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Abstract

Autonomous long-range obstacle detection and distance
estimation plays an important role in numerous applica-
tions such as railway applications when it comes to lo-
comotive drivers support or developments towards driver-
less trains. To overcome the problem of small training
datasets, this paper presents two data augmentation meth-
ods for training the ANN DisNet to perform reliable long-
range distance estimation.

1. Introduction
Vision-based obstacle detection (OD) followed by dis-

tance estimation is crucial for numerous safety critical ap-
plications involving moving elements, ranging from robotic
manipulators to driven and driverless vehicles. Object dis-
tance estimation in driving applications can provide vital
information for a vehicle to avoid collisions and adjust its
speed for safe driving. The distance range is determined by
specific challenges of an application. In railway, the only
way for a train to avoid a collision is to come to a complete
stop before making contact with an obstacle, because it can-
not change its path of travel. So collision avoidance is only
possible if the detection distance exceeds the train’s stop-
ping distance. The exact train stopping distance depends on
different factors such as, among others, the mass distribu-
tion of the train, the speed of the train when the brakes are
applied and the deceleration rate available with maximum
brake application [1]. For example, according to national
regulations in most EU countries, the stopping distance of
a freight train pulling the 2000 t cargo for the speed of 80
km/h is approximately 700 m. This long-range stopping
distance represents a specific challenge of trains when com-
pared to road vehicles.

As a result of developments of Artificial Intelligence
(AI), in recent years, there has been an expansion in re-
search and development of machine learning-based meth-
ods for OD for rail transport [2][3]. However, the majority
papers published so far on OD in railways are concerned

with OD only and they do not explicitly discuss estimation
of distances between individual detected obstacles and on-
board cameras, although this is recognized as an important
function. For example, in the work presented in [4], an on-
board thermal camera was used which had a distance range
of up to 1500 m. The paper presents results of OD within
the camera visibility range, on the rail tracks’ portions vis-
ible in the camera image. However, no details are given on
the estimation of distances to individual detected objects.
The only known published work explicitly describing ob-
stacle distance estimation with an on-board vision system
is presented in [5]. The main part of this on-board OD
system is the artificial neural network (ANN)-based dis-
tance estimator named DisNet that estimates the distance
between each detected object in the camera images and the
on-board camera, using the features of the object’s Bound-
ing Box (BB) extracted by the deep learning (DL)-based
object detector. The initial evaluation tests performed in an
operational railway environment demonstrated that this in-
tegrated on-board vision-based extended the state-of-the-art
by providing long-range OD and identification of obstacles
in the mid-range (from 80 m up to beyond 200 m) and in
the long-range (up to 1000 m) [6]. However, these initial
tests indicated also a need for further improvement of reli-
ability of OD and accuracy of distance estimation. In this
paper, the improvement of both parts of DisNet system, OD
and distance estimation, is presented. The OD improvement
is achieved by transfer learning of applied DL-based object
detector using custom long-range railway dataset. The dis-
tance estimation improvement is achieved by re-training of
the DisNet network with an augmented BB dataset.

2. Related work
Traditionally, object distance estimation in computer vi-

sion is most commonly done using stereo-vision, in which
depths are estimated by triangulation using the two stereo
images and solving stereo correspondence problems [7].
For short-range distance estimation applications, stereo vi-
sion provides satisfactory results in spite of several usual
shortcomings such as unreliable stereo correspondence so-
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lution in textureless image regions. For example, in [8] an
error of 6 cm on a target 30 m from the current vision system
with a stereo-vision system was achieved in the automated
aerial refuelling application. Achieved error is an accept-
able error in considered application where the object detec-
tion distance range, distance from the cameras on a tanker
to the refueling contact point, is a short one, about 30 m.

However, stereo vision-based distance estimation is
characterized with inaccuracy in estimation of larger dis-
tances [9]. In order to overcome problems of stereo vision-
based distance estimation, a number of authors have pro-
posed solutions based on monocular cameras. Monocu-
lar depth estimation has been considered by many convo-
lutional neural network (CNN) methods as a method pre-
sented in [10]. The authors proposed a fully convolutional
architecture, encompassing residual learning, to model the
ambiguous mapping between monocular images and depth
maps. However, in this as well as in other related work the
analyzed depth range was up to 70 m – 80 m.

In the railway domain, characterized with a need for
long-range distance estimation, the only research found us-
ing a monocular camera is DisNet [5]. As explained above
DisNet is a distance regressor that studies the geometric
relation that maps an object BB with a certain width and
height, which is extracted by a CNN-based object detec-
tor, to a distance value. DisNet-based distance estimation
method was developed by the authors after their experi-
mental confirmation that the distance estimation error was
larger for the stereo camera system with a longer baseline,
as the calibration error of the system with the longer base-
line was bigger than the calibration error for the system with
a shorter baseline. This was proved to be particularly prob-
lematic for the applications where long-range OD is needed,
such as railway applications, as a stereo system with a
longer baseline is needed for long-range distance estima-
tion [11]. This paper further demonstrates the usefulness
of DisNet in long-range OD and presents a novel method
for improvement of DisNet performance by re-training the
initial distance regressor with an augmented long-range BB
dataset.

3. DisNet: object bounding box-based distance
estimation

A machine learning-based method named DisNet was
developed in the project SMART (Smart Automation of
Rail Transport) [12] to support autonomous long-range ob-
stacle detection by providing direct estimation of the dis-
tances between the imaged objects and the monocular on-
board cameras mounted on the front of the train. The
DisNet-based object distance estimation system consists of
two parts as illustrated in Figure 1. The first part is deep
learning-based OD and the second part is ANN-based dis-
tance estimation named DisNet. The details of the devel-

opment of both parts are given in [5]; in the following an
overview of the complete system is given.

Figure 1: DisNet-based object distance estimation system

The main concept in DisNet is the ANN-based learning
of the relationship between the size of the object in the cam-
era image and the distance of the object from the camera.
The size of an object in the image is expressed by the size
of the so-called object BB, which is the smallest rectangular
box containing the object area in the image. Bearing this in
mind, the object detector in the DisNet system (illustrated in
Figure 1) can be any BB-based DL method which extracts
the BB of an object detected in the input image as well as
the object class, such as different variants of YOLO [13]
and CenterNet [14]. In this paper, the DisNet-based system
that includes YOLO release YOLOv3 [15] as the object de-
tector is considered. The main advantage of YOLO is its
speed, making it appropriate for real-time applications such
as OD in railways, which was the main reason for its selec-
tion for the SMART OD system and for the work presented
in this paper.

The distance estimation part in the DisNet system (illus-
trated in Figure 1) is a feed-forward ANN named DisNet. It
consists of three hidden layers, each containing 100 hidden
units. The DisNet input layer consists of six neurons cor-
responding to six features, which are the parameters of the
object BB extracted by the implemented YOLO-based ob-
ject detector. The output layer has one neuron. The output
of this neuron is the estimated distance between the cam-
era and the object in the image which was detected by the
object detector and which was bounded with the object BB.
For the training of DisNet, a supervised learning technique
was used. This method required a dataset including both in-
puts and outputs (outputs being the ground truth distances).
The initial training of DisNet was done by using the pa-
rameters of manually extracted BBs of 2000 objects (of the
classes person and car), which were in the distance range 0
m – 60 m from the static camera (camera mounted on a test-
stand), as the inputs. The training outputs, that is the ground
truth distances, were real distances between the camera and
the objects in dataset measured by a laser scanner. For the
purpose of this paper, the initially trained DisNet is named
Initial DisNet as opposed to the DisNet system, which was
re-trained with an augmented long-range BB-dataset as ex-
plained in Section 4.

The YOLO model, used for OD in presented DisNet
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system, was originally trained with the Microsoft COCO
dataset [16] of images of everyday scenes containing com-
mon objects in their natural context, consisting of 328,000
images of 80 easily recognizable objects classes. In total,
2.5 million objects are labeled in the images of the dataset,
and about 3500 images of railway scenes are labeled with
the object class train. However, COCO dataset does not
contain images of explicit railway scenes with objects on
the rail tracks and, moreover, it does not contain images
of distant objects. In order to enable the YOLO model to
detect objects in railway scenes, with particular focus on
distant objects, the following was done:

• A custom long-range dataset was generated specific
to the railway environment consisting of objects in the
long-range (0 m - 1000 m) from the cameras;

• Using the generated custom long-range dataset
COCO-trained YOLO model was re-trained using
transfer learning. In total, 998 images captured with
SMART RGB cameras were used, with 2238 labeled
objects of class person, multiple classes of vehicles
and multiple classes of animals. These images were
recorded in the dataset generation field tests as de-
scribed in the following.

3.1. Custom long-range dataset generation

(a) (b)

Figure 2: SMART field tests for dataset generation: (a)
Test-stand with the SMART sensors viewing the rail tracks

and an object (of class person) on the rail track; (b)
SMART vision sensors for obstacle detection integrated
into sensors’ housing mounted on the frontal profile of a

locomotive below the headlights.

In order to collect relevant high-quality and high-volume
training data to re-train the COCO-trained YOLO model
for obstacle detection in railways, during the lifetime of the
project SMART two types of field tests were performed on
the Serbian railways’ test sites, static and dynamic [12].
The static field tests were conducted on the location of
the straight rail tracks in length of about 1100 m in dif-
ferent times of the day and night and in different weather
conditions in November 2017, March and November 2018
and March 2019. During the static field tests, the cameras
were mounted on a static test stand and the members of the

SMART Consortium imitated potential static and dynamic
(movable) obstacles (pedestrians) on the rail tracks located
on different distances from the SMART test-stand, as il-
lustrated in Figure 2a. In dynamic field test performed in
July 2018, the cameras were integrated into sensors’ hous-
ing mounted on the front profile of an operational locomo-
tive (Figure 2b). The test was performed with an in-service
train of the operator Serbia Cargo, pulling 21 wagons with
total mass of 1194 t and total train length of 458 m. The test
length was 120 km on the Serbian part of the pan European
corridor X.

Table 1: Dataset structure

Image
frame

No.

Object
class

Top
left

corner

Bottom
right

corner

BB
width

BB
height

BB di-
agonal

Figure 3: Example images from custom long-range railway
RGB dataset recorded in dynamic field tests. Different
object classes on/ near the rail tracks (humans, different

vehicles, animals).

The SMART dataset comprises approximately eight
hours of video recorded by the train mounted SMART OD
system in the dynamic field tests and six hours of video
recorded by test stand mounted SMART cameras in the
static field tests. The series of recorded videos were con-
verted into sequential frames of images. In the dataset im-
ages both static and moving obstacles are present, including
humans, vehicles, bicycles and animals. Some examples of
dataset images recorded in dynamic field tests are shown in
Figure 3 and some examples of dataset images recorded in
static field tests are shown in Figure 4. As given in Table
1, each object in the dataset is described by a number of
parameters, including the information about the class of the
object and the information about object BB. (xul, yul) and
(xbr, ybr) are respectively image coordinates of the left up-
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(a) (b)

Figure 4: Example images from custom long-range railway
RGB dataset recorded in static field tests. Objects from the
class person on 60 m (left) and on 600 m (right) from the

cameras mounted on a test-stand.

per corner of the object BB and image coordinates of the
right bottom corner of the object bounding box. The obsta-
cle distance range covered by recordings in dynamic field
tests was determined by the real-world operational environ-
ment. It is important to note that during the dynamic field
tests, because of the rail-tracks configuration, there were no
segments longer than 600 m viewed with on-board cameras
were the obstacles could be recorded, so that distance range
covered by SMART real-world railway dataset covers dis-
tances up to 600 m. Considering the images from the static
field test, described above, the total distance range covered
by generated custom long-range dataset is 0 m – 1000 m.

3.2. Transfer Learning of object detector

For the purpose of re-training of the COCO-trained
YOLO model using the transfer learning and generated
long-range dataset, the annotated images have been segre-
gated into training and testing image sets using randomiza-
tion in the ratio 4:1.

Transfer learning works on the principle of using the
knowledge gained by a model to solve problem X, to be
used to solve another problem Y. In the presented work, the
initial YOLO model trained with COCO dataset for the pur-
pose of general OD was re-trained to detect objects in rail-
way environments with long distance range of up to 1000
m.The performed procedure of transfer learning consisted
of four steps as follows:

1. The COCO-trained YOLOv3 model was loaded, along
with it’s weights, which was efficient in detecting gen-
eral objects of 80 classes in COCO dataset. The ex-
isting YOLO model’s lower layers, called the body,
focused on detecting basic and important features of
objects.

2. The last three layers (three layers out of total number
of layers 252), which are called the head and which

are specific to the custom long-range dataset are cut.
These layers are replaced by random layers.

3. The added random layers are fine-tuned by training
the network on the custom long-range railway dataset
while the weights in the body (initial lower layers) are
frozen.

4. After fine-tuning of the head, the entire network is un-
frozen and the model is trained again, to allow small
weight adjustments throughout the network to obtain a
re-trained YOLO model.

The fine tuning of the YOLO model for the purpose of
model optimization to obtain better OD results was done
by tuning the hyperparameters such as, batch size, number
of epochs and learning rate. Hyperparameter optimization
finds a set of hyperparameters that yields an optimal model
which minimizes a pre-defined loss function on the given
test data. This process consisted of following steps:

1. With each iteration one hyperparameter value is varied
and the model is trained by keeping the other hyperpa-
rameter values constant.

2. The effect of this change is analyzed by measuring
the performance of the model using the metric - Mean
Average Precision (mAP). First, the Intersection over
Union (IoU) is calculated for each detection and this
calculated IoU is used to arrive at the corresponding
precision and recall values. The Average Precision
(area under precision v/s recall curve) is calculated for
all object detections belonging to each object class.
The mean of the Average Precisions over all object
classes gives the mAP of a model.

3. If there is an improvement in the mAP value, the hy-
perparameter value is further increased or decreased in
the same direction until local maximum is reached.

4. The same process is implemented for other hyperpa-
rameter values until an optimum set of hyperparameter
values producing maximum mAP is obtained.

After performing the above procedure for all three con-
sidered hyperparameters, finally the following set of opti-
mal hyperparameters was achieved: batch size = 32; num-
ber of epochs = 200; learning rate = 1e− 3.

With the achieved optimum set of hyperparameters, the
optimized YOLO OD model had mAP values shown in Fig-
ure 5 for the object classes person and car.

4. Data augmentation for re-training of DisNet
Besides the improvement of OD in railway domain

through the transfer learning procedure described above, in
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(a)

(b)

Figure 5: Precision v/s recall curves for mAP evaluation
for object class person (a) and car (b)

order to improve the reliability of BB-based object distance
estimation, re-training of Initial DisNet using an augmented
BB long-range dataset was performed as explained in fol-
lowing.

As explained in Section 1, the training dataset used for
training of Initial DisNet consisted of parameters of manu-
ally extracted BBs of 2000 objects (of the classes person
and car), which were in the distance range 0 m – 60 m
from the static camera (camera mounted on a test-stand),
as the inputs. More precisely the BB dataset consists of six-
dimensional feature vectors v assigned to training samples.
The vector v assigned to an individual object BB is:

v = [
1

Bh
,

1

Bw
,
1

Bd
, Ch, Cw, Cd]

T (1)

In (1), Bh, Bw and Bd are respectively height, width and
diagonal of an object BB, which are calculated as:

Bh =
vul − vbr

Image height in px
(2)

Bw =
ubr − uul

Image width in px
(3)

Bd =

√
(vul − vbr)2 + (ubr − uul)2√

Image height in px2 + Image width in px2
(4)

where (uul, vul) and (ubr, vbr) are respectively the im-
age coordinates of the left upper corner and the right bot-
tom corner of the object BB, as illustrated in Figure 1. The
above BB features are invariant to camera’s image resolu-
tion, hence DisNet can be used with a variety of cameras
independently of image resolution. Features Ch, Cw and
Cd in (1) are the values of average height, width and depth
of an object of a particular class. For example, for the class
human Ch, Cw and Cd are respectively 175 cm, 55 cm and
30 cm, while for the class car these parameters are 160 cm,
180 cm and 400 cm respectively. The features Ch, Cw and
Cd represent three-dimensional object features that comple-
ment information on object bounding boxes extracted from
two-dimensional images and so they give more information
to distinguish different objects.

As the initial training dataset covered only distance range
0 m – 60 m accuracy of DisNet-based object distance esti-
mation for long-range was not sufficiently reliable. In order
to improve performances of DisNet-based distance estima-
tion a BB-dataset augmentation was performed to obtain a
large training dataset of sufficient diversity in sense of cov-
ering broader ranges of distances including long-range dis-
tances up to 1000 m. For the creation of synthetic BB-data,
two different methods were used:

1. Image transformation-based data augmentation;

2. Projective transformation-based data augmentation.

4.1. Image transformation-based BB data augmen-
tation

The main idea behind the BB-dataset augmentation us-
ing image transformations was to obtain the BBs of objects
of one class (so-called transformed object class) by trans-
forming the BBs of objects of another class for which the
BBs sizes and corresponding ground truth distance were a
priory known (so-called reference object class). To illus-
trate this procedure, here, the object classes person and car
are considered as the reference object class and transformed
object class respectively. The reference object class dataset
consisted of 264 images recorded in SMART long-range
static field test conducted in November 2018; two exam-
ples of these images are shown in Figure 4. During this
field test, for the purpose of long-range dataset generation,
two persons imitated potential obstacles on the straight line
track. Starting from the test-stand with mounted RGB cam-
eras, they walked 1000 m along the rail track and back.
Every 5 m, while walking in each direction, they gestured
distinctively, so that the camera images recorded at the mo-
ments of the gestures could be used for the ground truth
distance annotations in dataset generation. These camera
images were extracted from the whole recorded video and
manually drawn BBs of the objects (persons walking along
the rail tracks) were labeled with ground truth distances.
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Such created BBs were transformed by employing image
transformations variations onto the existing images. The
performed transformation operations are: rotation, scaling,
and translation. Object BBs are extracted from the trans-
formed images and these BBs represent the objects of dif-
ferent geometries and classes at the same ground truth dis-
tances as the objects from the reference image. The extent
of transformation are applied to the image sequentially in
the following order:

1. Rotation factor: The rotation in degrees of an image
about the image centre where the anti-clock wise ro-
tation is positive by convention. This determines the
orientation of an object in an image.

2. Scaling factor: The extent to which the image is scaled
in x and y directions. This is expressed in terms of
a vector which determines the size of an object in an
image.

3. Translation factor: The translation vector is again a tu-
ple with image translation factors along x and y axes.

Figure 6: Transformation of BB of an object of class
person to resemble the BB of the object of class car. The
shape of the bounding box of a horizontal human figure is
scaled along both x and y directions to achieve a bounding
box shape equivalent to that of a car. The extent of scaling
along the individual axes is determined by the ratio of the

objects’ real world dimensions.

An example of BB dataset augmentation is given in Fig-
ures 6 and 7. The reference image shown in Figure 7a,
containing BB of an object from the class person at a cer-
tain distance d from the camera when the image was cap-
tured, was transformed to the image shown in Figure 7b.
By applying the transformation metrics: rotation factor =
90◦, scaling factors upon rotation = (2.5, 1), translation fac-
tors upon rotation and scaling = calculated to translate the
bounding box to the image centre. The object BB in trans-
formed image resembles the BB of an object from the class
car at the same distance d from the camera as illustrated in
Figure 6.

(a) Original image

(b) Augmented image

Figure 7: Transformation of reference image (a) with
object from class person to synthetic transformed image (b)

4.2. Projective transformation-based BB data aug-
mentation

As above explained, BB data augmentation using image
transformation enables augmentation of reference (original)
BB dataset of one object class by BBs of objects from differ-
ent classes, which are at the same distances as the original
objects. In order to augment BB dataset so to generate syn-
thetic object BBs corresponding to different distances, BB
augmentation-based on projective geometry (Figure 8) was
performed.

Figure 8: Projective geometry: d - object distance, f -
camera focal length, W&H - real-world dimensions (width

height) of the object. Image adopted from [17].
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According to projective geometry illustration in Figure
8, the following relationship between the real-world size of
the object and the size of the object BB in the image holds:

h = f(
H

d
) and w = f(

W

d
) (5)

Starting from the priory known sizes of BB of objects
from the class person of real-world height (1.6 m and 2 m)
from the original images from above described static field
test and corresponding distances, the focal length f was cal-
culated. Using calculated f and formula (5) the parameters
of synthetic BBs of objects from class person of real-world
heights (1.5 m, 1.6 m, 1.7 m, 1.8 m, 1.9 m, 2 m) were cal-
culated for distances d in the range from 0 m to 1000 m,
which were not covered by original dataset.

As the result of BB data augmentation by both of the
above described procedures, image transformation and pro-
jective transformation, finally an augmented BB dataset of
about 10000 BBs with corresponding distances from the
range 0 m – 1000 m was obtained. This augmented dataset
was used for re-training of Initial DisNet. Resulting re-
trained DisNet is referred to as DisNet in the following eval-
uation section.

5. Evaluation

The evaluation of DisNet re-trained with the augmented
BB dataset was done on testing images recorded in SMART
dynamic field tests (testing images were different from
those used for transfer learning of YOLO object detector).
In total, 741 BBs extracted by the re-trained YOLO object
detector were used for the evaluation of DisNet. Out of
these 741 BBs, 654 were BBs of objects from class person
and 87 were BBs of objects from the class car. For all 741
BBs the corresponding ground truth distances were known
as calculated in dynamic field tests using the GPS coordi-
nates of the moving train and Google maps GPS coordinates
of the objects (obstacles) locations (e.g. at crossings and at
known locations near railway infrastructure).

Figure 9: DisNet estimation v/s Ground truth distances

The diagram shown in Figure 9 illustrates the extent to
which the DisNet distance estimations (blue points) differ
from the ground truth data (red line). Obviously, the aver-
age absolute estimation error of DisNet increases with in-
creasing object distance. However, it was calculated that
the average relative error of DisNet increases slightly with
increasing object distance, but is steady about 10%. An er-
ror of 10% on long-range distances can be considered as ac-
ceptable for obstacle detection in railways, as it would mean
that an object at real distance of 800 m would be detected
as being at 720 m being still above train braking distance.
This underestimation is assumed as it can be seen from Fig-
ure 9, in general, DisNet tends to underestimate distance
rather than overestimate it. In total, in 434 evaluation cases
(out of 741) the distance between camera and object was
estimated to be lower than the ground truth distance.

In order to evaluate further performance of DisNet, the
following comparison to Initial DisNet performance was
performed. A relative error of 10% and 20% were consid-
ered as threshold values and the number of distance estima-
tions below 10%, between 10% and 20% and above 20% for
different distance ranges were calculated for DisNet and Ini-
tial DisNet. The evaluation results are shown respectively
in Figure 10 and Figure 11.

Figure 10: DisNet distance estimations below 10%,
between 10% and 20%, and above 20% error

Overall, 639 of the total 741 DisNet estimations were
determined to have a relative error of less than 20%, while
for Initial DisNet 72.2% of the estimations were above the
threshold of 20%. With respect to the 10% threshold, 54.5%
were below it for DisNet, but only 14.8% were below it for
Initial DisNet. As evident from Figures 10 and 11, DisNet
outperforms Initial DisNet particularly in long-range dis-
tance estimations. This is expected result as Initial DisNet
was trained with BB dataset covering only short range 0 m
to 60 m; while DisNet was obtained by re-training the Ini-
tial DisNet with augmented dataset covering range 0 m to
1000 m.

Further evaluation of DisNet was performed by compar-
ison of DisNet distance estimation results before and af-
ter re-training with the augmented dataset based on RMSE
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Figure 11: Initial DisNet distance estimations below 10%,
between 10% and 20%, and above 20% error

(Root mean squared error) of the predicted distances from
the ground truth distances as the evaluation metric. The
RMSE indicates by how much on average the estimation
differs from the ground truth.

RMSE =

√∑
(Dest −DGT )2

N
(6)

where Dest is estimated object distance, DGT is ground
truth distance and N is number of identified objects in an
image.

Table 2 shows that DisNet’s performance for both object
classes improved significantly after re-training, reducing the
RMSE from 38.2% to 10.9%.

Table 2: RMSE comparison between Initial DisNet and
DisNet

RMSE Car Person Total
Initial DisNet 38,20% 38,21% 38,20%

DisNet 13,72% 10,52% 10,90%

An example of long-range OD and distance estimation
with the improved DisNet system presented in this paper
is shown in Figure 12. As obvious, the car in the railway
scene that was on real distance of 524 m from the train, was
correctly detected and its distance was estimated as of 495,9
m giving a relative error of 5,36%.

6. Conclusion and Outlook
Based on the shown evaluation results it can be con-

cluded that BB dataset augmentation to cover long-range
distances contributed significantly improves long-range dis-
tance estimation. However, there is still place for improve-
ment so that average relative error is decreased. It can
be expected that the re-training of DisNet with even larger
BB dataset that would be augmented so to uniformly cover

Figure 12: Detected car with ground truth distance of 524
m and DisNet estimation of 495.9 m

different distance ranges with larger numbers of samples
(BBs) would lead to further improvement. In this context,
it would certainly be useful to perform the data augmen-
tation for the selected object classes from different object
perspectives (resulting in different ratios with respect to ob-
ject width and height), so that DisNet continues to learn the
objects at different distances from different perspectives.

Figure 13: Poor distance estimation of DisNet based on
occluded part of the object

However, as shown in Figure 13, the DisNet approach
may also result in poor distance estimation if the detected
object is partially occluded and the image coordinates of the
object cannot be made out by OD network in its entirety.
In the example shown, DisNet estimates the occluded car
at a distance of 614.3 m, while the ground truth distance
is 385 m. If the ”correct” BB size of the car were given to
DisNet, a good distance estimation of 345.9 m (9.45% error)
would result. A future approach could be to use traditional
image processing to check if the object is completely visible
in the found BB and if necessary to estimate the real BB
coordinates including the occluded object’s part.
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points. arXiv preprint arXiv:1904.07850, 2019. Avail-
able online: https://arxiv.org/abs/1904.
07850v2 (accessed on 29 July 2021).

[15] J. Redmon and A. Farhadi. YOLOv3: An Incremen-
tal Improvement. arXiv preprint arXiv: 1804.02767,
2018. Available online: https://arxiv.org/
pdf/1804.02767.pdf (accessed on 29 July 2021).

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, C. L. Zitnick. Microsoft COCO:
Common Objects in Context. In Computer Vision —
ECCV 2014, Part V; Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland,
2014; pp. 740–755, doi: 10.1007/978-3-319-10602-
1 48.

[17] H. Hachiya, Y. Saito, K. Iteya, M. Nomura and T.
Nakamura. Distance estimation with 2.5D anchors and
its application to robot navigation. In ROBOMECH
2018, 5(1); pp. 1-13, doi: 10.1186/s40648-018-0119-
5.

1677


