O on four protocols of Oulu-NPU.

Prot. Method APCER(%) BPCER(%) ACER(%)

1
CDCN-rs 1.7 4.2 2.9

MPFLN-rs 0.2 5.0 2.6
MPFLN 1.5 0.8 1.2

2
CDCN-rs 6.6 0.3 3.5

MPFLN-rs 5.5 0.8 3.2
MPFLN 1.9 1.1 1.5

3
CDCN-rs 2.5±2.2 5.3±14.8 3.9±6.3

MPFLN-rs 2.0±2.7 2.2±6.1 2.1±2.4
MPFLN 1.3±2.0 1.1±3.9 1.2±1.5

4

CDCN-rs 8.6±8.1 5.8±9.2 7.2±4.5
MPFLN-rs 4.5±3.9 5.0±10.0 4.7±3.9
MPFLN 7.2±12.8 4.2±5.8 5.7±4.3

MPFLN+ 4.2±4.2 4.2±5.8 4.2±2.5

Table 2. Results of Experiment-M on four protocols of Oulu-NPU.

considered the photo and video attacks in this set of experi-
ments. In other words, mask samples were only introduced
in the training stage of MPFLN, while the testing stage was
consistent with the comparison experiments, using OULU-
NPU samples only and following its four protocols. Notice
that, although mask samples are introduced into the train-
ing set, they are not conducive to be used as expanded data
to enhance the discrimination of the other two attack types
due to the significant difference between them. On the con-
trary, this large difference leads to a deviation of the feature
extraction direction of the model after introducing mask at-
tack samples in training, which eventually raises the risk of
the decrease of the model’s overall performance.

As shown in Table 1, our method can achieve compara-
ble performance with the state-of-the-art methods on most
protocols, only has a decline in the performance on pro-
tocol 4. It means that, although our method can alleviate
the decline of feature discrimination caused by introducing
mask attack samples in most conditions, it is still impact-
ed severely on protocol 4. The reason for this is, while
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MPFLN can extract highly discriminating common features
between real faces and attack types, some features unique to
real faces themselves are ignored. In the first three protocols
with a large number of training samples, MPFLN can learn
enough real face sample features for classification. Still, in
the fourth protocol, which has a small number of training
samples, MPFLN could not learn enough features for clas-
sification.

Therefore, we propose an extended network version
MPFLN+, which adds a Real vs. Spoof perspective to
the original two perspectives to supplement some features
unique to real faces. Specifically, we added the R branch
paralleling RM and RV in CFEU, whose structure was con-
sistent with CDCN, taking real faces as positive samples,
various attack types as negative samples. As can be seen
from both Table 1 and Table 2, MPFLN+ has a significant
performance improvement over the MPFLN.

Experiment-M. In structure, MPFLN can easily be con-
fused with the Model Stacking strategy. However, the t-
wo are fundamentally different in method. The purpose of
MPFLN is to extract the representative features from multi-
ple perspectives for classification. Hence the label of CFEU
is in Real + 1 vs. Rest form, rather than the traditional Re-
al vs. Spoof form. To demonstrate that the performance
improvement of MPFLN is due to the group level classifica-
tion strategy rather than the Model Stacking strategy, we de-
sign this set of experiments. We compare the performance
of three models: CDCN-rs, whose structure is identical to
CDCN, but is retrained after introducing mask attacks in the
negative sample; MPFLN-rs, whose structure is identical to
MPFLN, but the CFEU module classify the samples by Re-
al vs. Spoof perspective; MPFLN, the proposed method, in
which CFEU module classify the samples by Real + 1 vs.
Rest perspective.

As shown in Table 2, CDCN-rs has a significant decline
in performance compared with CDCN. This decline comes
from the fact that CDCN is good at extracting depth infor-
mation as clues to classify the positive and negative sam-
ples, but such clues could not distinguish real faces well
from the newly introduced mask samples. On the contrary,
setting masks as negative samples will lead to confusion of
the depth estimation, resulting in the weakening of extracted
features’ discrimination. This experimental result support-
s our assumption of model performance’s degradation be-
cause of the introduction of new attack types. Furthermore,
the performance of MPFLN-rs improves over CDCN-rs due
to the added 3D-CDCN structure and Model Stacking strat-
egy. However, although the performance of MPFLN-rs is
improved compared to CDCN-rs, it is still much lower than
MPFLN, suggesting that the alleviation on feature discrim-
ination’s decline is indeed due to the strategy of extracting
features by group-level classification on multiple perspec-

tives, rather than Model Stacking strategy.

5. Conclusions
In this paper, we design a Multi-Perspective Features

Learning method to extract the representative features from
multiple perspectives by Real+1 vs. Rest group level clas-
sifying. Base on this method, we design a neural net-
work named Multi-Perspective Features Learning Network
(MPFLN), which learned features from Real+Mask and Re-
al+Video perspectives to perform PAD. Experiments prove
the effectiveness of the proposed strategy and the model.

The possible future directions include: 1) We only per-
formed experiments on OULU-NPU and proved the effec-
tiveness of our method, but the studies on other datasets are
still necessary; 2) Although we designed MPFLN+ to im-
prove the performance on protocol 4, experiments on oth-
er protocols should still be performed. 3) The method of
Multi-Perspective Features Learning could theoretically be
extended to any backbone network or any number of attack
types, which has not yet been proven.
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