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Abstract

Automatically detecting and estimating the movement
of persons in real-world uncooperative scenarios is very
challenging in great part due to limited and unreliably
annotated data. For instance annotating a single human
body pose for activity recognition requires 40-60 seconds
in complex sequences, leading to long-winded and costly
annotation processes. Therefore increasing the sizes of
annotated datasets through crowdsourcing or automated
annotation is often used at a great financial costs, with-
out reliable validation processes and inadequate annota-
tion tools greatly impacting the annotation quality. In
this work we combine multiple techniques into a single
web-based general-purpose annotation application. Pre-
trained machine learning models enable annotators to in-
teractively detect pedestrians, re-identify them throughout
the sequence, estimate their poses, and correct annotation
suggestions in the same interface. Annotations are then
inter- and extrapolated between frames. The application
is evaluated through several user studies and the results are
extensively analyzed. Experiments demonstrate a 55% re-
duction in annotation time for less complex scenarios while
simultaneously decreasing perceived annotator workload.

1. Introduction
Motion and behavior analysis of individuals in crowds or

groups of people from different camera perspectives present
several opportunities for very different actors. Applica-
tions include smart surveillance, robotics, online and of-
fline video search, and other monitoring systems. This
kind of scenario is typically uncooperative and raises sev-
eral challenges. Cameras are strategically placed in ele-
vated position in order to monitor traffic, assure the trav-
eler’s safety and security or monitor players and fans in a
station. Therefore, these cameras cover wide field of views
considerably increasing the difficulty of tasks such as per-
son detection and human pose estimation. Those are com-

Figure 1: Section of a surveillance video including pose an-
notations cropped and zoomed-in. Human pose estimation
faces several challenges due to (self-)occlusions (occluded
keypoints are here annotated in pink), truncations at image
borders, crowdedness and low resolution.

plicated by (self-)occlusions, truncations at image borders,
crowdedness, quality and resolution of the frames as illus-
trated in Figure 1. As a result, annotating a single pose may
require up to 60 seconds. Scaling this time with the number
of pedestrians per frame, frame rate, length of the sequence,
number of scenarios, and camera angles, it rapidly becomes
obvious that annotation processes are extremely laborious
and thus cost-intensive and long-winded. For compari-
son, the classification dataset ImageNet was annotated with
image-level annotation by tens of thousands of annotators
over the course of multiple years [12, 28]. However, the
skeleton representation of pedestrians is advantageous in
regards to ethics and data privacy, since it decouples ac-
tivities from visual information, such as gender or skin
complexion and also reduces the computational power re-
quired to infer activities. Due to the high cost of such high-
level annotation only few datasets provide bounding box
annotations [11, 29], video instance segmentation [38] or
Pose Tracking [1] with action recognition for surveillance
videos [25] and remain comparatively small. In this paper
we propose to enhance annotation capabilities for human
pose estimation in surveillance videos. Our contribution is
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threefold: (1) we propose a collection of interactive tools for
annotating and tracking persons and their poses without re-
quiring pre- or post-processing; (2) we extensively evaluate
five workflows based on these tools with 27 human annota-
tors on a sequence from the publicly available PoseTrack18
dataset [1] and discuss the limits of such datasets; (3) we
evaluate the use of assisted annotation against manual an-
notation with 40 experiments with a total of 10 human an-
notators on surveillance footage used for activity recogni-
tion. We provide extensive experimental results for annota-
tion time, quality and perceived workload of the annotators.
Advantages and limitations of the proposed workflows are
shown and discussed. Finally our results show a 55% reduc-
tion in annotation time for less complex scenarios while si-
multaneously decreasing perceived annotator workload and
visibly stabilize annotation quality over time.

2. Related Work
Human Pose Estimation. Recent Human Pose Estima-

tion methods are mainly divided into bottom-up and top-
down approaches. In general bottom approaches first de-
tects joints and then groups them into individuals, which is
challenging [6, 17, 30]. While the main advantage of bot-
tom up methods is that their run-time remains almost con-
stant for increasing size of crowds, there is still an important
performance gap, due to the difficulty to estimate human
poses at different scale in a single path [7, 50]. However
top-down methods [5, 35, 44, 47, 45, 49] depend on reli-
able person detection, which is often challenging to obtain
in crowded surveillance scenes [43, 11]. As shown in [33],
provided ground truth bounding boxes improve pose esti-
mation greatly, which proves to be practical for the interac-
tive annotation of human poses.

The collection and creation of video surveillance
datasets with human pose annotation is often difficult due
to privacy and ethical concerns. Furthermore the annota-
tion of several dozens pedestrians per frame is hugely time-
consuming and cost-intensive. In recent years several Hu-
man pose annotation datasets has been proposed [2, 23, 24,
51] however mostly for static images. Currently only two
benchmarks contain poses and tracks for videos [1, 25].
Only [25] is annotated for surveillance videos and action
recognition. There are scarcely any video datasets with
crowds in surveillance videos [11, 25, 29, 36] and hence
only few works focus on challenges specific to crowd pose
estimation in the real world such as (self-)occlusion [21,
10], and therefore mostly use simulated data [13, 16], do-
main adaptation [15] or data augmentation [31]. Therefore
large datasets for surveillance are demanded and efficient
video annotations are required.

Video and Interactive Annotation. Existing ap-
proaches use linear [42, 9] or geometric [14] interpolation
for bounding boxes in videos. [22] relies on visual inter-

polation and frame selection guidance to reduce annotation
time for bounding boxes. In [27] the problem of annotat-
ing people in crowded videos is tackled, by first annotating
the center of the subjects manually through the video and
then integrating detection from a person detector. In a sim-
ilar fashion, it is argued in [39] that bounding box anno-
tations are sufficient to semi-automatically segment objects
with pseudo-labels. In [3] a single unified ML-aided inter-
face is proposed to perform full image segmentation in a
single pass, using initial ML segmentation. [26] propose an
interactive approach to address annotation of human pose
with an active learning framework, which requires annotat-
ing the most uncertain images among a large set of unla-
belled images, re-training the pose estimator and using the
predictions. [8] use three tools for video object segmenta-
tion: First, the Interaction-to-Mask tool predicts segmen-
tation masks based on clicks. These are then extrapolated
to other frames using their propagation tool. Finally their
Difference-Aware-Fusion Tool allows annotators to interac-
tively subtract and add regions to the annotation. Several
works use similar approaches and focus on refining their
models [34, 20, 48, 37, 4].

3. Overview of our Approach

Our aim is to determine whether tool assistance is able
to expedite annotation processes for human pose estimation
in surveillance scenarios, especially in the context of activ-
ity recognition. Nowadays, such video footage is typically
in full HD resolution, with a frame rate of 30 FPS, accept-
able brightness and contrast during the day and potentially
blurry at night. Activity recognition concentrates on 2-5
main subjects and potentially several dozens of pedestrians
due to the large field of view of elevated cameras. The hu-
man poses are various, including cyclists, persons sitting
as well as poses including occlusions, truncation, and un-
usual activity such as lying or kicking. Therefore, based
on these properties, we can argue about different degrees of
complexity for scenes for which annotation is required and
adapt interactive tools to those. Thus, a complex sequence
contains less common pose articulations, occlusions, trun-
cation, and multiple subjects in a low quality video, whereas
a rather simple sequence features a small number of subjects
in common poses in a high FPS, high quality video. In order
to design an interactive tool, these properties are required to
be taken advantage of.

According to [41], interpolation of any kind reduces an-
notation effort by an order of magnitude. Furthermore, vi-
sual annotation [22] reduces the annotation time for less
complex annotations such as bounding boxes consider-
ably. Moreover, as stated previously, interactive machine
learning-aided tool assistance is greatly beneficial to in-
stance segmentation.

1650



3.1. Web based Annotation Tool

As the time of writing, only custom forks of Sloth [32]
and VATIC [40] are known to provide open-source software
for human pose estimation, which have limited capabilities
and require installation. For flexibility and distributed work,
a web based annotation tool is therefore developed. With
feedback from annotators using Sloth, several missing and
simple functionalities are included for instance, in order to
toggle the visibility or change the colors and opacity of an-
notations, topologies, keypoints, and labels. It comes with
an editing history with the ability to undo and redo actions
as well as the functionality to reuse annotations between
frames. Load times and memory usage for long sequences
are reduced through chunking of annotations and frames.
Shortcuts are implemented for frequently used actions. Fur-

(a) Box annotations (b) Pose suggestions (c) Final annotations

Figure 2: Provided bounding boxes, such as in (a), the pose
estimation processing tool suggests pose annotations (b),
that annotators accept or correct (c).

ther, several tools are implemented to assist the annotator in
his work and generate annotation suggestions, which share
the same properties as annotations. The difference is visual-
ized through colors. Annotation suggestions are grey until
they are accepted as illustrated in Figure 2. Suggestions
can be accepted through editing or for the entire frame or
sequence. Multiple suggestions may exist for the same en-
tity in the same frame. In that case, the viewer displays the
annotation suggestion that was generated by the currently
selected tool.

3.2. Interpolation and Extrapolation

First, interpolation is implemented as annotation genera-
tor. In this case, the coordinates of a keypoint are treated as
vectors; each component is extrapolated/interpolated sepa-
rately using a variety of interpolation methods, such as lin-
ear interpolation, cubic spline interpolation, or Lanczos re-
sampling, whereas other annotation tools such as CVAT [9]
or VATIC [40] are restricted to linear interpolation. Ex-
trapolation is implemented analogously. Here, the user is
allowed to flexibly choose at any moment the number of
frames to use and may adapt this number along the annota-
tion process.

3.3. Machine-Learning aided Suggestions

Second we long for using machine-learning aided tools.
Therefore, we require modular components performing
computationally expensive tasks server-side. To this aim
we implement tools using deep learning models on a remote
server over REST-API. Such models are then integrated in
different tools with their own parameters such as a person
detector, a re-identification tool, and a pose estimator. In
order to conduct experiments and user studies with those
tools, the means to collect, visualize, and export statistics
are integrated directly into the annotation tools. Statistics
are made available for a whole dataset, annotation process,
and job, and can be filtered by annotation type, author, gen-
erator, sequence, and frame. Here, annotation generators
may be human annotators or tools, such as interpolation,
extrapolation or the different model-based tools.

Particularly, a human pose estimation tool is imple-
mented and adds the ability to generate pose suggestions
by providing bounding box annotations, generated manu-
ally, by the person detection processing tool or other means.
This is achieved using a pre-trained top-down pose estima-
tor [46], as shown in Figure 2; the processing tool receives
multiple bounding boxes as its input and outputs the cor-
responding pose suggestions. Annotators are able to ad-
just the confidence threshold to balance quality and quantity
of detected keypoints. Alternatively, annotators are able to
draw bounding boxes and immediately receive pose sugges-
tions from the pose estimation processing tool. This work-
flow is advantageous in sequences with few subjects or in
other workflows without the detection processing tool, since
annotators remain in control of entity IDs.

4. Experiments with Human Annotators

The different experiments are conducted in our lab with
the same hardware in the same conditions, over a period
of two weeks. The annotators come from different back-
grounds: about a third regularly annotate video data, an-
other third are involved in the tools development but rarely
annotate themselves and finally the last third never anno-
tated nor has any background in computer vision. The study
is scheduled for a duration of a least two hours.

First, we evaluate the performance of the proposed tools
on a challenging sequence of PoseTrack18 dataset (Sec-
tion 4.1). Second, we evaluate the most promising workflow
against manual annotation for simple and complex scenes
in surveillance footage (Section 4.2). For this purpose, an-
notation time and perceived workload are measured among
other metrics and annotator feedback is collected. Finally,
the results are discussed and limitations are shown (Sec-
tion 4.3).
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4.1. Experiments on PoseTrack18

PoseTrack18 is one of the larger dataset which is pub-
licly available for multi-person pose estimation and tracking
in videos. It contains 514 videos including 66,374 frames in
total. However only a part of these frames are annotated: 30
frames from the center are annotated for the training videos.
Additionally every fourth frame is also annotated for evalu-
ating pose tracking in validation and test videos. The anno-
tations include 15 body keypoints location, a unique person
id and a head bounding box for each person instance.

For our experiments 27 human annotators are tasked
with annotating a selected sequence manually and with dif-
ferent tool combinations, providing a total of more than
3,800 bounding box and pose annotations. The main in-
tent of this experiment is to compare individual annota-
tion workflows in regard to annotation speed and perceived
workload.

4.1.1 Design of the User Study

Due to the size of the dataset and resource constraints, we
select a portion of a validation sequence for a total of 48
frames. As shown in Figure 3 it depicts multiple football
players; the three players with the jersey numbers 2, 17,
and 33 are annotated. The camera angle from which these
sequences were recorded is similar to those usually found
in surveillance videos. However due to camera motion and
zoom, the scene presents additional challenges. The frame
rate of the sequence is estimated at 2-7 FPS, hence much
lower than in our surveillance sequences in Section 4.2.

The participants are split into five groups. One group
consists of three participants annotating the sequence man-
ually, omitting occluded keypoints. The other four groups
annotate occluded keypoints and annotators are split among
them evenly and randomly (Table 1). The participants are
told that the focus of the user study lies on the annotation
speed. A sixth workflow involving automated detection, re-
identification and pose-estimation was aborted after after
the first and the second subject required around three hours
each. Those results are discarded.

In order to reduce the confounding effects of annotators
being faster than others based on their experience, partici-
pants are directed to familiarize themselves with our web-
interface and their individual workflow for 15 minutes. Af-
ter this familiarization period, a timer is started to measure
annotation time and the three players in the sequence are
each annotated with a bounding box and pose. Follow-
ing the annotation process, participants rate their perceived
workload in five different subscales according to a modified
NASA Task Load Index (NASA-TLX) which is detailed in
the supplemental material.

4.1.2 Annotation Speed

The main focus of this experiment is measuring annotation
speed, for which the statistics are collected in our applica-
tion. The mean manual annotation time per bounding box
and pose is 44.1 seconds. However, there is a rather large
range and recorded values of individual participants span
from 32.2 to 57.7 seconds. With a mean of 42.8 seconds,
the group using the Human Pose Estimation (HPE) + Copy
method accomplishes the task marginally faster than man-
ually, as illustrated in Figure 4a. The usage of inter- or ex-
trapolation on the other hand is detrimental to annotation
speed in this sequence. Extrapolation increases mean an-
notation time to 54.7 seconds and the group that uses pose
estimation suggestions on every fourth frame and then inter-
polates between them required 50.3 seconds. Since several
datasets do not provide occluded keypoints, and in order to
facilitate comparisons, the experiment included a group that
annotated manually, though without occluded keypoints.
This group show a mean time of 34.4 seconds, which corre-
sponds to a speedup of 21.9% relative to manual annotation
including occluded keypoints.

4.1.3 Perceived Workload

In addition to measuring the time required for annotation,
the perceived workload is investigated. To this aim, the an-
notators are asked to rate their individual perceived work-
load in five different dimensions; mental demand, tempo-
ral demand, their own performance, how much effort they
put in to achieve that performance, and how frustrated they
were while working on the task. Similarly to annotation
time, the ratings vary greatly. Nevertheless, a few trends
can be observed in Figure 5. The HPE + Copy group es-
timate their temporal demand relatively low, even though
their actual performance is almost the same as the manual
annotators’. They also express little frustration. The inter-
and extrapolation groups provide a high temporal demand
rating, which corresponds with their results. However, the
extrapolation group overestimates their performance. The
perceived effort is the same for each of the six groups. Over-
all, the HPE + Copy group exhibits the lowest, and thus
best, task load index. When not required to annotate oc-
cluded keypoints, the annotators’ mental demand tends to
be lower. In contrast, the group overestimates temporal de-
mand compared to manual annotation with occlusions. Per-
ceived performance, effort, and frustration are improved.

4.1.4 Annotation Quality

As described above only a parts of the dataset are annotated.
In our case, 26 out of 48 selected frames are annotated. We
compute Average Precision as in [1] for the three annotated
players in each experiment and compare the annotation time
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Figure 3: The first and last frame of the selected sequence from [1]. 48 consecutive frames are selected from the sequence
and three players are annotated during the experiments: 2, 17 and 33.

Workflow Annotators Description

Manual 6 Each keypoint is annotated separately
HPE + Copy 6 Annotators choose between pose suggestions for bounding boxes, copying/duplicating annotations, and manual annotation
HPE + Interpolation 6 Pose suggestions for bounding boxes on every fourth frame, interpolation in between
Extrapolation 6 Detection and pose suggestions on the first two frames, extrapolation afterwards
Manual without occlusion 3 Each keypoint is annotated separately; occluded keypoints are skipped entirely

Table 1: In the PoseTrack18 experiments, each participant is assigned one of the described workflows.
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(a) Annotation time per bounding box and pose.

Without Occlusion With Occlusion
50

60

70

80

90

100

A
ve

ra
ge

Pr
ec

is
io

n
(A

P)
m

et
ri

c

Manual
HPE + Copy
HPE + Interpolation
HPE + Extrapolation

(b) Average Precision per bounding box and pose.

Figure 4: Annotation time (lower is better) in (a) and AP (higher is better) in (b) per bounding box and pose. A description
and sample size is given for each workflow in Table 1. The results in (b) are only computed for 26 images with ground-truth
from 48 images in total. While annotating manually without occlusion is much faster, this workflow also provides the worst
results for this sequence. Manual annotation is both faster and more accurate compared to tool assisted workflows.

required in Figure 4b. We also report AP for each keypoint
of the most and least accurate annotator as well as the aver-
age results in Table 2.

These results are paired with the baseline pose estimator
reported in [33] for the whole validation set. However, with
further analysis of the ground truth data, we found several
mistakes greatly impairing our results, which are illustrated
in Figure 6. Clearly visible keypoints are missing, left/right

elbows are sometimes switched. This emphasizes the dif-
ficulty of annotating and validating such large human pose
estimation datasets.

4.2. Experiments on Surveillance Footage

We conduct a second series of experiments with two
sequences taken from outdoor surveillance footage for re-
search on activity recognition in public places. In this case
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Figure 5: Perceived workload as measured by a reduced raw
NASA-TLX. Scale from 1-10, lower is better. Error bars
indicate standard deviation. The sample sizes are given in
Table 1.

Annotation Method
AP

Head Shou Elb Wri Hip Knee Ankl Total

Mean 55.3 82.0 76.9 65.9 75.0 80.1 74.9 71.7
Most accurate (Manual w. occ.) 63.3 90.0 86.9 77.7 90.2 85.1 87.5 81.7
Least accurate (Manual w/o. occ.) 49.6 63,4 62.0 57.2 57.7 69.7 57.6 59.0

Table 2: Per-joint AP. Due to helmets and noise in the GT
(see Figure 6) the AP for the three head keypoints remains
quite low.

(a) Accurate GT (b) Inaccurate GT

Figure 6: The ground truth data from PoseTrack18 contain
incomplete or inaccurate annotations. While the pose in (a)
is reasonably accurate, the head in (b) has been skipped, and
the right elbow has been annotated with keypoint 8, which
actually corresponds to the left elbow.

no ground truth data is provided. The aim of this experiment
series is to assess the impact that sequence complexity has
on total annotation speed and advantages/usefulness of tool
assistance, as well as to determine whether there is a learn-
ing curve and how steep it might be. This time, ten anno-
tators are given a simple and a complex sequence depicting
two civilians, respectively walking and fighting. The first
frames of each sequence are shown in 7. The annotators are
asked to annotate manually as well as with a predetermined

workflow, which amounts to four tasks altogether. Each se-
quence consists of 20 frames, thus adding up to 800 bound-
ing box and pose annotations in total. The two sequences
are subjectively chosen as the easiest and the hardest se-
quence to annotate in a surveillance video. They coincide in
camera angle, time of day, and general setting, however the
fighting sequence includes faster, less predictable motions,
unusual pose articulations, as well as (self-)occlusions. The
sequences are recorded with 30 FPS.

4.2.1 Design of the User Study

According to [19] annotating the same image twice has a
severe effect on performing a segmentation task. Thus, the
annotators are presented with the sequences in a random-
ized order to avoid any confounding errors resulting from
familiarity with the before-seen sequence or our user inter-
face. The formulation of the task remains the same as in
Section 4.1; drawing bounding boxes and annotating poses
with the PoseTrack18 topology, including occluded key-
points. In this experiment however, annotators are more ex-
perienced. All of them previously participated in the other
study and a large portion regularly annotate bounding boxes
with our interface. Each sequence is annotated twice by
every annotator. In the first scenario, they annotate each
keypoint manually. In the other scenario, annotators follow
this protocol: first, they annotate frames 1, 7, 14, and 20,
choosing between pose suggestions generated from bound-
ing boxes, copying/duplicating annotations, and manual an-
notation. Afterward, they interpolate the frames in between,
correcting the frames with the largest discrepancy between
interpolation suggestion and true pose. This way, remain-
ing interpolation suggestions are updated in real time. They
repeat this until all suggestions are precise enough. Lastly,
they fill out a modified NASA-TLX form.

4.2.2 Annotation Speed

The results are shown in Figure 8a for both scenes and
workflows. The mean manual annotation time for the fight-
ing sequence is 41.0 seconds and 29.0 seconds for the
walking sequence. This corresponds to a 29.2% difference
caused by sequence complexity alone. When assistance
from pose estimation and interpolation is used, mean an-
notation times decrease to 36.5 seconds and 13.1 seconds,
which amounts to 10.9% and 55.5% speedups respectively.
As observed before, the variability of the distributions for
the fighting sequence and assisted annotation of the walk-
ing sequence is considerable.

The collected statistics permit to gather in-depth knowl-
edge about the annotation process. As expected, annotators
correcting a larger portion of suggestions are slower, an ef-
fect amplified by sequence complexity as illustrated in Fig-
ure 8b.
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(a) Walking (b) Fighting

Figure 7: Frames from surveillance footage on a public place. In (a) the two persons are walking towards each other. The
scene is simple: the movements are clear, monotonous and there are no occlusions. In contrast, (b) is a quite complex scene
with several (self-)occlusions and unpredictable motions.
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Figure 8: (a) Annotation time per bounding box and pose for each of the four scenarios. Sample size is 10 per scenario. (b)
Relationship between the percentage of modified interpolated annotation suggestions and mean annotation time per annotator
for the walking and fighting sequences.

4.2.3 Perceived Workload

As might be expected the annotators consistently rate dif-
ferent dimensions of their perceived workload lower after
the walking sequence than after the fighting sequence, as
shown in Figure 9. Overall, perceived workload decreases
by 27.1% for manual annotation and by 38.0% for tool as-
sisted annotation. This is most noticeable in the mental
demand dimension with 45.5% and 47.5% lower ratings.
The results allow several observations. First, the mental de-
mand is similar for manual and assisted annotation, while
the temporal demand is noticeably lower in the walking
scenario, which corresponds with the measured annotation
time shown in 4.2.2. Finally, effort and frustration are rated
lower when employing tool assistance. Overall, there is no
significant decrease in perceived workload when tool assis-

tance is employed for the fighting sequence. For the walk-
ing sequence, perceived workload is reduced to some de-
gree. Admittedly, variability is rather high in this experi-
ment. Standard deviations of subscales are partially greater
than the mean values.

4.3. Discussion

Altogether, comparing our experimental results with rel-
evant publications is challenging, since information on how
large multi-person HPE and tracking datasets are annotated
is almost non-existent. PoseTrack18 is annotated using
VATIC [1, 40], which presents the ability to linearly inter-
polate annotations and is forked to incorporate other tool
assistance capabilities [18]. However, it is unclear which
workflow was employed during the annotation of the Pose-
Track18 dataset. Furthermore, the authors chose to skip oc-
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Figure 9: Perceived workload as measured by a reduced raw
NASA-TLX. Scale from 1-10, lower is better. Error bars
indicate standard deviation. Sample size is 10 per scenario.

cluded keypoints, which would greatly help pose tracking
for action recognition.

Precise pose annotation, especially including occlusions,
is time consuming. Statistics for publicly available datasets
are sparse. For the selected PoseTrack18 sequence, the me-
dian manual annotation time per bounding box and pose
combination is 44.1 seconds. Although tool assistance
proves to be beneficial in the surveillance sequences, the an-
notation time for this sequence is not significantly reduced
by any of the workflows employed during the PoseTrack18
experiment. This indicates that tool assistance is not always
appropriate.

The pose estimator does not always accurately detect
keypoints when large portions of a person’s body parts are
occluded, or when the image is blurry due to swift move-
ments. Interpolation only produces precise suggestions if
the person performs smooth movements; sudden motions
distort the suggestions. In these cases, the annotators have
to spend substantial time correcting the suggestions, some-
times more than it would take to annotate the poses manu-
ally.

These findings highlight the importance of interactivity;
allowing annotators to choose the right tools for the sce-
nario results in more precise annotation suggestions which
require less time to correct. Annotator experience has a
large impact on annotation speed. Experience levels were
collected in the context of the survey, but are not sufficient
to establish a correlation to annotation time. Inherent dif-
ferences between annotators are an alternative explanation
for the large variability in pose annotation speed. As illus-
trated in Figure 8b, two annotators modify 6.3% and 93.8%
of suggestions to achieve the annotation quality they are sat-
isfied with for the same scenario.

Furthermore, annotators perceive the same workload dif-
ferently. Analogous to annotation times, distributions of
the task load indices have large standard deviations as de-
picted in Figure 5 and Figure 9. Sequence complexity in-

fluences perceived workload to a greater extent than anno-
tation workflow, as illustrated in Figure 9. Similarly, the ab-
solute task load indices for both surveillance sequences are
lower than the PoseTrack18 task load indices. The higher
FPS availability is not only beneficial for tool assistance,
but also supports human annotators in understanding the
motions of the keypoints. Finally, in all cases the mental
demand is quite high, although annotators consider annota-
tion to be dull and monotonous. The task is highly repeti-
tive, but annotators have to constantly think about the spatial
positioning of keypoints over time. Several annotators had
difficulties annotating the left and right keypoints from the
person’s perspective, or found it exhausting.

5. Conclusions
The creation of a dataset for pose based activity recog-

nition in surveillance videos is long-winded and costly. In
this work we presented and evaluated a simple framework
for interactive video human pose estimation. We propose
several tools from extrapolation and interpolation to deep-
learning aided tools to detect and estimate the poses of per-
sons. We extensively evaluate our approach with human
annotators in over 60 experiments for simple and complex
scenes. Our results show a 55% reduction of the annotation
time of a simple surveillance scenario while simultaneously
decreasing the perceived workload for the annotator. Fur-
ther we show the diverse challenges of human pose annota-
tion for action recognition in surveillance videos. Future
works should focus on improving the annotation process
for complex scenes with several dynamic occlusions such
as fight scenes and multiple occlusions through scenes with
larger crowds.
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