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1. Baseline Model

We trained the baseline model with Stochastic Gradient
Descent (SGD) optimizer at a constant learning rate of 0.01
and Categorical Cross-Entropy loss function. Since both the
training and test set of the MNIST-1D dataset are equally
balanced, no weighting is applied in the loss function. Fig.
1 depicts the normalized confusion matrix computed for this
model. Similar to the CNNs trained on the original MNIST
dataset, misclassification occurs the most between the digits
“4” and “9” in our baseline model. However, in general, the
1-dimensional patterns in the MNIST-1D dataset are easier
to distinguish rather than the MNIST dataset.

Figure 1. Result of the Normalized Confusion Matrix on the
MNIST-1D test set.

2. Keep and Retrain (KAR)

In addition to the “Drop” and “Increase” rates reported in
the main manuscript, we carried out the Keep and Retrain
(KAR) experiment (which is the inverse of Remove and Re-
train (ROAR)), that verifies the explanations generated by
measuring the degradation in the performance of the model,

while preserving the inputs that are considered to be most
important [2]. The intuition for this experiment is that if a
concrete attribution method highlights the pieces of infor-
mation that are the most important for the model’s decision
procedure, the model can achieve a classification accuracy
close to (and even in some cases, higher than) its original
test accuracy when retrained only with the highlighted in-
formation.

We employed the KAR framework to evaluate the cor-
rectness of the generated ROEs as specified in the main
manuscript. Similar to our proposed experiment, we gen-
erated two synthetic training and test set of the ROEs
corresponding to the MNIST-1D data for each attribution
method. Table 1 replicates the previously generated results
alongside the KAR results obtained for the selected expla-
nation methods. As mentioned in [2], the vulnerable point
of this experiment is that KAR does not discriminate at-
tribution methods remarkably. Our proposed method relies
on training a simpler network (e.g., linear classifier). Since
training such models is more complex, the ROE Under-
standability Test is a more robust metric in distinguishing
between well-performing and weaker attribution methods.

3. Additional Qualitative Results
Due to space limitations in the main manuscript, the re-

sults for two attribution methods in our benchmark (Score-
CAM [6], and XGrad-CAM [1]) are presented in the supple-
mentary materials. Figure 2 contains additional examples of
the generated explanation for inputs correctly predicted by
the baseline model. In terms of visual clarity, both the qual-
itative results in the main manuscript and Fig. 2 indicate
that perturbation-based methods (RISE [3] and SISE [4])
and the XAI method Integrated Gradients [5] that addresses
the limitations of the gradient-based analysis, generate the
clearest visual explanations that provide comprehensive us-
ability. This insight is further validated by the quantitative
results reported in the main manuscript and extended in Ta-
ble 1.



Metric Vanilla XGrad-CAM Score- Grad-CAM Grad- SISE Integrated RISEGradient CAM CAM++ Gradient

ROE Test (%) 32.7 39.3 42.1 47.6 59.0 61.5 65.1 66.4
Drop% 29.54 24.69 27.03 26.18 17.81 12.19 9.85 7.64

Increase% 29.6 37.7 28.9 36.4 33.9 38.5 40.4 41.0
KAR (%) 72.7 72.0 73.4 70.9 82.0 86.3 87.8 88.5

Table 1. Comparison of the results of the Keep and Retrain (KAR) experiment applied on the state-of-the-art visual explanation methods,
along with the results achieved by Drop%, Increase%, and our proposed experiment (ROE Understandability Test).
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Figure 2. Additional qualitative results on the test samples of the MNIST-1D dataset.
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