
InAugment: Improving Classifiers via Internal Augmentation

Moab Arar1, Ariel Shamir2, and Amit Bermano1

1Tel-Aviv University
2The Interdisciplinary Center Herzliya

Abstract

Image augmentation techniques apply transformation
functions such as rotation, shearing, or color distortion on
an input image. These augmentations were proven useful
in improving neural networks’ generalization ability. In
this paper, we present a novel augmentation operation, In-
Augment, that exploits image internal statistics. The key
idea is to copy patches from the image itself, apply aug-
mentation operations on them, and paste them back at ran-
dom positions on the same image. This method is simple
and easy to implement and can be incorporated with exist-
ing augmentation techniques. We test InAugment on two
popular datasets – CIFAR and ImageNet. We show im-
provement over state-of-the-art augmentation techniques.
Incorporating InAugment with Auto Augment yields a sig-
nificant improvement over other augmentation techniques
(e.g., +1% improvement over multiple architectures trained
on the CIFAR dataset). We also demonstrate an increase
for ResNet50 and EfficientNet-B3 top-1’s accuracy on the
ImageNet dataset compared to prior augmentation meth-
ods. Finally, our experiments suggest that training convo-
lutional neural network using InAugment not only improves
the model’s accuracy and confidence but its performance on
out-of-distribution images.

1. Introduction

Data augmentation is a popular technique that generates
new instances based on some processing of available train-
ing data to increase its amount and variance. For image
classification tasks, data augmentation is useful in improv-
ing the network’s generalization, performance, and robust-
ness. This improvement, for example, promotes invariance
to fundamental transformations, such as scale, rotation, or
color changes.

Some augmentation techniques use handcrafted opera-
tions (e.g., CutOut [6]), while others learn the desired op-

eration needed to achieve the most accurate results (e.g.,
AutoAugment [4])). Still, most augmentation techniques
create new images using some global operation (e.g., spa-
tial transformation) or combine images to increase the in-
put space variance [39, 41, 35]. Despite the improvements
achieved by these techniques, the final augmented image
maintains a single view of the input, limiting each image’s
information variance. This limitation can hurt the model’s
generalization ability and robustness, especially for out-of-
distribution images.

Our work draws inspiration from the line of works show-
ing that natural images have unique internal statistics: small
patches of the image recur abundantly within itself [10, 44].
Exploiting this property, we show that repeating patches at
different scales help neural networks model the image’s in-
ternal distribution, creating an image-specific prior. This
property was utilized to solve many ill-posed vision tasks
in an unsupervised manner [2, 10, 28]. Nonetheless, to the
best of our knowledge, previous data augmentation methods
do not exploit this property.

In this paper, we present a novel data augmentation tech-
nique we call InAugment. In the spirit of the aforemen-
tioned works, we seek to increase the information variance
within each image rather than the entire dataset. This vari-
ance should be increased across different scales, as this is
the behavior that natural images present. To adhere to these
principles, we introduce a simple to implement two-step
augmentation scheme, which can be incorporated in addi-
tion to other augmentation methods. In the first stage, we
copy random patches from the input image. The patches
are then resized, promoting multi-resolution views of the
information in the image. In the second stage, the patches
are randomly pasted back into the same image. This two-
stage operation ensures that the image internal-information
is repeated at different scales, helping neural networks cap-
ture the input image’s inner-distribution prior. This patch
repetition is beneficial when the patches that contain spe-
cific information about the target class (e.g., a dog’s head)
are pasted on non-salient regions (e.g., the background). In

1698

Figure 1: InAugment overview. We randomly extract patches from the input image (left). Each patch is then rescaled, and
together they form a multi-scale resolution of the same input-image (middle). Finally, the multi-scale patches are pasted on
the input image (right) to create the final augmented image. Note that since larger patches are more likely to occlude smaller
ones, we sort the paste order according to the patch size.

this case, the target class’s main features are repeated in dif-
ferent scales, encouraging the network to detect the input
image’s essential features.

We validate our approach on the CIFAR [17] and Im-
ageNet [25] datasets through training various standard
bench-marking architectures using InAugment and several
baselines. Throughout the experiments, we witness con-
sistent improvements in the networks’ accuracy, which are
even more pronounced when we paste multiple patches
at different scales. In particular, we gain between 1% to
1.5% improvement over state-of-the-art augmentation tech-
niques. We further show that models trained with InAug-
ment, are more robust and handle out-of-distribution images
really well. Our experiments demonstrate that InAugment
should be added as an additional augmentation step when
designing new augmentation approaches.

2. Related work
The ability of augmentation methods to improve deep

models’ generalization led to extensive research in this field.
Basic operations such as random horizontal flip and crop
became standard in classification tasks [18, 30, 13, 40],
while other techniques were proven to be useful for specific
datasets. For example, approaches that learn spatial distor-
tion [26, 29, 3, 36], are helpful on the MNIST [19] dataset.
For the CIFAR [17] and SVHN [17] datasets, region drop-
out in the input forces the network to look at other features
in the image. Unlike these methods, we show that InAug-
ment achieves improvement on both small and large scale
datasets.

Increasing the data can be achieved by mixing input in-
stances. MixUp [41] achieves impressive results via linear
interpolation of the two input images while expecting the
class labels to follow the same convex combination. Fol-
lowing MixUP, other mixing strategies showed improve-

ments in the robustness [35] and localization [39] of neu-
ral networks. These methods operate in batch-resolution,
which means data points are combined after the preprocess-
ing stage. Specifically, since we perform InAugment in the
preprocessing step, it can be added to existing mixing aug-
mentations [41, 39].

Generative methods can also be used to increase the data
size. Lemley et al. [20] train a neural network that incor-
porates images from the same class to reduce the classifica-
tion loss. In [34], Tran et al. simultaneously train a clas-
sification network and a Bayesian network that generates
augmented data, which help improve the classifier perfor-
mance. Lastly, generative adversarial methods [11] demon-
strate excellent ability to generate high-quality images [16],
and are leveraged for augmenting data by generating syn-
thetic data [43, 7, 1, 31] or domain-specific image transfor-
mations [24]. These methods are usually used in the case
where acquiring data is difficult (e.g, medical imaging), or
for specific domains (e.g., human faces [16]), but they don’t
perform well on data with high variance of natural images.

The complexity of designing hand-crafted augmentation
methods gave rise to the automated search for augmenta-
tion policies. Recently, a novel method named AutoAug-
ment [4] uses reinforcement learning to search for a given
dataset’s best augmentation policy. The augmentation pol-
icy found consists of several sub-policies, and each sub-
policy is composed of two basic image transformation op-
erations (e.g., Rotation, Shearing, or Color Jitter). For each
image, a sub-policy is chosen uniformly at random and is
applied to produce the augmented image. One drawback of
AutoAugment is the vast search space, which requires ex-
tensive computation power. Several methods, such as Fast-
AutoAugment [21], Population-Based-Augmentation [15],
RandAugment [5] and Adversarial AutoAugment [42] try
to reduce the search complexity while maintaining compet-

1699

itive results. Additionally, in a recent paper [37], Wei et
al. argue that automated augmentation policies could lead
to over distortion in the data. To overcome this, in addi-
tion to ground-truth labels, they use soft-labels provided by
a teacher model to compensate for any semantic loss.

In our work, we employ AutoAugment [4] as the base-
line augmentation, and show that InAugment boosts its per-
formance; this suggests that policies found by other meth-
ods [21, 5, 15] could also benefit from our method.

3. Method

Our method consists of two stages, a copy-stage,and a
paste-stage. In the copy-stage, we copy patches randomly
from the underlying image, resize them and apply a base
augmentation on the patches. The same base-augmentation
is also performed on the input image. Later, during the
paste-stage, we paste the augmented patches one after the
other, according to their sizes, and produce the final aug-
mented output (see figure 1). In the following subsections,
we give an in-depth description about different parts of In-
Augment. We begin by giving a brief overview of the
base-augmentation we use, which is based on AutoAug-
ment [4]. Then we describe in detail the copy-and-paste
stages. Throughout this section we let I ∈ RH×W×3 be an
input image of height H and width W .

3.1. Base augmentation

We define an augmentation sub-policy to be an ordered
set of transformations T = {o1, o2, . . . , ok}, such that when
T is applied on an image I the resulting image is:

T (I) = o1 ◦ o2 . . . ◦ ok(I) (1)

Each operation oi represents a basic image transforma-
tion function (e.g, rotation), and is performed on the image
with some predefined probability. The operation ◦ denotes
the composition operation.

In our implementation, we consider sub-policies used in
the AutoAugment [4] method. These sub-policies consists
of two transformations (i.e., k = 2). The operations used
in AutoAugment are: Shear-x/y, Translate-x/y, Rotate, Au-
toContrast, Invert, Equalize, Solarize, Posterize, Contrast,
Color, Brightness, and Sharpness. Note, AutoAugment also
uses CutOut [6], but we omit it from our implementation as
our method operates as a region-drop as well (see subsec-
tion 4.1). For further information about these sub-policies,
please refer to [4].

The final augmentation is determined by a policy, which
is a finite set of sub-policies, i.e., T = {T1, T2, . . . }. To
generate the augmented image, we randomly draw a sub-
policy Ti ∈ T , and apply it on I .

3.2. Copy stage

In the copy-stage, we randomly copy n-patches of size
Hp×Wp. The patch size can be randomly chosen (for each
patch), or it can be set to some fixed value. In our imple-
mentation, we choose fixed-size patches for low-resolution
images, and random-size patches when the training set has
varying image sizes. In the case where the patches devi-
ate from the image boundary, then we trim the patch to be
only inside the image (this means that we don’t use padding,
which is commonly used for random copy). We denote
P = {P1, P2, . . . , Pn} to be the set of copied patches. Once
the patches are copied, we perform resizing and augmen-
tation on them. We consider two implementations for the
following stage, namely, resize-first and augment-first.

Resize-first: in the resize first implementation, we first
resize the copied patches, and only then apply the base aug-
mentation on them. Formally, given an ordered set of target
patch sizes S1, S2, . . . Sn, we let Resize (Pi, Si) be the op-
eration that resizes the patch Pi to the target size Si. After
we resize the patches, the augmentation T is applied, yield-
ing the final copied patch for this implementation to be:

Pcopied = {T (Resize (Pi, Si))}ni=1 (2)

Augment-first: in this implementation, as the name sug-
gests, we first apply the base augmentation and then resize
the augmented patch. Therefore, the final copied patches in
this implementation are:

Pcopied = {Resize (T (Pi) , Si)}ni=1 (3)

In our implementation, we found that for small images
(e.g., images for the CIFAR [17] dataset), it is best to use
Augment-first implementation. For high-resolution images
(e.g., images from the ImageNet [25] dataset), we use the
Resize-first implementation since it is more efficient to per-
form the base augmentation on smaller patches (after the
resize). Furthermore, we found that it is better to apply
the same transformations on the input image and the copied
patches. We believe that sampling different augmentations
for different patches will most likely yield a patch aug-
mented with an easier transformation than the other patches.
This, in turn, will bias the network to concentrate on easier
patches. Note that we omit to transform the base-image first
for efficiency reasons. It is better to copy smaller patches
and perform the augmentation on smaller images than hav-
ing to perform the augmentation on the entire image.

3.3. Paste stage

Let Pcopied be the copied patches after resize and aug-
mentation from the previous stage. Then, we paste the
patches at random locations on top of the image T (I) (i.e,
the image after the augmentation). We also drop patches
with probability pi, meaning, each patch in Pcopied is pasted

1700

onto the image with probability 1− pi. We found this help-
ful when training large networks on larger datasets. Note,
the paste order follows the patches’ sizes in Pcopied. This
means that we first paste the largest patch, and finally, we
paste the smallest patch. This ensures that larger patches
will not occlude smaller ones. Furthermore, to make the
implementation as simple as possible, in the case where the
pasted patch deviates from the image boundary, we clip it
to fit the final augmented image.

4. Experiments

In this section, we conduct several experiments to sup-
port our claim. First, we show a direct comparison be-
tween InAugment and Cutout [6] and argue that InAugment
achieves better results even for larger patch sizes. Second,
we show that resizing the patches is beneficial and using
multiple patches can boost the network’s accuracy. We also
show that networks trained with InAugment are robust to
scale, especially for out-of-distribution object sizes. Fi-
nally, we compare InAugment with previous state-of-the-
art augmentation techniques and evaluate the test-accuracy
on two popular datasets, ImageNet ILSVRC12 [25] and the
CIFAR [17] dataset. Alternative approaches to InAugment
are reported in the supplemental materials.

4.1. Ablation experiments

In this section, all networks are trained on the CIFAR-
100 dataset. Unless otherwise stated, then the training setup
follows the one in Section 4.2.

InAugment vs CutOut [6]: CutOut is an augmentation
method in which random regions of the input image are re-
moved. The idea in CutOut, is that eliminating certain parts
of the image could encourage the network to look at other
features and essentially serve as a regularization technique.
This technique is very effective on the CIFAR dataset, and
it is usually adopted when training neural networks on this
dataset.

In our method, random patches are copied and pasted
on the image, which could lead to the case where non-
important regions (e.g., background patches) are pasted on
top of essential areas. Therefore, InAugment may be per-
forming CutOut, where important parts are removed con-
tinuously by pasting non-important regions on top of them.
To see that this is not the case, we trained our network in
three different settings. In one experiment, we apply CutOut
augmentation with varying cut sizes. For InAugment, we
only copy one random patch and randomly paste it back on
the input image after augmentation (we do not perform any
resize). We conduct two experiments for InAugment, one
where the patch is entirely within the image boundary. In
the second experiment, we allow patches to deviate from

(a) Re-scaled images from the ImageNet validation set

(b) AutoAugment [4]

(c) AutoAugment [4] + InAug (ours)

Figure 2: Grad-CAM [27] visualization for ResNet50 (best
viewed when zoomed). The input images appear in fig-
ure 2a, where the leftmost column contains images that un-
derwent the standard validation pre-processing. In figure 2b
we show the Grad-CAM visualization for a network trained
using AutoAugment. We also print the top-5 predictions
of the network below each image. Labels are ordered by
the network’s confidence, and correct labels are highlighted
in green. Similarly, we report the same visualization for
ResNet50 trained with AutoAugment + InAugmet (ours) in
figure 2c.

the image boundary. In this case, the patch is trimmed to
only copy pixels from the image itself (we do not perform
any padding). Finally, we also trained the network using
the standard augmentation (i.e., random crop and random
horizontal flip) and reported baseline accuracy.

In Figure 3, we report the average top-1 accuracy as ob-
served over five different runs. As can be seen, both CutOut
and InAugment improve over the baseline training. One of
the main issues with the Cutout is that removing larger ar-

1701

4 8 12 16 20 24 28 32

Patch size

73

74

75

76

77

78

T
o
p
-1

a
cc

Baseline

Cutout

InAugment-Patch Within

InAugment-Patch Not Within

Figure 3: Comparison between CutOut [6] and InAugment
(ours). We plot PreAct-ResNet18 [14] top-one accuracy as a
function of the patch size used for CutOut and InAugment.
In all experiments, only the standard augmentations were
applied on the base image (i.e., random crop and random
horizontal flip). As can be seen from the figure, CutOut has
a certain patch-size threshold, after which applying CutOut
result in information loss. On the other hand, InAugment
benefits from larger patches. For InAugment, we consid-
ered two setups. In the first setup, patches are restricted
to be within the image boundary (blue), while in the other
setup, patches can deviate from the image boundary (green).
Note that the second setup yields better results, which indi-
cates that varying patch-sizes could be beneficial.

eas usually leads to loss of information, and the effective cut
size for CIFAR100 is 16. Interestingly, with InAugment,
larger patch sizes only improve the network’s performance
and lead to a 2% performance boost in network accuracy.
One reason for this phenomenon is that it is less likely that
these large patches will contain only useless information
when copied from the image. Hence, the pasted patch will
repeat essential features in the input images while still oc-
cluding other parts. Lastly, note that when we allow patch
sizes to vary, we achieve a 0.4% performance gain relative
to constant size patches. Therefore, applying varying patch
sizes could lead to better results. It is worth mentioning
that this was strongly observed in the ImageNet [25] exper-
iments, where the input images have varying patch sizes.
In our experiments, we found that copying patches with
random-sizes are essential in the ImageNet experiment.

Effect of resizing patches: the repetition of patches in
varying scales is an integral part of InAugment. To see the
effectiveness of resizing the patches, we experiment with
copying and pasting a single patch. In particular, we copy a

random patch of size sp × sp and resize it to size sr × sr,
where sp, sr ∈ {12, 16, 20, 24} (note, in the case where
sp = sr, then we don’t perform any resizing). In this ex-
periment, both the input image and the patch undergo the
standard transformation (e.g. random horizontal flip).

Patch resize (sr)

12 16 20 24

Pa
tc

h
si

ze
(s

p
) 12 76.78 77.45 77.63 77.73

16 77.65 77.45 78.01 77.66

20 77.33 77.87 77.67 78.02

24 77.93 77.78 77.58 77.9

Table 1: Resize affect on top-1 accuracy. Rows represent
the size of the copied patch. Columns represent the new
size of the patch before we paste it (after resizing). We also
report the accuracy in the case we don’t perform any resize
(diagonal).

As can be seen from Table 1, the best accuracy is ob-
tained when we resize the patches before pasting them back
into the image. In particular, the smaller the patch, the more
crucial resizing becomes. For example, the best accuracy
reported for patches of size (12 × 12), is when we resize
the patch to (24 × 24), which is 1% improvement over not
performing any resize. For larger patches, we see that the
resizing helps for most sr. We believe this is because in our
implementation, if the random patch we try to copy deviates
from the image boundary, then it is trimmed to fit the image
boundary. Therefore, larger patches are frequently clipped,
which means that their effective size is small on average.
Therefore, we choose to copy multiple patches in our final
implementation and resize them to form exponentially in-
creasing sizes.

Effect of multiple patches: To see the effect of past-
ing multiple patches onto the image, we trained three mod-
els, each with three different settings, added on top of the
AutoAugment baseline. For settings-k, we copy k random
patches of size (32×32). The patches are then resized such
that the i-th patch is re-scaled by factor σi = (0.5)i−1.

The average test accuracy and the average test loss are
reported in Table 2 for all three settings. Also, we report
the results obtained by training the models using AutoAug-
ment as a baseline augmentation technique. As can be seen
from the Table, incorporating InAugment not only improves
the overall accuracy but significantly improves the Cross-
Entropy (CE) loss on the test-set. Interestingly, training
Pre-ActResNet18 [14] with two patches improves the av-
erage CE loss by 0.03, even though the average accuracy is

1702

AA InAug x1 InAug x2 InAug x3

PreActResNet 79.11 / 0.95 80.27 / 0.82 80.19 / 0.79 79.70 / 0.80
WideResNet-28-10 83.84 / 0.59 84.80 / 0.54 84.46 / 0.54 84.27 / 0.55
ShakeShake-96 85.90 / 0.55 86.65 / 0.52 86.89 / 0.50 86.65 / 0.50

Table 2: Number of patches effect. We report the average
top-1 accuracy and the test Cross Entropy Loss as observed
over 5 different runs. In this experiment we copy and paste
up-to three patches. We let InAugment xn represent the
experiment in which n-patches are used (where n = 1, 2, 3).
We also report the results obtained for Auto Augment using
our implementation.

somewhat negatively affected. This suggests that the net-
work’s confidence improves when increasing the number of
patches. We believe the network accuracy has not improved
because the network has a small capacity, and using multi-
ple patches makes the optimization process harder. On the
other hand, training ShakeShake26-96 with InAugmentx2
is the best setting for that network. We conclude that us-
ing multiple-patches becomes more significant when train-
ing larger models for a longer period of time.

Alternative approaches: we copy patches from the orig-
inal input image in our method and perform the same aug-
mentation on the copied patches. We also considered apply-
ing different AutoAugment policies on the copied patches,
where we hoped to create a more significant visual variabil-
ity in the augmented image. However, we found this not to
work well, especially for large-capacity networks. We hy-
pothesize that this happens because drawing multiple aug-
mentations will more likely apply easier augmentations on
some patches, leading networks to ignore patches that un-
derwent harder augmentations. For further details, please
refer to the supplemental material.

4.2. CIFAR Experiments

We compare InAugment with previous augmentation
methods: CutOut [6], AutoAugment (AA) [4], Popu-
lation Based Augmentation (PBA) [15], FastAutoAug-
ment (FAA) [21], and RandAugment (RA) [5]. In our
experiment, we train three different networks, PreAct-
ResNet18 [14, 13], WideResNet-28-10 [40], and Shake-
Shake26-2x96 [8] on the CIFAR10 and CIFAR100
datasets [17].

Experiment details: for all experiments we use
the Stochastic Gradient Descent (SGD) optimizer, with
momentum 0.9 and weight decay of 1e− 3, 1e− 4,
and 5e− 4 for PreAct-ResNet18, WideResNet28-10 and
ShakeShake26-2x96, respectively. A nesterov momen-
tum we used in the experiments of WideResNet28-10 and
Shake-Shake26-2x96. The training settings for PreAct-

ResNet18 matches those in [41], and for WideResNet and
Shake-Shake26-2x96, we follow the training settings used
in [4, 5]. In particular, we train PreAct-ResNet18 and
WideResNet-28-10 for 200 epochs with the initial learning
rate set to 0.1. For Shake-Shake26-2x96, we use a learn-
ing rate 0.01 and train the network for 1800 epochs. The
learning rate schedule used for PreAct-ResNet18 is a multi-
step scheduler, in which the learning rate is scaled by 0.1
on epochs 100 and 150. A cosine-learning [23] rate was
used for both WideResNet-28-10 and Shake-Shake26-2x96.
For the WideResNet28-10 and PreAct-ResNet18 models,
we copy one patch of size (32× 32) and don’t perform any
resize on the patch. For Shake-Shake26-2x96 model, we
copy two patches of size 32, and rescale the second patch
by 0.5. Also, we always chose to paste the copied pasted,
i.e., our drop rate is pi = 0 (see section 3.3).

Results: the results are shown in Table 3. Specifi-
cally, incorporating InAugment with AutoAugment yielded
the highest accuracy for all networks used. We obtain
about 1.0% improvement for all networks trained on the CI-
FAR100 dataset compared to the best-reported result for all
the other methods. For CIFAR10, we also achieve the high-
est accuracy compared to all the networks and augmentation
methods on which we experimented, although by a smaller
margin. We postulate the reduced improvement is due to the
high initial accuracy, and the heavily tuned regularization
schemes used by some of the methods. We note that our
experiments were impelemented using the Pytorch frame-
work, while the AA baseline was originally implemented
using the Tensorflow one. This induces minor changes in
the resulting accuracies (e.g., in our implementation, the
WideResNet28-10 model trained with AA achieves only
97.15% as opposed to the 97.4% reported in the original pa-
per). In any case, we report in Table 3 the accuracy which is
better between our implementation and that of the original
paper [4].

4.3. ImageNet Experiments

We also show that InAugment is effective on larger
datasets with high-resolution images. In particular, we train
ResNet-50 [13] and EfficientNet-B3 [17] from scratch on
the ImageNet-ILSVRC2012 [25] dataset.

Experiment details: the training setup follows the
default implementation in the official TensorFlow-1.15.4
code. In particular, the ResNet50 models were trained for
180 epochs and the EfficientNet-B3 models were trained
for 350 epochs. We use the same training hyper-parameters
used in [5, 4]. The training images follow the standard aug-
mentation where they are randomly-cropped and resized to
the size (224 × 224) for the ResNet50 model, and to size
(300 × 300) for the EfficientNet-B3 model (a random hor-
izontal flip is applied). During test-time, images are center
cropped and resized to the same resolution as in the train-

1703

Baseline CutOut AA PBA FAA RA AA+InAug

CIFAR10
PreAct-ResNet-18 94.32 ± .18 95.67 ± .15 96.0 ± .05 - - - 96.35 ± .08
WideResNet-28-10 96.1 96.9 97.4 97.4 97.3 97.3 97.45 ± .04
ShakeShake26 2x96 97.1 97.4 98.0 98.0 98.0 98.0 98.30 ± .05

CIFAR100
PreAct-ResNet-18 75.32 ± 0.11 76.48 ± 28 79.11 ± .11 - - - 80.27 ± .31
WideResNet-28-10 81.2 81.6 83.80 ± .17 83.3 82.7 83.3 84.80 ± .20
ShakeShake26 2x96 82.9 84.0 85.90 ± .11 84.7 85.4 - 86.89 ± .20

Table 3: Top-1 accuracy report on CIFAR. The reported results with both mean and std are based on our implementation.
Results for AutoAugment (AA), Population-Based Method (PBA) Fast AutoAugment (FAA) and RandAumgnet (RA) are
reported in the original papers of these methods [5, 4, 15, 21]. In particular, for AA we report the better result between our
implementation and those reported in the original paper [4].

ing. The ResNet50 network was trained with the SGD op-
timizer, with momentum 0.9 and weight decay 1e− 4. We
trained the network on a single v3-8 TPU, with a global
batch size of 1024. The learning rate was set to 0.1 and
is linearly scaled by the batch-size divided by 256, follow-
ing [12]. To train EfficientNet-B3, we use a single v2-28
TPU pod with global batch size of 4096. The network was
trained with RMSProp with learning rate of 0.016, momen-
tum 0.9, ϵ = 0.001 and decay of 0.9. The learning rate is
also linearly scaled as in the case of the ResNet50 model.

The base augmentation we use is the policy that Au-
toAugment found for Efficientnet [33] (this policy is avail-
able in the official TensorFlow code). Furthermore, we
adopt the resize-first implementation (see copy-stage in sub-
section 3.2) since it achieves the right balance between ef-
ficiency and accuracy. Specifically, the pre-processing time
is lower when applied to a low-resolution image; there-
fore, augmenting the resized patches will take less time
(which is crucial for large-scale datasets). For ResNet50,
we copy three patches of random sizes and resize them to
(134× 134), (80× 80), and (48× 48), the patches are then
pasted according to the order of their size. For Efficientnet-
B3 [33], we copy two-patches and randomly resize them to
size (s1× s1) and (s2× s2), where s1 and s2 are uniformly
sampled from [300, 150] and [150, 8], respectively. In both
experiments, patches are dropped and not pasted onto the
images with a probability 0.5.

Results: the results are reported in Table 4. As shown
from the table, we improve both the top-1 and top-5 accu-
racy of ResNet-50 compared with previous augmentation
methods. Specifically, we achieve 78.2-% top-1 accuracy,
which is about 0.6% improvement over previous augmenta-
tion methods [4, 21, 5]. We also exhibit an approximately
0.2% improvement in the top-5 accuracy. Similarly, we
also witnessed an improvement in the Efficientnet-B3 ex-
periments, where a top-1 accuracy of 81.8% was achieved,

64 128 256 512

Padding size

25%

50%

75%

100%

A
cc

u
ra

cy
R

a
ti

o

Top-1 Accuracy

AA

AA + InAug

64 128 256 512

Padding size

50%

75%

100%

A
cc

u
ra

cy
R

a
ti

o

Top-5 Accuracy

AA

AA + InAug

Figure 4: ResNet50 [13] robustness to scale. We plot the
ratio between the network’s accuracy after scaling the val-
idation set and its accuracy on the original validation set.
The ratio of both the top-1 (left) and the top-5 accuracy
(right) are shown. As can be seen, training the network
using AutoAugment (AA) + InAugment (InAug) achieves
significantly better results than training it solely with AA
augmentation.

which is 0.2% higher than using AutoAugment as the only
augmentation.

4.4. Out-of-distribution samples

The standard ImageNet [25] training consists of ran-
domly cropping images and resizing them to a fixed size
(e.g., 224×224 for ResNet50 [13]). Therefore, the network
will most likely observe the same object at different sizes
during training. However, we show that this pre-processing
is not enough to handle out-of-distribution scales, and using
InAugment in training achieves a robust model that is more
scale-invariant.

To test our hypothesis, we want to measure the network’s
ability to classify objects at different scales. To scale the
entire ImageNet’s validation set, we pad each image with
fixed padding D, and the rest of the pre-processing remains
the same. Furthermore, to avoid introducing artifacts, we
use symmetric padding and strongly blur the padded pix-

1704

Baseline Fast AA RA AA AA + InAug (Ours)

ResNet-50 76.3 / 93.1 77.6 / 93.7 77.6 / 93.8 77.6 / 93.8 78.2 / 94.0
EfficientNet-B3 81.1 / - - - 81.6 / - 81.8 / 95.6

Table 4: Top-1 and Top-5 accuracy results on ImageNet. The results for AutoAugment on ResNet50 are replicated in our
experiments. The results for other methods and models are from their original papers [5, 21, 4]

els. Note that we cannot simply resize the images since
ResNet50 was designed to process images of size at least
224 × 224. We create four different validation sets, using
different pad sizes, namely D ∈ {64, 128, 256, 512} (see
figure 2a).

In figure 4 we plot the ratio of the network’s accuracy
on the padded validation sets and the original set. As
can be seen, incorporating InAugment in pre-processing
the training data yields models with better robustness to
scale. In particular, you can see that for large padding (i.e.,
smaller scales), the network’s performance trained solely
using Auto Augment witnesses a catastrophic performance
drop. Note that performance drop on both settings is in-
evitable since some images already appear on a small scale
(e.g., in the owl image in figure 2a, you can see that it is dif-
ficult to distinguish the owl in the small scale example). We
also visualize the regions that the network bases its decision
on using GradCAM [27]. In figure 2b, it is evident that the
baseline network no-longer looks at important regions when
it makes its decision on small-scale images. On the other
hand, as seen in figure 2c, models trained with our meth-
ods exhibit localized decisions for smaller-scale instances.
Note in the owl example, even though the network trained
with our method did not correctly classify the image with
padding D = 512, it still based its decision on the owl lo-
cation. However, due to the extreme scale, the owl features
are no longer distinguishable.

Finally, we also considered two alternative approaches to
scale the validation set. In one setup, we used zero-padding,
and in the other, we tiled the image multiple times. In both
cases, training with our-method improves upon solely train-
ing with Auto Augment. Especially in the zero-padding
case, where the network trained with Auto Augment only,
confuses the padded-images to be ’Television’ (see supple-
mental material for more examples).

5. Discussion

In this paper, we introduced a novel image augmenta-
tion method. We showed that copying-and-pasting random
patches expose the network to higher quality features, es-
pecially when the patches are resized. In particular, In-
Augment improves the robustness of the network to scale
and improves its confidence and accuracy. As mentioned

throughout the text, we compared InAugment with previ-
ous augmentation methods, including AutoAugment [4],
RanAugment [5], Fast AutoAugment [21], and CutOut [6],
showing consistent improvement. We believe that incorpo-
rating InAugment with existing methods could further boost
classifiers’ performance. For example, InAugment can be
considered an image transformation function, which means
it can also be added to automated augmentations’ search
space (e.g., AutoAugment). Furthermore, we believe that
performing different augmentations on the copied patches
could increase the image’s information variance, boosting
the network’s performance even further. Beyond improving
validation accuracy on the test set, some augmentation tech-
niques corrupt [22, 38, 32, 9] the input data and lead to ro-
bust models. The same distortions could also be applied to
the copied patches, which could increase the distortion vari-
ance. Therefore, we believe InAugment can also be adapted
for improving the model robustness for out-of-distribution
images. Finally, since patches are copied randomly in In-
Augment, it might be fruitful to investigate attention-based
InAugment, where meaningful patches are copied instead
of random ones and are pasted onto non-important regions.

Acknowledgment
Research supported with Cloud TPUs from Google’s

TensorFlow Research Cloud (TFRC).

References
[1] Antreas Antoniou, Amos J. Storkey, and Harrison Edwards.

Data augmentation generative adversarial networks. CoRR,
abs/1711.04340, 2017. 2

[2] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A
non-local algorithm for image denoising. In 2005 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR 2005), 20-26 June 2005, San Diego,
CA, USA, pages 60–65. IEEE Computer Society, 2005. 1

[3] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-
column deep neural networks for image classification. In
2012 IEEE Conference on Computer Vision and Pattern
Recognition, Providence, RI, USA, June 16-21, 2012, pages
3642–3649. IEEE Computer Society, 2012. 2

[4] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation strategies from data. In IEEE Conference on Computer

1705

Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 113–123. Computer Vi-
sion Foundation / IEEE, 2019. 1, 2, 3, 4, 6, 7, 8

[5] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages
3008–3017. IEEE, 2020. 2, 3, 6, 7, 8

[6] Terrance Devries and Graham W. Taylor. Improved regular-
ization of convolutional neural networks with cutout. CoRR,
abs/1708.04552, 2017. 1, 3, 4, 5, 6, 8

[7] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Gold-
berger, and Hayit Greenspan. Synthetic data augmentation
using GAN for improved liver lesion classification. CoRR,
abs/1801.02385, 2018. 2

[8] Xavier Gastaldi. Shake-shake regularization of 3-branch
residual networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Workshop Track Proceedings. OpenReview.net,
2017. 6

[9] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin D.
Cubuk. Adversarial examples are a natural consequence
of test error in noise. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2280–2289.
PMLR, 2019. 8

[10] Daniel Glasner, Shai Bagon, and Michal Irani. Super-
resolution from a single image. In IEEE 12th International
Conference on Computer Vision, ICCV 2009, Kyoto, Japan,
September 27 - October 4, 2009, pages 349–356. IEEE Com-
puter Society, 2009. 1

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680, 2014. 2

[12] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017. 7

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 2, 6, 7

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part IV, volume 9908 of Lecture Notes in Com-
puter Science, pages 630–645. Springer, 2016. 5, 6

[15] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter
Abbeel. Population based augmentation: Efficient learning
of augmentation policy schedules. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 2731–
2741. PMLR, 2019. 2, 3, 6, 7

[16] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 4401–4410. Computer Vision Foundation / IEEE,
2019. 2

[17] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 2, 3, 4, 6

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Peter L. Bartlett, Fernando C. N. Pereira, Christo-
pher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Process-
ing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States, pages 1106–
1114, 2012. 2

[19] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. 2

[20] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran.
Smart augmentation learning an optimal data augmentation
strategy. IEEE Access, 5:5858–5869, 2017. 2

[21] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and
Sungwoong Kim. Fast autoaugment. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada, pages 6662–6672, 2019. 2, 3, 6, 7, 8

[22] Raphael Gontijo Lopes, Dong Yin, Ben Poole, Justin Gilmer,
and Ekin D. Cubuk. Improving robustness without sacri-
ficing accuracy with patch gaussian augmentation. CoRR,
abs/1906.02611, 2019. 8

[23] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with warm restarts. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. 6

[24] Alexander J. Ratner, Henry R. Ehrenberg, Zeshan Hussain,
Jared Dunnmon, and Christopher Ré. Learning to com-
pose domain-specific transformations for data augmenta-
tion. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 3236–3246, 2017. 2

1706

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 2, 3, 4, 5, 6, 7

[26] Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi. APAC:
augmented pattern classification with neural networks.
CoRR, abs/1505.03229, 2015. 2

[27] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In IEEE International Confer-
ence on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pages 618–626. IEEE Computer Society, 2017.
4, 8

[28] Eli Shechtman and Michal Irani. Matching local self-
similarities across images and videos. In 2007 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR 2007), 18-23 June 2007, Minneapolis,
Minnesota, USA. IEEE Computer Society, 2007. 1

[29] Patrice Y. Simard, David Steinkraus, and John C. Platt. Best
practices for convolutional neural networks applied to visual
document analysis. In 7th International Conference on Doc-
ument Analysis and Recognition (ICDAR 2003), 2-Volume
Set, 3-6 August 2003, Edinburgh, Scotland, UK, pages 958–
962. IEEE Computer Society, 2003. 2

[30] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. 2

[31] Leon Sixt, Benjamin Wild, and Tim Landgraf. Render-
gan: Generating realistic labeled data. Frontiers Robotics
AI, 5:66, 2018. 2

[32] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014. 8

[33] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning
Research, pages 6105–6114. PMLR, 2019. 7

[34] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle J. Palmer,
and Ian D. Reid. A bayesian data augmentation approach
for learning deep models. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages
2797–2806, 2017. 2

[35] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 6438–6447. PMLR,
2019. 1, 2

[36] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and
Rob Fergus. Regularization of neural networks using drop-
connect. In Proceedings of the 30th International Confer-
ence on Machine Learning, ICML 2013, Atlanta, GA, USA,
16-21 June 2013, volume 28 of JMLR Workshop and Con-
ference Proceedings, pages 1058–1066. JMLR.org, 2013. 2

[37] Longhui Wei, An Xiao, Lingxi Xie, Xin Chen, Xiaopeng
Zhang, and Qi Tian. Circumventing outliers of autoaugment
with knowledge distillation. CoRR, abs/2003.11342, 2020. 3

[38] Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Do-
gus Cubuk, and Justin Gilmer. A fourier perspective
on model robustness in computer vision. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada, pages 13255–13265, 2019. 8

[39] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon
Oh, Youngjoon Yoo, and Junsuk Choe. Cutmix: Regulariza-
tion strategy to train strong classifiers with localizable fea-
tures. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019, pages 6022–6031. IEEE, 2019. 1, 2

[40] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Richard C. Wilson, Edwin R. Hancock, and
William A. P. Smith, editors, Proceedings of the British
Machine Vision Conference 2016, BMVC 2016, York, UK,
September 19-22, 2016. BMVA Press, 2016. 2, 6

[41] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net,
2018. 1, 2, 6

[42] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong.
Adversarial autoaugment. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. 2

[43] Xinyue Zhu, Yifan Liu, Zengchang Qin, and Jiahong Li.
Data augmentation in emotion classification using generative
adversarial networks. CoRR, abs/1711.00648, 2017. 2

[44] Maria Zontak and Michal Irani. Internal statistics of a single
natural image. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 977–984, 2011. 1

1707

