
Data Augmentation for Scene Text Recognition

Rowel Atienza
Electrical and Electronics Engineering Institute

University of the Philippines
rowel@eee.upd.edu.ph

Abstract

Scene text recognition (STR) is a challenging task in
computer vision due to the large number of possible text
appearances in natural scenes. Most STR models rely on
synthetic datasets for training since there are no sufficiently
big and publicly available labelled real datasets. Since
STR models are evaluated using real data, the mismatch
between training and testing data distributions results into
poor performance of models especially on challenging text
that are affected by noise, artifacts, geometry, structure,
etc. In this paper, we introduce STRAug which is made of
36 image augmentation functions designed for STR. Each
function mimics certain text image properties that can be
found in natural scenes, caused by camera sensors, or in-
duced by signal processing operations but poorly repre-
sented in the training dataset. When applied to strong base-
line models using RandAugment, STRAug significantly in-
creases the overall absolute accuracy of STR models across
regular and irregular test datasets by as much as 2.10%
on Rosetta, 1.48% on R2AM, 1.30% on CRNN, 1.35% on
RARE, 1.06% on TRBA and 0.89% on GCRNN. The di-
versity and simplicity of API provided by STRAug func-
tions enable easy replication and validation of existing data
augmentation methods for STR. STRAug is available at
https://github.com/roatienza/straug.

1. Introduction
Humans use text to convey information through labels,

signs, tags, logos, billboards and markers. For instance, a
road sign with ”Yield” informs drivers to wait for their turn.
An ”EXIT” sign points to the way going out. In the su-
permarket, sellers use labels or tags to inform buyers about
the price and the quantity of products. Therefore, machines
that read text in natural scenes can perform smarter deci-
sions and actions.

The practical applications of scene text recognition
(STR) have recently drawn interest in the computer vision
community. Unfortunately, majority of the focus has always
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Figure 1. STRAug data augmentation significantly improves the
overall accuracy of STR models especially on challenging input
text images. We follow the evaluation protocol used in most STR
models of case sensitive training and case insensitive validation.

been on refining model architecture and training algorithm
to improve the text recognition performance. While there is
nothing wrong with this, STR can also benefit from the im-
provement in data for training. In the absence of sufficiently
large and publicly available labelled datasets, the advance-
ment of STR relies on huge collections of automatically an-
notated synthetic text images for training such as MJSynth
or Synth90k [18], SynthText [14], Verisimilar [43], and Un-
realText [26]. Trained models are then evaluated on much
smaller and fragmented real datasets such as IIIT5K (IIIT)
[29], Street View Text (SVT) [37], ICDAR2003 (IC03)
[27], ICDAR2013 (IC13) [21], ICDAR2015 (IC15) [20],
SVT Perspective (SVTP) [31] and CUTE80 (CT) [32]. As a
result, STR suffers from the typical problem of distribution
shift from the training data to the evaluation data. STR mod-
els perform poorly especially in under represented or long
tail samples similar to that can be found in the test data.

In deep learning, popular approaches to address distri-
bution shift include domain adaptation, causal represen-
tation learning, regularization, information bottleneck and
data augmentation. In this paper, our focus is on the rel-
atively straightforward approach of data augmentation. In
STR, data augmentation has not been rigorously explored.
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Typical augmentation methods used include rotation, per-
spective and affine transformations, Gaussian noise, motion
blur, resizing and padding, random or learned distortions,
sharpening and cropping [39, 23, 24, 28, 1]. Proponents of
STR methods select a subset of these augmentation meth-
ods to improve their models. To the best of our knowledge,
there has been no comparative study on the performance of
each of these methods. Furthermore, there are other pos-
sible text image augmentation functions that have not been
used and fully explored in the existing STR literature.

In this paper, we attempt to formulate a library of
data augmentation functions specifically designed for STR.
While data augmentation algorithms are more developed in
object recognition, they are not necessarily applicable in
STR. For example, CutOut [11], CutMix [40] and MixUp
[44] can easily remove one or more symbols from the text
image resulting in the total loss of useful information for
training. In object recognition, there is generally only one
class to predict. In STR, there are one or more characters
each occupying a small region in the image. Removing a
region or mixing two images will annihilate one or more
characters in the text image. The correct meaning of the
text could be altered.

STRAug proposes 36 augmentation functions designed
for STR. Each function has a simple API:

img = op(img, mag=mag, prob=prob).
An STRAug function op() transforms an image img,

with magnitude mag and with probability prob. Each
function has 3 levels or magnitudes of severity or inten-
sity that can manifest in capturing text in natural images.
In order to avoid the combinatorial explosion in evaluat-
ing the effect of each augmentation function, we propose
8 logical groups based on the nature, origin or impact of
these methods. The 8 groups are: 1) Warp, 2) Geometry,
3) Noise, 4) Blur, 5) Weather, 6) Camera, 7) Pattern and 8)
Process. Using RandAugment [10], we demonstrate overall
significant positive increase in text recognition accuracy of
baseline models on both regular and irregular text datasets
as shown in Figure 1. The simplicity of API and the num-
ber of functions supported by STRAug enable us to easily
replicate and validate other data augmentation algorithms.

2. Related Work
Scene text recognition (STR) is the challenging task of

correctly reading a sequence of characters from natural im-
ages. STR models using deep learning [39, 3, 42, 5, 25]
have superseded the performance of algorithms with hand-
crafted features [30, 38]. Chen et al. [7] presented a com-
prehensive review and analysis of different STR methods.
The problem with deep learning models is that they re-
quire a large amount of data to automatically learn features.
For STR, there are no publicly available large labelled real
datasets. Collecting and annotating huge amount of real text

data is a very costly and time consuming task. Thus, the ad-
vancement of STR relies on large synthetically generated
and automatically annotated datasets.

Since STR models are evaluated on real, small and frag-
mented datasets, the bad side effects of data distribution
shift are apparent especially on natural text images that are
sometimes curved, noisy, distorted, blurry, under perspec-
tive transformation or rotated. In this paper, we believe that
data augmentation can partially address the problem of data
distribution shift in STR. Data augmentation automatically
introduces certain transformations that can be found in the
test datasets or natural scenes but under represented in the
training datasets. Data augmentation can help in narrowing
the gap between training and evaluation distributions.

To the best of our knowledge, there has been no com-
prehensive study and empirical evaluation on different data
augmentation functions that are helpful for STR models in
general. Luo et al. [28] proposed Learn to Augment to train
an STR model to learn difficult text distortions. Experimen-
tal results on irregular text datasets such as ICDAR2015
(IC15) [20], SVT Perspective (SVTP) [31] and CUTE80
(CT) [32] demonstrated significant performance improve-
ment. The disadvantage of Learn to Augment is it requires
additional agent and augmentation networks that must be
trained with the main STR network. This results to a more
complex setup, additional 1.5M network parameters, diffi-
cult to reuse algorithm and a longer training time. Further-
more, Learn to Augment is only focused on distorted text,
one of the many causes of data distribution shift in STR.

In the STR literature, data augmentation has been treated
more of an after thought when proposing a new algorithm.
Litman et al. [24] used random resizing and distortion to
improve SCATTER. Yu et al. [39] applied random resiz-
ing plus padding, rotation, perspective transformation, mo-
tion blur and Gaussian noise to gain additional performance
for its semantic reasoning network (SRN). Lee et al. [23]
used random rotation with a normal distribution to train its
transformer-based SATRN model to improve irregular text
recognition. Du et al. [12] used a combination of techniques
in Learn to Augment and SRN to improve PP-OCR. While
there is a strong evidence of improvement in performance,
there is a lack of focused study in this area. In this paper,
we attempt to address this problem by designing 36 data
augmentation functions, creating 8 logical groups, analyz-
ing the effect of each group, and systematically combining
all groups to maximize their overall positive impact.

3. Data Augmentation for STR
Text in natural scenes can be found in various uncon-

strained settings such as walls, shirts, car plates, book cov-
ers, signboards, product labels, price tags, road signs, mark-
ers, etc. The captured text images have many degrees of
variation in font style, orientation, shape, size, color, ren-
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Figure 2. Challenging text appearances encountered in natural scenes
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Figure 3. Source and destination control points used in TPS image
warping transformation for Curve, Distort and Stretch data aug-
mentation.

dering, texture and illumination. The images are also sub-
ject to camera sensor orientation, location and imperfec-
tions causing image blur, pixelation, noise, and geometric
and radial distortions. Weather disturbances such as glare,
shadow, rain, snow and frost can also greatly affect the ap-
pearance of text. Figure 2 shows that real-world text ap-
pearances are challenging for machines to read. In fact, text
images may be simultaneously altered by several factors. In
the following, we discuss the 36 functions classified into 8
groups that attempt to mimic the issues in capturing text in
natural scenes.

3.1. Warp

Curved, distorted and stretched text styles are found in
natural scenes but are usually not well represented in train
datasets. The Warp group includes Curve, Distort and
Stretch. Curved text images are found in logos, seals, coins,
product labels, emblems and tires. Distorted text can be

Source Pt Destination Pt
Curve

(0, 0)

(0, yc1) s.t.
r = rand(rmin, rmax)h

x1 = (r2 − s2

4 )
1
2 , yc1 = r − x1

( s4 , 0)
(x2, y2) = ( s2 − r sinβ, r(1− cosβ)) s.t.
sinβ = ( 12 − x1

2r )
1
2 , cosβ = ( 12 + x1

2r )
1
2

( 3s4 , 0) (s− x2, y2)
(s, 0) (s, yc1)

( s4 , s)
(x3, y3) =

(w2 − (r − t) sinβ, r − (r − t) cosβ)
( 3s4 , s) (s− x3, y3)
( s2 , 0) ( s2 , 0)
( s2 , s) ( s2 , t) s.t. t = s

2rand(0.4, 0.5)

(0, s)
(xc2, yc2) s.t.

xc2 = st
2r , yc2 = yc1 +

tx1

r

(s, s) (s− xc2, yc2)
Distort and Stretch

(0, 0) (w3 rand(0, k),
h
2 rand(0, k))

(w3 , 0) (w3 (1 + rand(−k, k)), h
2 rand(0, k))

( 2w3 , 0) (w3 (2 + rand(−k, k)), h
2 rand(0, k))

(w, 0) (w − w
3 rand(0, k),

h
2 rand(0, k))

(0, h) (w3 rand(0, k), h− h
2 rand(0, k))

(w3 , h) (w3 (1 + rand(−k, k)), h− h
2 rand(0, k))

( 2w3 , h) (w3 (2 + rand(−k, k)), h− h
2 rand(0, k))

(w, h) (w − w
3 rand(0, k)), h− h

2 rand(0, k))
Table 1. Formula for source and destination control points used
by TPS image warping. For Curve, the image is first resized to a
square with side s before the TPS transformation is applied. Af-
terward, the image is returned to its original dimensions (w, h). r
decreases with the level of severity. Distort and Stretch share the
same set of formula. For Stretch, the y coordinate is not random-
ized. k increases with the level of intensity.

seen on clothing, textiles, candy wrappers, thin plastic pack-
aging and flags. Stretched text can be observed on elastic
packaging materials and balloons. In this paper, we use
stretch to refer to elastic deformation which may include
its literal opposite word meaning, contract. Both Distort
and Stretch are also used in certain artistic styles or can be
caused by structural deformation and camera lens radial dis-
tortion (e.g. fish eye lens).
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Figure 4. Image transformation under Geometry group.

Figure 3 shows the control points used in smooth defor-
mation of a horizontal text image into Curve, Distort and
Stretch versions. We use Thin-Plate-Spline (TPS) [4] to
produce a warped version of the original image by moving
pixels at source control points to their destination coordi-
nates. All neighboring pixels around source control points
are also re-positioned while following the smooth deforma-
tion constraints. With proper values of destination control
points, various realistic deformations can be approximated
such as curved, distorted and stretched. Table 1 lists the
source and destination control points for our Warp data aug-
mentation. An alternative algorithm to TPS is moving least
squares as used in STR by Luo et al. [28].

In the Curve image warping, the text image is first re-
sized to a square with side s. Then, random vertical flip is
applied to get either concave or convex text shape. After
the TPS smooth deformation, the upper half of the image is
cropped since the lower half is covered by blank filler color.
Then, the original image dimension is restored. We used 8
control points for warping. Two optional control points at
the mid point of each side of the source image help improve
the straightness of the edges. As the magnitude of augmen-
tation increases, the radius of curvature r decreases. For
Distort and Stretch, the extent of distortion k increases with
the level of severity.

3.2. Geometry

When viewing natural scenes, perfect horizontal frontal
alignment is seldom achieved. Almost always there is some
degree of rotation and perspective transformation in the text
image. Text may not also be perfectly centered. Transla-
tion along x and/or y coordinates is common. Furthermore,
text can be found in varying sizes. To simulate these real-
world scenarios, the Geometry group includes Perspective,
Shrink and Rotate image transformations. Figure 4 shows
these data augmentations while Table 2 lists the source and
destination control points. For Rotate, there is only θ as the
degree of freedom.

For Perspective, the horizon can be at the left or right
side of the image. For simplicity, Figure 4 and Table 2 show

Source Pt Destination Pt
Perspective

(0, 0) (0, h · rand(k, k + .1))
(w, 0) (w, 0)
(0, h) (0, h · rand(0.9− k, 1− k))
(w, h) (w, h)

Shrink

(0, 0)
(∆w,∆h)

∆w = w
3 rand(k, k + .1)

∆h = h
2 rand(k, k + .1)

(w, 0) (w −∆w,∆h)
(0, h) (∆w, h−∆h)
(w, h) (w −∆w, h−∆h)

Rotate, θ = rand(θmin, θmax)
Table 2. Formula for source and destination control points used
in Perspective and Shrink data augmentations. k increases with
the level of intensity. For Rotate, θ is sampled from a uniform
distribution. θmin and θmax values increase with the magnitude
of data augmentation.

Source Image Grid VGrid

HGrid RectGrid EllipseGrid

Figure 5. Examples of images affected by Pattern data augmenta-
tion.

left horizon only. For both Perspective and Shrink, k in-
creases with the magnitude of augmentation. We also use
TPS to perform Shrink deformation. As mentioned earlier,
text may not be necessarily centered at all times. Therefore
for Shrink, we randomly translate along horizontal or verti-
cal axis. To avoid unintentional cropping of text symbols,
the maximum horizontal translation is set to ∆w (maximum
of ∆h for vertical translation).

For Rotation, θ is uniformly sampled from θmin to θmax.
The magnitude of data augmentation increases with θmin

and θmax. Clockwise rotation is supported by flipping the
sign of θ with 50% probability.

3.3. Pattern

Regional dropout data augmentation methods such as
CutOut [11], MixUp [44] and CutMix [40] are not suitable
in STR since one or more symbols may be totally removed
from the image. Inspired by GridMask [6], we designed 5
grid patterns that mask out certain regions from the image
while ensuring that text symbols are still readable. For the
Pattern group, we introduce 5 types of Grid: Grid, VGrid,
HGrid, RectGrid and EllipseGrid as shown in Figure 5.
The distance between grid lines decreases with the mag-
nitude of data augmentation. Text with grid like appearance
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Figure 6. Examples of images affected by Noise data augmenta-
tion.

Source Image GaussianBlur DefocusBlur

MotionBlur GlassBlur ZoomBlur

Figure 7. Example images affected by Blur data augmentation.

can be found in certain electronic displays and billboards,
dot-matrix printer type of fonts and signs behind a meshed
fence.

3.4. Noise

Noise is common in natural images. For STRAug, we
lumped together different Noise types: 1) GaussianNoise,
2) ShotNoise, 3) ImpulseNoise and 4) SpeckleNoise. Fig-
ure 6 shows how each type of noise affects the text image.
Gaussian noise manifests in low-lighting conditions. Shot
noise or Poisson noise is electronic noise due to the discrete
nature of light itself. Impulse noise is a color version of salt-
and-pepper noise which can be caused by bit errors. For the
Noise group, we adopted the implementation by Hendrycks
and Dietterich [17] but using only half of the levels in order
to ensure that the text in the image is still human readable.
The amount of noise corruption increases with the level of
severity of data augmentation.

3.5. Blur

Similar to noise, blur is common in natural images. Blur
may be caused by unstable camera sensor, dirty lens, rela-
tive motion between the camera and the subject, insufficient
illumination, out of focus settings, imaging while zooming,
subject behind a frosted glass window, or shallow depth of
field. The Blur group includes: 1) GaussianBlur, 2) De-
focusBlur, 3) MotionBlur, 4) GlassBlur and 5) ZoomBlur.
Figure 7 shows resulting images due to Blur functions. The
degree of blurring increases with the level of severity of data
augmentation. Except for GaussianBlur, we adopted the
implementation by Hendrycks and Dietterich [17].

3.6. Weather

Scene text may be captured under different weather
conditions. As such, we simulate these conditions under

Source Image Fog Snow

Frost Rain Shadow

Figure 8. Example images affected by Weather data augmentation.

Source Image Contrast Brightness

JpegCompression Pixelate

Figure 9. Example images affected by Camera data augmentation.

Source Image Posterize Solarize

Invert Equalize AutoContrast

Sharpness Color

Figure 10. Example images affected by Process data augmenta-
tion.

Weather group: 1) Fog, 2) Snow, 3) Frost, 4) Rain and 5)
Shadow. Figure 8 shows how a text image is affected by
different weather conditions. As the magnitude of data aug-
mentation increases, the severity of weather condition is in-
creased. For example, as the magnitude of augmentation
increases, the number of rain drops increases or the opac-
ity of the shadow increases. The weather conditions around
the world are extremely varied that it may not be possible to
cover all possible scenarios. Weather simulates some com-
mon conditions only.

3.7. Camera

Camera sensors have many imperfections and tunable
settings. These are grouped under Camera: 1) Contrast, 2)
Brightness, 3) JpegCompression and 4) Pixelate. Contrast
enables us to distinguish the different objects that compose
an image. This could be the text against background and
other artifacts. Brightness is directly affected by scene lu-
minance. JpegCompression is the side effect of image com-
pression. Pixelate is exhibited by increasing the resolution
of an image. The severity of camera effect increases with
the level of data augmentation. Figure 9 illustrates the ef-
fect of Camera data augmentation.
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MJ ST

Figure 11. Sample images from train datasets.

3.8. Process

All other image transformations used in object recogni-
tion data augmentation literature that may be applicable in
STR are grouped together in Process: 1) Posterize, 2) So-
larize, 3) Invert, 4) Equalize, 5) AutoContrast, 6) Sharp-
ness and 7) Color. Figure 10 demonstrates the effect of
Process. These functions were used in AutoAugment [9]
and can help STR models learn invariant features of text in
images. The functions are image processing routines that
change the image appearance but not the readability of the
text. This is done through bit-wise or color manipulation.
For example, Invert and Color can drastically change the
color of the image but the readability of the text remains.
Invert, AutoContrast and Equalize support 1 level of inten-
sity only.

4. Experimental Results and Discussion
We evaluated the impact of STRAug on different strong

baseline STR methods using the framework developed by
Baek et al. [3]. We first describe the train and test datasets.
Then, we present and analyze the empirical results.

4.1. Train Dataset

The framework uses 1) MJSynth (MJ) [18] or also
known as Synth90k and 2) SynthText (ST) [14] to train STR
models. Figure 11 shows sample images from MJ and ST.
We provide a short description of the two datasets.

MJSynth (MJ) is a synthetically generated dataset made
of 8.9M realistically looking word images. MJSynth was
designed to have 3 layers: 1) background, 2) foreground and
3) optional shadow/border. It uses 1,400 different fonts, dif-
ferent background effects, border/shadow rendering, base
colors, projective distortions, natural image blending and
noise.

SynthText (ST) is a synthetically generated dataset
made of 5.5M word images. SynthText blends synthetic
text on natural images. It uses the scene geometry, texture,
and surface normal to naturally blend and distort a text ren-
dering on the surface of an object. The text is then cropped
from the modified natural image.

4.2. Test Dataset

The test dataset is made of several small publicly avail-
able STR datasets of text in natural images. These datasets

Regular Dataset Irregular Dataset
IIIT5K IC15

SVT SVTP
IC03 CT
IC13

Figure 12. Sample text images from test datasets.

Table 3. Train conditions
Train dataset:

50%MJ + 50%ST Batch size: 192

Iterations: 300,000 Parameter init: He [15]
Optimizer: Adadelta [41] Learning rate: 1.0
Adadelta ρ: 0.95 Adadelta ϵ: 1e−8

Loss: Cross-Entropy/CTC Gradient clipping: 5.0
Image size: 100× 32 Channels: 1 (grayscale)

are generally grouped into two: 1) Regular and 2) Irregular.

The regular datasets have text images that are mostly
frontal with a minimal amount of rotation or perspective
distortion. IIIT5K-Words (IIIT) [29], Street View Text
(SVT) [37], ICDAR2003 (IC03) [27] and ICDAR2013
(IC13) [21] are considered regular datasets. IIIT5K has
3,000 test images. These images are mostly from street
scenes such as sign boards, brand logos, house number or
street signs. SVT has 647 test images. The text images
are cropped from Google Street View images. IC03 has
1,110 test images from ICDAR2003 Robust Reading Com-
petition. Images were captured from natural scenes. Both
versions, 860 and 867 test images, are used. IC13 is an
extension of IC03 and shares similar images. IC13 was
created for the ICDAR2013 Robust Reading Competition.
Both versions, 857 and 1,015 test images, are used.

Meanwhile, irregular datasets are made of text with chal-
lenging appearances such as curved, vertical, under per-
spective transformation, low-resolution or distorted. IC-
DAR2015 (IC15) [20], SVT Perspective (SVTP) [31] and
CUTE80 (CT) [32] belong to irregular datasets. IC15 has
text images from the ICDAR2015 Robust Reading Compe-
tition. Many images are blurry, noisy, rotated, and some-
times of low-resolution, perspective-shifted, vertical and
curved. Both versions, 1,811 and 2,077 test images, are
used. SVTP has 645 test images from Google Street View.
Most are images of business signage. CT focuses on curved
text images captured from shirts and product logos. The
dataset has 288 test images.

Figure 12 shows samples from both regular and irregular
datasets. For both datasets, only the test splits are used in
evaluating STR models.
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Table 4. Individual group absolute percent gain in accuracy for the RARE [34] model.

Group
IIIT SVT IC03 IC13 IC15 SVTP CT Acc

3,000 647 860 867 857 1,015 1,811 2,077 645 288 %
Warp 0.34 0.03 0.25 0.21 -0.12 0.08 0.78 0.51 -0.13 0.52 0.33
Blur -0.08 0.21 0.54 0.37 -0.10 -0.10 2.05 1.76 0.18 0.29 0.67
Noise -0.31 0.53 0.56 0.63 0.12 0.00 1.49 1.29 1.10 -1.38 0.52
Geometry 0.17 -0.18 0.10 0.13 0.39 0.33 0.99 0.87 -0.13 0.41 0.41
Camera -0.09 -0.18 0.03 0.03 -0.23 -0.06 1.16 0.93 0.26 -2.56 0.24
Weather 0.26 0.41 0.10 0.33 -0.54 -0.47 1.03 0.80 0.98 -0.13 0.38
Pattern -0.35 -0.95 0.00 -0.07 -0.33 -0.53 0.87 0.72 -0.45 -0.34 0.01
Process -0.48 -0.57 0.27 0.18 -0.12 -0.07 1.05 0.76 0.31 0.64 0.19

4.3. Experimental Setup

The training configurations used in the framework are
summarized in Table 3. We reproduced the results of 6
strong baseline models: CRNN [33], R2AM [22], GCRNN
[36], Rosetta [5], RARE [34] and TRBA [3]. Each model is
differentiated by 4 stages [3]: 1) Image Rectification: TPS
[19] or None, 2) Feature Extractor: VGG [35], ResNet [16]
or RCNN [22], 3) Sequence Modelling: BiLSTM [33] or
None, and 4) Prediction: Attention [34, 8] or CTC [13].
We trained all models from scratch for at least 5 times us-
ing different random seeds. The best performing weights on
the test datasets are saved to get the mean evaluation scores.

4.4. Individual Group Performance

After establishing the baseline scores, each STRAug
group was used as a data augmentation method during train-
ing in order to understand the individual gain in accuracy.
We performed an ablation study using the RARE model
since it is the smallest model with all 4 stages present.
Data augmentation is randomly applied with 50% probabil-
ity. The magnitude of data augmentation is randomly drawn
from (0, 1, 2). Table 4 shows that the biggest gain of 0.67%
in absolute accuracy is from Blur, followed by Noise 0.52%,
Geometry 0.41%, Weather 0.38%, Warp 0.33%, Camera
0.24%, Process 0.19% and Pattern 0.01%. Blur has the
biggest gain on IC15 since the dataset has a substantial
number of low resolution, low-light and blurry images. As
expected, Warp improves curved text that can be found in
CT. Both Warp and Geometry improved the model perfor-
mance on IC15 and IC03. Both datasets have rotated and
distorted text. Surprisingly, SVTP did not improve with
Warp and Geometry. We believe that while SVTP is from
Google Street View, the amount of perspective distortion
and rotation is not that significant unlike in IC15 and IC13.
Noise has performance gains across all datasets except for
CT and IIIT. These two datasets are dominated by clean
text images. Weather has accuracy gains on both IC15 and
SVTP. Both datasets have a substantial number of outdoor
scenes. Process improved the model performance on IC15,
SVTP, CT and IC13. These datasets are characterized by
highly varied color and texture. Overall, Pattern has a neg-

Figure 13. Overall absolute percentage accuracy increase versus
the number of data augmentations when STRAug is used in differ-
ent baseline STR models.

ligible positive impact but it has a significant contribution in
IC15 which contains text images with patterns. An example
is the word TOWN in Figure 12.

4.5. Combined Group Performance

The individual group performance gains may not appear
impressive. However, combining all groups significantly
pushes the accuracy higher. We used RandAugment [10]
as a policy to randomly select N data augmentation groups
each with a random magnitude M to apply during train-
ing. Unlike AutoAugment [9], RandAugment has a com-
parable performance and is easy to optimize using a simple
grid search. Figure 13 shows the absolute percent accuracy
gain versus N for different baseline models. Unlike in ob-
ject recognition where the accuracy increases with the num-
ber of augmentations, in STR the peak is between N = 2
and N = 4. Table 5 shows the gains per dataset. When
compared with the results from applying data augmentation
on an individual group basis, the gains using a mixture of
groups are significantly higher. For example, in evaluating
CT with the RARE model the highest group gain is only
0.64% while it is 2.95% or about 4.6× for the combined.
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Table 5. Reproduced baseline scores and absolute accuracy increase using different data augmentation methods.
Model IIIT SVT IC03 IC13 IC15 SVTP CT Acc
+Augmentation 3,000 647 860 867 857 1,015 1,811 2,077 645 288 %
CRNN [33] 81.56 80.26 91.69 91.41 89.35 88.30 65.64 60.80 65.85 61.63 76.76
+SRN Aug 0.71 -0.23 0.26 0.26 0.03 0.02 2.18 1.81 1.40 2.69 0.98
+PP-OCR Aug 0.37 -0.14 0.29 0.25 -0.01 0.04 2.11 1.83 0.56 3.99 0.88
+STRAug (Ours) 0.63 0.37 0.79 0.87 0.22 0.24 2.68 2.34 2.00 2.26 1.30
R2AM [22] 83.28 80.95 91.69 91.38 90.17 88.15 68.48 63.35 70.50 64.67 78.46
+SRN Aug 0.81 2.72 0.99 1.01 0.92 0.68 1.46 1.49 1.80 2.11 1.24
+PP-OCR Aug 0.84 1.17 0.99 0.82 1.04 1.04 1.90 1.78 1.49 4.08 1.33
+STRAug (Ours) 0.84 2.92 0.60 0.59 0.73 0.62 2.34 2.10 2.67 3.15 1.48
GCRNN [36] 82.89 81.14 92.67 92.31 89.97 88.37 68.12 62.94 68.48 65.51 78.30
+SRN Aug 0.54 0.00 -0.35 -0.42 -0.08 0.53 0.35 0.42 0.21 2.20 0.31
+PP-OCR Aug 0.34 0.00 -0.23 -0.15 -0.39 0.16 0.96 0.91 1.40 3.13 0.49
+STRAug (Ours) 0.52 -0.41 -0.12 0.04 0.31 0.79 1.73 1.62 2.22 1.62 0.89
Rosetta [5] 82.59 82.60 92.60 91.97 90.32 88.79 68.15 62.95 70.02 65.76 78.43
+SRN Aug 1.06 0.14 0.46 0.49 -0.12 0.05 2.58 2.44 1.10 5.76 1.34
+PP-OCR Aug 2.14 0.97 0.69 0.76 0.39 0.28 2.58 2.44 1.46 4.72 1.74
+STRAug (Ours) 2.15 1.58 0.47 0.72 0.61 0.69 3.47 3.30 1.61 5.07 2.10
RARE [34] 85.95 85.19 93.51 93.33 92.30 91.03 73.94 68.42 75.58 70.54 82.12
+SRN Aug 0.18 0.34 0.91 0.87 0.62 0.59 2.04 1.74 0.96 1.22 0.97
+PP-OCR Aug 0.16 0.95 0.10 -0.13 0.51 0.62 2.43 2.16 2.14 2.49 1.09
+STRAug (Ours) 0.75 1.31 0.83 0.67 0.62 0.72 2.43 2.06 1.63 2.95 1.35
TRBA [3] 87.71 87.44 94.54 94.20 93.38 92.14 77.32 71.62 78.14 75.52 84.29
+SRN Aug 0.85 0.72 -0.02 0.21 0.16 0.31 2.00 1.82 1.74 0.80 1.02
+PP-OCR Aug 0.70 0.23 0.17 0.00 0.32 0.54 2.03 1.83 2.02 2.08 1.04
+STRAug (Ours) 1.23 0.58 0.35 0.52 0.64 0.69 1.35 1.08 1.94 2.60 1.06
ViTSTR-Tiny [2] 83.7 83.2 92.8 92.5 90.8 89.3 72.0 66.4 74.5 65.0 80.3
ViTSTR-Tiny+STRAug 85.1 85.0 93.4 93.2 90.9 89.7 74.7 68.9 78.3 74.2 82.1
ViTSTR-Small 85.6 85.3 93.9 93.6 91.7 90.6 75.3 69.5 78.1 71.3 82.6
ViTSTR-Small+STRAug 86.6 87.3 94.2 94.2 92.1 91.2 77.9 71.7 81.4 77.9 84.2
ViTSTR-Base 86.9 87.2 93.8 93.4 92.1 91.3 76.8 71.1 80.0 74.7 83.7
ViTSTR-Base+STRAug 88.4 87.7 94.7 94.3 93.2 92.4 78.5 72.6 81.8 81.3 85.2

Given the library of STRAug functions, it is easy to im-
plement and validate other data augmentation algorithms.
For example, SRN [39] data augmentation which is made of
random resizing plus padding, rotation, perspective trans-
formation, motion blur and Gaussian noise can be formu-
lated as:
geometry = [Rotate(), Perspective(), Shrink()]
noise = [GaussianNoise()]
blur = [MotionBlur()]
augmentations = [geometry, noise, blur]
img = RandAugment(img, augmentations, N=3)

Similarly, using STRAug functions, we can easily im-
plement and validate PP-OCR [12] data augmentation. PP-
OCR uses the combined methods of SRN and Learn to Aug-
ment (i.e. random distortion). Note that the main difference
of our implementation of SRN and PP-OCR data augmenta-
tions is that we further fine tuned both methods using Ran-
dAugment to maximize their potential.

Table 5 presents a comparison of the absolute accuracy
increase due to SRN, PP-OCR and STRAug data augmen-
tation techniques in the baseline models. The increase is
significant especially on challenging irregular datasets such

as CT (1.62%-5.07%), SVTP (1.61%-2.67%) and IC15
(1.08%-3.47%). Figure 1 shows example text images that
baseline models made correct predictions when trained with
STRAug. Given that STRAug is using a more diverse
set of data augmentation functions, it outperforms recent
STR data augmentation methods. STRAug is also an ef-
fective regularizer on a vision tranformer-based STR such
ViTSTR[2]. Table 5 shows substantial gains in performance
on all sizes, Tiny: +1.8%, Small: +1.6% and Base: +1.5%.

5. Conclusion
STRAug is a library of diverse 36 STR data augmen-

tation functions with a simple API. The empirical results
showed that a significant accuracy gain can be obtained us-
ing STRAug.
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[30] Lukáš Neumann and Jiřı́ Matas. Real-time scene text local-
ization and recognition. In CVPR, pages 3538–3545. IEEE,
2012. 2

1569



[31] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan
Tian, and Chew Lim Tan. Recognizing text with perspec-
tive distortion in natural scenes. In ICCV, pages 569–576,
2013. 1, 2, 6

[32] Anhar Risnumawan, Palaiahankote Shivakumara, Chee Seng
Chan, and Chew Lim Tan. A robust arbitrary text detection
system for natural scene images. Expert Systems with Appli-
cations, 41(18):8027–8048, 2014. 1, 2, 6

[33] Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end
trainable neural network for image-based sequence recog-
nition and its application to scene text recognition. Trans
on Pattern Analysis and Machine Intelligence, 39(11):2298–
2304, 2016. 1, 7, 8

[34] Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao,
and Xiang Bai. Robust scene text recognition with automatic
rectification. In CVPR, pages 4168–4176, 2016. 1, 7, 8

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. ICLR,
2015. 7

[36] Jianfeng Wang and Xiaolin Hu. Gated recurrent convolution
neural network for ocr. In NeuRIPS, pages 334–343, 2017.
1, 7, 8

[37] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end
scene text recognition. In ICCV, pages 1457–1464. IEEE,
2011. 1, 6

[38] Cong Yao, Xiang Bai, and Wenyu Liu. A unified framework
for multioriented text detection and recognition. Trans on
Image Processing, 23(11):4737–4749, 2014. 2

[39] Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han,
Jingtuo Liu, and Errui Ding. Towards accurate scene text
recognition with semantic reasoning networks. In CVPR,
pages 12113–12122, 2020. 2, 8

[40] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, pages 6023–6032, 2019. 2, 4

[41] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012. 6

[42] Fangneng Zhan and Shijian Lu. Esir: End-to-end scene text
recognition via iterative image rectification. In CVPR, pages
2059–2068, 2019. 2

[43] Fangneng Zhan, Shijian Lu, and Chuhui Xue. Verisimilar
image synthesis for accurate detection and recognition of
texts in scenes. In ECCV, pages 249–266, 2018. 1

[44] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. ICLR, 2018. 2, 4

1570


