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Abstract

Today deep convolutional neural networks (CNNs) push
the limits for most computer vision problems, define trends,
and set state-of-the-art results. In remote sensing tasks
such as object detection and semantic segmentation, CNNs
reach the SotA performance. However, for precise per-
formance, CNNs require much high-quality training data.
Rare objects and the variability of environmental conditions
strongly affect prediction stability and accuracy. To over-
come these data restrictions, it is common to consider var-
ious approaches including data augmentation techniques.
This study focuses on the development and testing of object-
based augmentation. The practical usefulness of the devel-
oped augmentation technique is shown in the remote sens-
ing domain, being one of the most demanded in effective
augmentation techniques. We propose a novel pipeline for
georeferenced image augmentation that enables a signifi-
cant increase in the number of training samples. The pre-
sented pipeline is called object-based augmentation (OBA)
and exploits objects’ segmentation masks to produce new
realistic training scenes using target objects and various
label-free backgrounds. We test the approach on the build-
ings segmentation dataset with different CNN architectures
(U-Net, FPN, HRNet) and show that the proposed method
benefits for all the tested models. We also show that further
augmentation strategy optimization can improve the results.
The proposed method leads to the meaningful improvement
of U-Net model predictions from 0.78 to 0.83 F1-score.

1. Introduction

Machine learning models depend drastically on the data
quality and its amount. In many cases, using more data al-
lows the model to reveal hidden patterns deeper and achieve
better prediction accuracy [42]. However, gathering of a
high-quality labeled dataset is a time-consuming and ex-
pensive process [35]. Moreover, it is not always possible to

obtain additional data: in many tasks, unique or rare objects
are considered [31] or access to the objects is restricted [17].
In other tasks, we should gather data rapidly [40]. The fol-
lowing tasks are among such challenges: operational dam-
age assessment in emergency situations [33], medical im-
age classification [28]. There are different approaches to
address dataset limitations: pseudo labeling, special archi-
tectures development, transfer learning [2, 3, 32, 50]. An-
other standard method to address this issue is image aug-
mentation. Augmentation means applying transformations
(such as flip, rotate, scale, change brightness and contrast)
to the original images to increase useful samples that allow
training more robust algorithms [4].

In this study, we focus on augmentation techniques for
the remote sensing domain. The lack of labeled data for
particular remote sensing tasks makes it crucial to gener-
ate more training samples artificially and prevent overfit-
ting [53]. Data augmentation is especially important to en-
hance the efficiency of deep learning applications in remote
sensing [27]. This work aims to propose an object-based
augmentation (OBA) pipeline for the semantic segmen-
tation task that works with high-resolution georeferenced
satellite images. Naming our augmentation methodology
object-based, we imply that this technique targets separate
objects instead of whole images. The idea behind the ap-
proach is to crop objects from original images using their
masks and pasting them to a new background. This method
is studied in the general domain [11, 52, 55], but we are
the first to study its effectiveness in remote sensing applica-
tions. For this purpose, we adopt the method to work with
geospatial data formats and experiment with case-specific
features (such as objects’ shadows and large study area
size). In our approach, every object and background can
be augmented independently to increase the variability of
training images; shadows for pasted objects also can be
added artificially. We show that our approach is superior
to the classic image-based methods in the remote sensing
domain despite its simplicity. The pipeline is tested in a
building segmentation task using U-Net [39], Feature Pyra-
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mid Network (FPN) [25], and HRNet model [43] to reveal
a relationship between convolutional neural network (CNN)
architecture and augmentation benefit.

The main contributions of this paper are:

• We propose a novel for remote sensing domain sim-
ple and efficient augmentation scheme called OBA that
improves CNN model generalization for satellite im-
ages.

• We test the proposed method on the building segmen-
tation task and show that our approach outperforms
common augmentation approaches.

• We show that OBA parameters can be efficiently opti-
mized for better performance.

The OBA code is available:
https://github.com/LanaLana/satellite object augmentation.

2. Related Works
We can split all image augmentations into two groups ac-

cording to the target. Image-based augmentations transform
the entire image. On the contrast, object-based augmenta-
tion technique targets every object in the image indepen-
dently [10, 30, 51]. It makes augmentations more flexible
and provides a better way to handle sparse objects which is
particularly useful for remote sensing problems. However,
this novel approach has not been studied yet in the remote
sensing domain.

In [55], for the object detection task, authors perform im-
age transformations individually within and outside bound-
ing boxes. They also change bounding box position regard-
ing the background. In [52] authors clip area with the tar-
get object and replace it with the same class object from
another image. However, the bounding box’s background
is still from the source image of the new object. It makes
generated image less realistic and can affect further clas-
sification. In [10], for semantic segmentation, authors use
objects’ masks to create new images with pasted objects.

Another notable augmentation approach is based on gen-
erative adversarial neural networks (GANs) [34]. It gen-
erates completely new training examples that can benefit
the final model performance [9]. However, this approach
requires training an auxiliary model that produces train-
ing samples for the main model. In this work, we focus
only on augmentation approaches that require neither major
changes in the training loop nor much computational over-
head.

Augmentation is extensively used in various areas.
In [36], they proposed augmentation for medical images
aimed to classify skin lesions. In [46], augmentation was
implemented for underwater photo classification. Another
sphere of study that processes images distinguished from
regular camera photos is remote sensing [16].

The most frequently used augmentation approach in re-
mote sensing is also color and geometrical transforma-
tions [18, 21, 49, 54]. In [23], rescaling, slicing, and ro-
tation augmentations were applied in order to increase the
quantity and diversity of training samples in building se-
mantic segmentation task. In [38], authors implemented
”random rotation” augmentation method for small objects
detection. The effect of three geometrical transformations
(flip, translation, and rotation) on DL model performance
was assessed in [49]. In [41], authors discussed advances
of augmentation leveraging in the landcover classification
problem with limited training samples. Another task and
augmentation approach is described in [47]. The authors
used 3D ship models to insert them into the background
obtained from high-resolution satellite images. Another
augmentation approach with 3D models leveraging for air-
craft detection was described in [48]. The main limitation
of listed works is related to 3D models’ unavailability for
most remote sensing problems. The above overview clearly
states the importance of the augmentation techniques in
current computer vision remote sensing research and high
capabilities for making the trained models more general-
ized and precise. Thus, improving the augmentation tech-
niques is crucial for developing accurate solutions for prac-
tical computer vision tasks. One can see that the applica-
tion of generic geometrical and color transformations pro-
vides a very limited increase in models’ performance due
to the small variability of those transformations. A more
promising approach is to treat every object of interest sep-
arately. It allows varying both the objects’ augmentations
and its surrounding. The currently used algorithms, such as
ones based on 3D modeling, verify the superiority of object-
based augmentations. However, these techniques are poorly
scalable to the new types of objects due to extremely time-
consuming manual 3D modeling. To overcome this issue,
in this paper, we propose an automated object-based aug-
mentation method.

3. Methodology

3.1. Object-based augmentation

This section describes the object-based augmentation
methodology for the semantic segmentation problem.

Object-based augmentation requires images containing
objects with masks and background images. Each object
has its ID and shape coordinates extracted from a geojson
file. Based on the information about object location, one
can crop it from the original image, and paste to a new back-
ground. There were two types of background areas: from
the initial dataset and new unlabeled images that aim to add
diversity into data. An object and a background were cho-
sen randomly. According to the object’s coordinates, a crop
with a predefined size containing the object was clipped
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Figure 1. Object-based augmentation (OBA) scheme. For each generated sample, we choose objects from the set of IDs, crop objects
according to its footprint, add shadows, conduct geometrical and color transformations, and then merge these cut objects with a new
background.

Figure 2. Examples of augmented samples reconstructing various environmental conditions. Objects and backgrounds are from different
images and have different color and geometrical transformations. Shadows are added artificially for the generated samples.

for RGB channels and masks (Figure 1). The background
crop has the same size. With some set probability, the ob-
ject’s crop and the background’s crop were augmented sep-
arately or together using base color and geometrical trans-
formations from Albumentations package [4]. This package
is popular both for semantic segmentation task in general
and remote sensing domains. The considered in our study
transformations are described in Table 1. Since most of the
works in remote sensing do not specify albumentations pa-

rameters for images augmentation [21, 54] we also set de-
fault parameters.

The object extension was then merged with a new back-
ground by placing it in a random position strictly within the
image crop. Objects number within each image crop was
chosen randomly in a predefined range. Overlapping be-
tween objects was prohibited.

To make generated samples more realistic, we add shad-
ows using objects’ footprints (Figure 2). The mask of the
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Transformation Description
RandomRotate90 Randomly rotate the input by 90

degrees zero or more times
Flip Flip the input either horizontally,

vertically or both
Additive Add Gaussian noise to
GaussianNoise the input image
HueSaturationValue Randomly change hue,

saturation and value of the
input image

CLAHE Apply Contrast Limited Adaptive
Histogram Equalization to the
input image

OpticalDistortion Apply Barrel Distortion [12]
to the image

RandomContrast Randomly change contrast of
the input image

RandomBrightness Randomly change brightness
of the input image

IAAEmboss Emboss the input image and overlays
the result with the original image

MotionBlur Apply motion blur to the input
image using a random-sized kernel

Table 1. Base color and geometrical transformations from ablu-
mentations.

shadowed area is blended with initial background pixels
with different intensities.

The difference between the general and remote sensing
domains often relates to image size in a dataset. The av-
erage image resolution in ImageNet dataset is 469 ∗ 387
pixels, while in many remote sensing datasets image is sig-
nificantly larger. Images in DOTA dataset have size about
4000 ∗ 4000 pixels and may contain large-size images with
only a handful of small instances [44]. Image size for the re-
mote sensing domain often depends on the study area scale.
A single satellite image can cover an entire city or a large
county. Moreover, target objects in remote sensing tasks
usually have dramatically lower density (as in the before-
mentioned DOTA dataset) in comparison to general domain
images. It is necessary to split an initial image into crops
that a CNN model can accept for training. Therefore, sam-
pling strategy is crucial for the remote sensing domain as
simple image partition into tiles is unproductive for large
study areas [45]. Our framework supports an efficient sam-
pling strategy that uses objects coordinates to crop training
patches within large georeferenced images (Figure 1).

The entire new sample generating process is conducted
during model training. It aimed to ensure greater diversity
without memory restrictions related to additional sample
storage. Therefore, all functions for object-based augmen-
tation were implemented into the data-loader and genera-

tor. New generated samples are also alternated with original
samples.

In summary, OBA includes the following options:

• Shadows addition (length and intensity may vary);

• Objects number per crop selection (default: up to 3
extra objects);

• Selection of base color and geometrical transforma-
tions probability (default: 50%);

• Background images selection (default: 60%);

• Selection of original and generated samples mixing
probability (default: 60%).

We compared this augmentation approach with the fol-
lowing alternatives: Baseline is training a CNN model us-
ing just base color and geometrical augmentations (from
Albumentations framework); Baseline no augm is training
a CNN model without any augmentations; OBA no augm
is applying OBA cropping and pasting without generic
augmentations; OBA no shadow is applying OBA crop-
ping and pasting without adding generated shadows to
the objects; OBA no background is applying OBA crop-
ping and pasting using a background from the same im-
age only. Note that all the tested OBA approaches except
OBA no background use crops from other images to form a
background. The summary of the experiments is reflected
in Table 5.

3.2. Optimization

The task of optimal augmentation policy choice is a sig-
nificant part of algorithm adjustment. Many works are de-
voted to this topic [6, 8, 24]. It is often defined as a com-
binatorial optimization problem of optimal transformations
search within some available set.

To choose the best augmentation strategy, we set experi-
ments with the optimizer from the Optuna software frame-
work [1]. It uses a multivariant Tree-structured Parzen Es-
timator. Optuna helps to search hyperparameters efficiently
and shows significant improvements for various machine
learning and deep learning tasks [14, 19]. The optimizer
supports earlier pruning to reject weak parameters initial-
ization. As a pruner, we used Optuna’s implementation of
MedianPruner. Loss function value after each epoch was
evaluated to choose new parameters’ values in the search-
ing space. For object-based augmentation, the following
parameters were considered:

• Number of generated objects within one crop;

• Probability of the base color transformations;

• Probability of object-based augmentation;
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Baseline no augm Baseline OBA
Training set size 1/3 2/3 1 1/3 2/3 1 1/3 2/3 1
F1-score 0.415 0.43 0.45 0.751 0.785 0.788 0.787 0.81 0.829

Table 2. Augmentation approaches comparison for different training set size using U-Net with Resnet34 encoder (F1-score for the test set).

Baseline no augm Baseline OBA
Model Resnet18 Resnet34 Resnet50 Resnet18 Resnet34 Resnet50 Resnet18 Resnet34 Resnet50
FPN 0.325 0.367 0.186 0.741 0.762 0.784 0.802 0.813 0.826
U-Net 0.435 0.45 0.34 0.766 0.788 0.766 0.807 0.829 0.824

Resnet101 Resnet101 Resnet101
HRNet 0.23 0.741 0.812

Table 3. Augmentation approaches comparison for different CNN models (FPN, U-Net, HRNet) with different encoders (Resnet18,
Resnet34, Resnet50, Resnet101). F1-score for the test set.

• Probability of extra background usage.

For this study, we set 12 epochs and the same validation
samples representation without any modifications to obtain
the most equivalent criteria as possible for earlier pruning.

4. Experiments
4.1. Dataset

Train Validation Test
Objects number 955 226 282
Area in hectars 390 100 93
Extra background area 2000 500 500
in hectars

Table 4. Dataset description.

Base Shadow Extra
augm. background

Baseline no augm % % %

Baseline ! % %

OBA no augm % ! !

OBA no shadow ! % !

OBA no background ! ! %

OBA ! ! !
Table 5. Experiments with different augmentation setups.

We evaluated the developed augmentation pipeline in the
remote sensing semantic segmentation problem, namely the
buildings segmentation task. It is an important problem
for remote sensing, and it was considered in different stud-
ies [23, 37]. Lack of labelled training data makes it suitable
for the OBA approach evaluation.

For building segmentation, we used the dataset described
in [33]. This dataset was collected for damage assessment in

the emergency and included images before and after wild-
fires in California in 2017. However, we leveraged just data
before the event. It covers Ventura and Santa Rosa counties
(the total area is about 580 hectares). Very high-resolution
RGB images for this region were available through Digital-
globe within their Open Data Program. We used 955 build-
ings for training and 226 for validation from Ventura and
282 buildings from Santa-Rosa for the test (see Table 4).
Objects’ masks are presented both in raster TIFF format and
vector shapes. Image that was used for training is shown in
Figure 3.

We selected high-resolution extra background without
target objects from Maxar serves [29] (image id is lnu-
lightning-complex-fire, April 15, 2020, California). We
cut test, validation and train images with the total area of
about 3000 ha. It includes various land-cover types such as:
lawns, individual trees, roads, and forested areas.

4.2. Effect of the train dataset size

To assess the effect of the dataset size on the final model
score we considered the following subset of samples for
training dataset:

• The entire training dataset;

• 2/3 of the entire training dataset;

• 1/3 of the entire training dataset.

For each experiment, we fixed the same validation set
that was not reduced further. For the reduced training
dataset, we ran a model on different subsets. There were
2 and 3 subsets for each of the mentioned dataset sizes. The
final results for each training subset size were defined as an
average. We conducted these experiments for three different
training modes: without augmentation (Baseline no augm),
with base color and geometrical transformations (Baseline),
with object-based augmentation (OBA).

To evaluate how original and generated samples affect
the final score the following experiment was conducted:

1663



Figure 3. Train area and mask. The image size is 4418 ∗ 4573 pixels

1. Pretrain model using just generated samples for prede-
fined fixed number of epochs: 5, 10, 15, or 20;

2. Continue training using just original samples for pre-
defined fixed number of epochs: 2, 4, or 8.

Therefore, we aimed to obtain 12 models that utilize for
training different proportions of generated and original sam-
ples. Such methodological experiments allow us to obtain
results that provide important information on the best pos-
sible training strategy in order to achieve the highest score.
Also, results are useful for performing further analysis of
the sensitivity of models performance and training proce-
dure to the developed augmentation technique which in turn
allow using the most beneficial aspects of the proposed aug-
mentation algorithm.

Fine-tuning epochs
Pretrain epochs 2 4 8
5 0.742 0.774 0.727
10 0.698 0.795 0.739
15 0.708 0.736 0.747
20 0.72 0.747 0.763

Table 6. F1-score results with augmentation pretraining, and fine-
tuning on original data (U-Net with ResNet-34 encoder).

4.3. Neural Networks Models And Training Details

To evaluate the object-based augmentation approach on
different fully convolutional neural networks architectures,
we considered FPN [25] and U-Net [39] with three en-
coders’ sizes: ResNet-18, ResNet-34, ResNet-50 [15]. Both

U-Net and FPN are popular CNN architectures for se-
mantic segmentation tasks in remote sensing domain [20,
22]. We also train a contemporary high-resolution HR-
Net model [43] with the ResNet101 backbone. All mod-
els used weights pre-trained on “ImageNet” classification
dataset [7].

The training of all the neural network models was per-
formed at a PC with GTX-1080Ti GPUs. For each model,
the following training parameters were set. An RMSprop
optimizer with a learning rate of 0.001, which was reduced
with the patience of 3. There were 50 (except the experi-
ment with augmentation strategies) epochs with 100 steps
per epoch and 30 steps for validation. Early stopping was
chosen with the patience of 4, then the best model accord-
ing to validation score was considered. The batch size was
specified to be 30 with a crop size of 128 ∗ 128 pixels. Such
a crop size is a typical choice in remote sensing tasks with
CNN models [20, 26]. The batch size was chosen accord-
ing to GPU memory limitations. As a loss function, binary
cross entropy (Equation 1) was used.

L(y, ŷ) = − 1

N

N∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi), (1)

where N is the number of target mask pixels, y is the
target mask, ŷ is the model prediction.

4.4. Evaluation

The model outputs were binary masks of target objects,
which were evaluated against the ground truth with pixel-

1664



wise F1-score (Equation 2). F1-score is robust for unsym-
metrical datasets, and it is a commonly used score for se-
mantic segmentation tasks [5], in particular in the remote
sensing domain [20].

F1 =
TP

TP + 1
2 (FP + FN)

, (2)

where TP is True Positive (number of correctly classi-
fied pixels of the given class), FP is False Positive (number
of pixels classified as the given class while in fact being of
other class, and FN is False Negative (number of pixels of
the given class, missed by the method).

For each experiment, we run a CNN model three times
with different random seeds and average the results.

5. Results and discussion

Standard Augmentation F1-scoreaugmentation

No Baseline no augm 0.45
OBA no augm 0.66 (+21%)

Yes

Baseline 0.788
OBA no shadow 0.811 (+2.3%)
OBA no background 0.81 (+2.2%)
OBA 0.829 (+4.1%)
OBA + optimization 0.835 (+4.7%)

Table 7. Experiments with different augmentation setups (F1-score
for the test set, U-Net with ResNet-34 encoder).

5.1. Object-based augmentation

We compared different augmentation approaches and
presented results in Table 2. Model predictions for the test
region are presented in Figure 4. OBA allows us to improve
the F1-score for the entire dataset size from 0.788 to 0.829
compared with the base color and geometrical transforma-
tions (Baseline). As experiments clearly indicate, the model
trained without any data augmentation (Baseline no augm)
performed significantly poorly (0.45 F1-score).

Extra background usage improves prediction quality
compared with models that use only initial background
areas both for the original test set (F1-score from 0.81
to 0.829). Additional backgrounds make a model more uni-
versal for new regions. It is promising in cases where we
want to switch between different environmental conditions
without extra labeled datasets.

Even without extra background images, remote sensing
task specificity frequently offers an opportunity to add more
diversity in training samples. Target objects are often too
small compared with the entire satellite image that is lever-
aged for a particular task. Moreover, target objects can be
distributed not regularly which creates large areas free of

them. We show that even these areas can be successfully
used to create new various training samples (see
OBA no background in Table 7).

We studied artificial shadows importance in the proposed
approach. As it is shown in Table 7, shadows allow us
to improve the model performance from 0.811 to 0.829
(F1-score). Therefore, a shadow is an essential descrip-
tor for objects observed remotely from satellites. It distin-
guishes OBA for remote sensing tasks from the copy-paste
approach [10] applied in the general computer vision do-
main.

We tested the proposed approach with different neural
networks architectures. The results of the experiments are
shown in Table 3. Models with different capacities perform
better on different tasks; however, for both U-Net and FPN
architectures with different encoders sizes, and the HRNet
model the object-based approach outperforms the base aug-
mentation strategy. Object-based augmentation clearly im-
proves generalization in our experiments. One can also see
from the results that models with high capacity tend to over-
fit on small training data when augmentation is not suffi-
cient. It reaffirms the hypothesis that it is essential to re-
search data preprocessing, but not only model architectures.

In Table 6 we study the effect of different proportions
of original and generated samples. In this experiment, we
show the ability to use the augmented set for model pretrain-
ing, and then to tune it further on the original set. The inten-
tion is to apply such a pipeline is to start training with a big-
ger augmented set to learn general patterns and to continue
training with a smaller set that is closer to the distribution of
the test set to learn more precise patterns. However, this ap-
proach faces the ”catastrophic forgetting” problem [13] that
means that after a long fine-tuning on a new set, a model
forgets the patterns trained on an old set. Another problem
is that model can overfit either on augmented or on original
set. To solve this, we try several combinations of pretrain
and fine-tune epochs. The results show that pretraining in
the object-based augmentation mode (without original sam-
ple usage) for 10 epochs and further training in the base
augmentation mode for 4 epochs for our task leads to the
best result for the considered experiment. This experiment
indicates that separate training on the original and gener-
ated data during different epochs is not an optimal choice in
this task. A more efficient approach is to set a probability to
add augmented and original samples into each batch during
training.

The advantage of this method is that it does not require
much computational overhead. It needs just one model
training on the generated dataset and tuning the model from
several checkpoints on the original dataset. However, as
Table 3 shows, the strategy of mixing generated and origi-
nal images during the training process leads to better results
than separating image sources.
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Figure 4. Sample results on the test set of buildings dataset (U-Net with ResNet-34): a) input RGB with ground truth on the right of the
red line; b) prediction without augmentation; c) prediction with object-based augmentation.

As we evaluated the OBA approach for remote sensing
tasks with man-made objects, one of the future study direc-
tions is to implement the described method to wider classes,
in particular, vegetation objects, such as agricultural crops
or individual trees.

The results for experiments with different dataset sizes
are present in Figure 2. Object-based augmentation al-
lows avoiding the drastic drop in prediction quality when
dataset size is reduced. For buildings segmentation with
object-based augmentation, dataset size decreasing to one-
third leads to F1-score decreasing from 0.829 to 0.787,
while with the base augmentation it decreases from 0.788
to 0.751. That makes object-based augmentation suitable
for few-shot learning, especially when high-capacity mod-
els are used.

For the optimization task, we tested U-Net with ResNet-
34 encoder using the entire dataset. Optuna package was
leveraged to find better values for augmentation parameters,
namely, extra objects number ([0, 1, 2, 3]), the probability to
use additional background (0− 1), object-based augmenta-
tion probability (0− 1), and color augmentation probability
(0 − 1). We run 20 trials; for each trial, parameter values
varied. For the optimization process, Optuna utilized loss
function values on the validation set after each epoch. As
the pruner method, we used MedianPruner.

Augmentation strategy search for U-Net model increases
the final performance from 0.829 to 0.835 (OBA and OBA
+ optimization in Table 7). The found optimal parameters
are as follows: extra objects = 3; background prob = 0.53;
object-based augmentation probability = 0.787; color aug-
mentation probability = 0.35.

As it is shown, the optimizer allows us to set up bet-
ter augmentation parameters according to the particular task
specificity.

6. Conclusion

This study proposes an advanced object-based augmen-
tation approach that outperforms standard color and geo-
metrical image transformations in building semantic seg-
mentation task. The presented method combines target ob-
jects from georeferenced satellite images with new back-
grounds to produce more diverse realistic training samples.
Our framework extends object-based augmentation meth-
ods to work with the remote sensing domain. It considers
the satellite imagery data format and adds features that im-
prove the accuracy of our case study. We also explicate the
importance of augmentation hyperparameters tuning and
describe a practical way to find optimal object-based aug-
mentation parameters. Our results show promising poten-
tial for real-life remote sensing tasks making CNN models
more robust for new environmental conditions even if the
labeled dataset size is highly limited.
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