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Abstract

Since the rise of deep learning, many computer vision
tasks have seen significant advancements. However, the
downside of deep learning is that it is very data-hungry.
Especially for segmentation problems, training a deep neu-
ral net requires dense supervision in the form of pixel-
perfect image labels, which are very costly. In this paper,
we present a new loss function to train a segmentation net-
work with only a small subset of pixel-perfect labels, but
take the advantage of weakly-annotated training samples
in the form of cheap bounding-box labels. Unlike recent
works which make use of box-to-mask proposal generators,
our loss trains the network to learn a label uncertainty
within the bounding-box, which can be leveraged to per-
form online bootstrapping (i.e. transforming the boxes to
segmentation masks), while training the network. We evalu-
ated our method on binary segmentation tasks, as well as
a multi-class segmentation task (CityScapes vehicles and
persons). We trained each task on a dataset comprised of
only 18% pixel-perfect and 82% bounding-box labels, and
compared the results to a baseline model trained on a com-
pletely pixel-perfect dataset. For the binary segmentation
tasks, our method achieves an IoU score which is 98.33%
as good as our baseline model, while for the multi-class
task, our method is 97.12% as good as our baseline model
(77.5 vs. 79.8 mIoU).

1. Introduction
Nowadays, deep learning enables computer vision algo-

rithms to achieve outstanding results for semantic segmen-
tation tasks (e.g. [1], [9], [12], [15]). However, the standard
deep learning approaches are fully supervised. This means
they make use of a large labeled dataset to train the deep
neural network. To construct such a dataset, one has to la-
bel each individual pixel to a specific class. Since most of
the use-cases for segmentation tasks require images of high
resolution (autonomous vehicles, medical imagery, ...), it is
clear that this is a time-consuming job, making it one of the
largest costs in deep learning.

Another way of labeling objects is by using bounding
boxes (i.e., each object is enclosed by a rectangle). This way
of labeling is extremely fast and cheap. Whereas for pixel-
perfect labels a person has to label each individual pixel
to a specific class, they now only have to mark two points
of an enclosing rectangle and select the concerning class.
Of course, bounding-box labels are not suitable to achieve
good segmentation results right out of the box. Since the
labels now contain a lot of erroneously labeled pixels, train-
ing a segmentation network with bounding-box labels will
yield unexpected results.

Recent works have already investigated this problem of
training a segmentation model with weakly supervised data.
Most of the works rely on box-to-mask proposal generator
[10], [17], [5] to improve the bounding-box labels to better
segmentation masks. However, since these generators are
not specifically tuned to the dataset at hand, we believe that
this method is not ideal. [19] also addressed this problem
by learning a specific generator. However, they trained the
mask generator on a different dataset, which is not always
available.

In this paper, we propose to leverage label uncertainty
to perform online bootstrapping on the bounding-box la-
bels during training. Based on this learned label uncertainty,
the online bootstrapping transforms the bounding boxes to
more accurate label masks, eliminating the need to have
generic mask generators. By feeding in a small portion of
pixel-perfect labels, the model sees contradicting supervi-
sion around objects: background for pixel-perfect labels,
while for the bounding-box labels the model sees the erro-
neous bounding-box foreground target around objects. This
confusion can be used to learn a kind of label uncertainty on
the fly, while only having a small portion of pixel-perfect la-
bels. After only a few iterations, the model has learned to
increase the uncertainty for erroneous bounding box targets.
This can then be leveraged to bootstrap the bounding box la-
bels to more accurate segmentation masks, by flipping them
towards the model’s output when the uncertainty exceeds a
certain threshold. Due to the improving labels during train-
ing, the model’s segmentation performance increases over
time.

1678



We tested our method on the CityScapes dataset for both
binary and multi-class segmentation setups using bounding-
box labels and a small portion of pixel-perfect labels and
showed that our method is only slightly less accurate than
training on a completely pixel-perfect dataset.

2. Related Work
In recent years, many researchers have investigated the

problem of weakly-supervised semantic segmentation using
bounding boxes. A lot of works follow the proposal gener-
ator methods. These techniques leverage proposal gener-
ators to generate, based on the given bounding-box data,
enhanced segmentation masks for training the model. The
most familiar proposal generation algorithms include dense
CRF [7], the GrabCut algorithm [16] and the MCG algo-
rithm [13].

In the weakly supervised setting using bounding-boxes,
most recent works are based on any of these proposal al-
gorithms. For example, [10] uses the CRF algorithm to es-
timate segmentation proposals. These proposals are then
used as pseudo labels in the EM algorithm to optimize the
DNN. Also, in [17], the authors introduced BCM, which ex-
ploits box-driven class-wise masking and class filling rates
to remove irrelevant regions in the bounding boxes. How-
ever, their method also relies on the dense CRF proposal
algorithm.

On the other hand, the BoxSup [3] and SDI [5] algo-
rithms rely on MCG to generate segmentation proposals.
While the SDI also uses the GrabCut algorithm to gener-
ate more accurate proposals by combining them with the
proposals generated by MCG. In Box2Seg [8], the authors
propose an additional DNN following the encoder-decoder
architecture, which includes an attention module to further
improve the segmentation performance.

In a recent paper [19], the authors suggested to instead
of using the traditional proposal algorithms, they learn a
pseudo-mask generator on a different dataset and use this
generator to create masks for the given bounding-boxes to
improve the semantic segmentation.

While all the discussed works rely on the generation of
mask proposals, we suggest a proposal-free method. As
most works go through different iteration stages to improve
the labels and fine-tune the segmentation model, our method
trains the model without having to statically update labels or
refine-tune the model, since the box-to-mask conversion is
built-in into our loss function and does not introduce extra
overhead (in contrast to mask proposal generators).

3. Method
This section will mainly focus on our loss function by

describing the two main parts it consists of. First, we will
explain the uncertainty loss, which enables the model to

learn the label uncertainty, indicating where the target la-
bel might be incorrect. Secondly, we will describe how the
learned uncertainty can be used to perform online bootstrap-
ping, which will, during the training phase, adapt the erro-
neous targets on the fly to improve the training supervision
and increase the model’s performance.

3.1. Learning Uncertainty

An early work by Kendall and Gal [4] modeled the un-
certainty by replacing the output layer with a Gaussian dis-
tribution. By replacing the output logit with an output mean
µ and variance σ2, the model can indicate its uncertainty
by increasing the latter. For example, if we look at a stan-
dard regression case using an L2-loss, the objective is to
minimize the squared error between the inferred value and
the label y. If the model now instead infers a Gaussian
distribution with mean µ and variance σ2, the objective
changes to maximizing the target’s probability w.r.t. this
inferred distribution, that is, maximizing P (y|µ, σ2) with
P ∼ N (µ, σ2).

In [4], Kendall and Gal argued that this uncertainty rep-
resents the heteroscedastic uncertainty of the model. This
type of uncertainty captures noise inherent to the model’s
input (e.g. blurred regions, poor lighting, occlusions, etc.),
which cannot be explained away using more training data.
Another advantage of using this method to learn the het-
eroscedastic uncertainty is that it is learned completely un-
supervised.

If one looks more closely at the new objective of maxi-
mizing P (y|µ, σ2) with P ∼ N (µ, σ2) in Equation 1 , the
loss can be rearranged to a simpler form, which gives more
insight in the uncertainty’s influence (Equation 2).

P (y|µ, σ2) =
1

σ
√

2π
e−

1
2 (
y−µ
σ )2 (1)

Which leads to minimising:

− logP (y|µ, σ2) =
1

2σ2
(y − µ)2 +

1

2
log σ2 (2)

It is clear the rearranged form now consists of an L2-loss
attenuated by 1

2σ2 which is also penalized by an additional
uncertainty term 1

2 log σ2. By increasing the uncertainty,
the model can attenuate the loss but is also penalized with
an increasing penalty, prohibiting the model to minimize the
loss indefinitely by increasing the uncertainty for all pixels.
An overview of the loss’ curvature can be seen in Figure 1.

As explained above, this loss models the heteroscedastic
uncertainty, enabling the model to express its uncertainty
for blurred, poorly lit, or difficult regions in images. For
these difficult pixels, the model can increase its uncertainty
and infer a mean value that contradicts the target label, since
a high uncertainty also decreases the loss (Equation 2).
When training a binary segmentation model using this loss

1679



Figure 1. Regression loss with uncertainty for target value 0. It
is clear the loss is minimized when outputting a mean value of 0.
However, by increasing the uncertainty, the loss is also lowered for
other mean values which deviate from 0.

Figure 2. Output of a segmentation model trained on bounding
box-data using the regression loss with uncertainty. It is clear that,
when the dataset only consists of bounding-box targets, the seg-
mentation output will also resemble rectangles.

function with bounding-box supervision, the most difficult
pixels to learn will be around the edges of the boxes. There-
fore, the uncertainty will be high, and the model will infer
a more relaxed bounding box since not all bounding boxes
in the training data are strictly enclosing objects. Figure 2
shows the output of such a scenario. The model learns to
segment bounding boxes, but the uncertainty is high at the
boxes’ edges.

We already stated that the uncertainty is learned unsu-
pervised. The way the model learns this uncertainty is that
for the many examples in the training set, the bounding box
circumference of the object is not always exactly the same.
Therefore, the model sees a variance in the width and height
of the bounding boxes during training and will contradict
training targets for the pixels at the bounding boxes’ bor-
ders. Hence, the model will learn a generalized bounding

box shape and contradict the target pixels outside of the
bounding box by increasing the uncertainty to lower the loss
function.

3.2. Confusing the model with pixel-perfect labels.

Our goal is to perform semantic segmentation, which can
segment objects with their true borders instead of rectan-
gular shapes as seen in Figure 2. Instead of only learning
the uncertainty for ”difficult” pixels, which is built-in in the
loss function, we will force the loss to learn a kind of label
uncertainty. This new kind of uncertainty will give us an in-
dication of where the training label might be incorrect, and
will therefore enable the model to lower the loss (through
the attenuation term from Equation 2) when contradicting
the target label. We already showed that the model learns its
uncertainty for difficult regions, but also regions where the
model gets contradicting target labels during training (e.g.
edges which are coarsely labeled). Therefore, if we feed in a
small number of pixel-perfect labels during training, where
objects’ borders are pixel perfectly annotated, the model
will get confused for regions around objects with correctly
annotated background targets (pixel-perfect labels), and er-
roneous foreground targets (bounding-box labels). This
contradiction in supervision enables the loss function to cor-
rectly learn the label uncertainty.

To illustrate this idea, we will look at a binary car seg-
mentation model. The model infers a Gaussian distribution,
that is, two output maps: mean µ and variance σ2. Con-
sider a training batch, which consists of both pixel-perfect
(PP) and bounding-box (BBox) targets. The loss for the
pixel-perfect labels is a standard L2 loss with treating the
inferred mean value as the standard logit output. The loss
for the bounding box labels is the extended L2 loss with
uncertainty (Equation 2). Eventually, to compute the total
batch loss, the pixel’s losses are accumulated. However, for
pixels around objects, the model sees contradicting super-
vision: foreground (target y = 1) for bounding-box targets,
background (target y = 0) for pixel-perfect targets.

L = L(PP ) + L(BBox)

= (y − µ)2 +
1

2σ2
(y − µ)2 +

1

2
log σ2

Substituting y = 0 for pixel-perfect labels and y = 1 for
bounding box labels

L = (0− µ)2 +
1

2σ2
(1− µ)2 +

1

2
log σ2

(3)

We see in Equation 3 that the first term (L2-loss for pixel-
perfect targets) is minimized by inferring the same µ as the
target label (0, background). However, if the model learns
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Figure 3. Output example of a binary segmentation model trained
with an L2-loss with uncertainty using a small subset of pixel-
perfect labels. The pixel-perfect labels enable the model to learn
to increase the uncertainty for the erroneous bounding-box pixels.
For these pixels, the uncertainty attenuation term lowers the loss,
enabling the model to contradict the erroneous bounding-box su-
pervision which results in a finer segmentation output.

to infer a 0 for background pixels around objects for the
pixel-perfect labels, it will also infer this value for images
supervised with bounding-box targets (foreground). If we
look at Equation 3, when inferring a mean (µ) value of 0
(model infers background), the loss for the bounding-box
targets can only be minimized by increasing the uncertainty
σ2. Hence, due to a small subset of pixel-perfect labels, the
model can learn the label uncertainty in an unsupervised
manner. An example of this method can be seen in Figure
3. The figure clearly shows the learned uncertainty for the
erroneous bounding-box targets, lowering the loss through
the attenuation term which enables the model to infer the
contradicting background class resulting in finer segmenta-
tion masks.

3.2.1 Switching to the Cross-Entropy Loss

In the previous sections, we discussed how the use of la-
bel uncertainty can help train a segmentation model using
bounding-box labels. To illustrate the effect, we used the
simple L2-loss to clearly see the attenuation and penalty ef-
fect on the loss when the uncertainty increases. However, a
standard binary segmentation task is nearly always trained
with a binary cross-entropy loss (BCE), and will usually re-
sult in better performance.

When using the BCE loss, the last layer of the network
outputs a logit value l, which is the logarithm of the odd
(log( p

1−p )). The logit can range from −∞ to +∞. It gets
squashed through the sigmoid function (eq. 4) to get a value
between 0 and 1, representing the probability p̂ of that pixel
being 1 (which can be derived by inserting the logarithm
of the odd into the sigmoid). Next, the BCE loss function
(Equation 5) measures the cross-entropy between the prob-
ability of the network’s output p̂ and the probability of the

label p.

p̂ = sigmoid(l) =
1

1 + e−l
(4)

L(p̂, p) = p log p̂+ (1− p) log(1− p̂) (5)

To add uncertainty to the BCE loss, we refer again to the
implementation of Kendal and Gal [4]. Like in the previous
sections, the model will, instead of outputting a single logit
value, output a Gaussian distribution of logits with mean µ
and variance σ2. Whereas in the standard BCE loss, the
logit gets squashed through the sigmoid to get the probabil-
ity p̂, we have to compute E[p̂], the expected value of the
probability:

E[p̂(l)] =

∫
sigmoid(l) · P (l)dl (6)

With P(l):

P (l) =
1

σ
√

2π
exp− 1

2 (
l−µ
σ )2 (7)

Solving the integral to get the expected probability can
be done by using Monte Carlo integration: logit values get
sampled from the Gaussian distribution outputted by the
network, squashed through the sigmoid function and aver-
aged. Luckily, [18] approximated the integral:

E[p̂(l)] = sigmoid(
µ√

1 + πσ2/8
) (8)

The expected probability can be computed by first com-
puting an ”adapted” logit value from µ and σ2 and taking
the sigmoid function to get E[p̂]. The loss value is the stan-
dard BCE of E[p̂]:

L(p̂, p) = p logE[p̂] + (1− p) log(1− E[p̂]) (9)

Again, the uncertainty term acts as an attenuation of the
loss, enabling the model to lower the loss even when in-
ferring a contradicting target. However, the same problem
as with the L2-loss arises. In Figure 4 (a), it is clear the
loss decreases when the uncertainty increases, but at each
point, gradients are directing the mean towards the target
label. For background pixels within bounding-box targets,
this means the model will still learn to segment rectangular
shapes. However, we have addressed this problem in the
previous section by confusing the model with pixel-perfect
labels, which will prevent the model from learning from
these ”false” gradients.

3.3. Uncertainty-Based Online Bootstrapping

In the previous sections, we showed how the uncertainty
loss could be used to train a pixel-perfect segmentation
model with bounding-box data. However, the downside was
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Figure 4. (a) BCE loss function with uncertainty for target value 1. It is clear the loss can be lowered by increasing the uncertainty σ2.
However, the loss can be minimized this way only up to a certain point. Also, the loss still has significant gradients to shift mean µ
towards the target value 1. For erroneous background pixels within bounding-box targets, this means that the model will learn to segment
rectangular shapes if no extra pixel-perfect labels are used during training. (b) Bootstrapping loss. The loss is the sum of two BCE losses:
the first receives the original target while the second receives the flipped target (opposite). The two terms are weighed based on the variance
σ2. Higher variance means the loss consists of the BCE with the flipped target. For low variance, the loss resembles the original BCE with
the given training target. (c) The total loss function, which consists of two summed loss terms. However, the variance (uncertainty) is only
learned in the uncertainty loss, while the mean (logit) is learned in the bootstrapping loss.

that we needed to use pixel-perfect labels, to mitigate the
gradients towards the erroneous training targets within the
bounding box. Still, when following this method, the model
will try to minimize the loss on background pixels within
bounding boxes by increasing the uncertainty, but the loss
function will remain to provide gradients towards the train-
ing target y.

To eliminate these gradients, we propose to add online
bootstrapping directly into the loss function. We already
stated that the uncertainty represents a label uncertainty, that
is, a degree of how certain the model is that the target is in-
correct. Having this information, we can flip the training
target to background for every pixel where the uncertainty
exceeds a certain threshold. By flipping the target to back-
ground, the ”false” gradients towards old targets y are re-
placed with gradients towards the flipped target y∗. How-
ever, we have to keep in mind the uncertainty is learned on
y. Therefore, we compose the loss function of two parts:
the uncertainty loss and a bootstrapping loss.

The bootstrapping loss is a standard BCE loss with the
bootstrapped target. This target can be the training target y,
or, when the uncertainty reaches a predetermined threshold
value τ , the flipped training target y∗. To achieve a smooth,
differentiable loss function, we compose the bootstrapping
loss (Equation 10) of two summed terms: a BCE with the
training target y and a BCE with the flipped target y∗, which
are weighted based on the uncertainty σ2 (Figure 4 (b)).

L = W ·BCE(µ, y) + (1−W ) ·BCE(µ, y∗) (10)

With

W = sigmoid

(
τ − σ2

0.2

)
(11)

As we have already pointed out, for an increased uncer-
tainty (i.e. the model contradicts the training target), the
uncertainty loss still has strong gradients towards the train-
ing target. However, by adding the pixel-perfect labels to
each batch, we forced the model to not follow these gra-
dients, since this would undermine the performance on the
pixel-perfect labels. This situation is not ideal, because the
gradients towards the training targets limit the training.

By adding the bootstrapping loss, we introduce the extra
gradients towards the flipped targets (when the uncertainty
is high). This enables the model to receive the gradients it
prefers. However, these flipped gradients only happen when
the model has increased its uncertainty through the uncer-
tainty loss. These two learning mechanics can be split be-
tween the two different loss terms. Learning the uncertainty
σ2 is restricted to the uncertainty loss while learning the
mean µ is handled by the bootstrapping loss. This is easily
done in the PyTorch framework [11], by detaching the mean
or variance for each of the corresponding loss terms. Fig-
ure 4 (c) shows the final curvature of our uncertainty-based
online bootstrapping loss.

4. Experiments & Results
In this section, we will show the performance of our new

loss function on a binary and multi-class setup. First, we
will perform binary segmentation of the cars class from the
CityScapes dataset [2], comparing both the L2 with uncer-
tainty (without bootstrapping) and the BCE uncertainty loss
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function with bootstrapping. In a second experiment, we
will extend our loss function to a multi-class setting, com-
bining the cars and persons classes into one dataset.

4.1. Segmenting Cars from CityScapes

To test our method, we will first perform binary segmen-
tation on from the CityScapes dataset. We will use the 3475
available train and validation images, and divide them into
an 80:20 train/validation split. To speed up our experiments,
the images are scaled to a resolution of 1024×512. Fur-
thermore, we will use the PyTorch deep learning framework
[11] to train a standard ERFNet segmentation network [14]
with an Adam optimizer [6] and a learning rate of 5 · 10−4.
Since we only focus on the performance of our loss func-
tion, we will not optimize the ideal network architecture and
learning rate optimization.

4.1.1 Regression with uncertainty

In the first experiment, we will show the performance of the
regression loss with uncertainty without bootstrapping. For
this setup, we will use a fixed set of 500 pixel-perfect labels
together with the remaining 2280 bounding-box labels. A
batch size of 8 is used, with a pixel-perfect sampling chance
of 25%, to make sure that each batch has around two pixel-
perfect examples. We compare training the uncertainty on
all pixels and training the uncertainty only on foreground
pixels (standard L2 loss for background pixels). Table 1
gives an overview of the results. Compared to the baseline
using a standard BCE loss training on 500 pixel-perfect la-
bels (78.6% IoU), we see that, when training together with
the bounding-box labels, the uncertainty loss manages to in-
crease the IoU to 79.02% when training the uncertainty on
all pixels and 83.04% when only training on foreground pix-
els. Whereas a standard BCE loss achieves an IoU score of
only 69.43% when training on the same mixed set of pixel-
perfect and bounding-box labels.

4.1.2 BCE with Uncertainty & Online Bootstrapping

To improve our loss function further, we will replace the re-
gression loss with the BCE loss as described in the method
section. We will also insert the online bootstrapping with a
fixed threshold of 2.5. Since in our previous experiment we
concluded that the learned uncertainty is better when only
trained within the bounding boxes, we will again only apply
our loss within the bounding box and apply a standard BCE
to background pixels. To see the influence of the number of
pixel-perfect labels, we will train the model on a varying ra-
tio of 500:2280 to 100:2680 pixel-perfect to bounding-box
labels. Table 2 gives an overview of the results. Figure 5
shows some training examples, including the bootstrapping
weight masks.

Loss Dataset IoU (%)
PP BB Car

Standard BCE
2780 / 86.9
500 / 78.6
500 2780 69.43

Regression w/ Uncertainty 500 2280 79.02
Regression w/ Uncertainty

(Foreground Only) 500 2280 83.04

Table 1. Results for the regression loss function with uncertainty.
We tested this loss on the CityScapes car segmentation task with
a 500:2780 ratio pixel-perfect to bounding-box labels. We com-
pare against the baselines of using all pixel-perfect and only 500
pixel-perfect labels with a standard BCE loss. The bottom two
rows compare the loss function when training the uncertainty on
all pixels (second last row), and when only training the uncertainty
within the bounding box (last row).

Loss Dataset IoU (%)
PP BB Car

Standard BCE 2780 / 86.9
500 / 78.6

/ 2780 69.18
500 2280 69.43

BCE Loss With
Uncertainty 500 2280 85.45

400 2380 85.32
300 2480 85.42
200 2580 84.37
100 2680 81*

Table 2. The table shows the results for both the standard BCE
loss and the classification loss with uncertainty developed in this
chapter. (*) The output of this experiment resembles rectangles
and is not the expected segmentation result.

The best performance we can get using 500 pixel-perfect
labels is an IoU score of 85.45%, which is around 1.5%
lower than the baseline using 2780 pixel-perfect labels.
This indicates our method can successfully achieve near-
perfect segmentation results, using only a fraction of pixel-
perfect data. Even if the amount of pixel-perfect labels
is reduced to only 200, the IoU does not drop signifi-
cantly, meaning our loss function does not need to have
that many pixel-perfect examples to learn the label uncer-
tainty. However, we noticed that when using a pixel-perfect
set of 100 images, the segmentation output converged to the
bounding-box targets.

4.2. Extending to Multi-Class

In the previous experiments, we showed that our method
works significantly well on binary segmentation. However,
ideally, we want our method to work on multi-class seg-
mentation problems as well. Therefore, we extended our
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Figure 5. Training output using the BCE w/ uncertainty loss together with the online bootstrapping. From left to right: input image, training
target, uncertainty weight mask (higher means target gets flipped to background), and segmentation output. The top two rows correspond
from batches earlier during training, the last row is captured near the end of training. It is clear the model learns the label uncertainty
significantly well.

loss function to suit a multi-class problem by changing two
main things. First, we substituted the BCE with uncertainty
term with a Cross-entropy loss with uncertainty as imple-
mented by [4]. In short, instead of outputting a logit distri-
bution with mean µ and variance σ2: logit ∼ N (µ, σ2), the
network now outputs a multi-variate Gaussian logit distribu-
tion with a mean vector of length C and a diagonal covari-
ance matrix Σ, with for each class its corresponding vari-
ance σ2

c so that the logit vector now follows the distribution
l ∼ N (µ, Σ). Normally, the logit vector gets transformed
by a softmax function to a probability distribution p̂. How-
ever, since we now have a distribution of logit vectors, we
have to compute the expected probability distribution E[p̂].
Next, to compute the loss, we have to take the cross-entropy
loss of E[p̂]:

L = −py log(E[p̂y]) (12)

With for E[p̂]

E[p̂] =

∫
softmax(l) · P (l)dl (13)

This integral is not able to be computed with a closed-
form solution and can only be estimated through MCI, by
sampling logit vectors from the output distribution. [4] pro-
posed the numerically stable solution:

lt = µ+ Σ� εt, εt ∼ N (µ, Σ) (14)

Lx = log
1

T

∑
t

exp(lt,c − log
∑
c′

exp lt,c′) (15)

When trained with a mixed dataset of PP- and BB-labels,
the confusion in supervision near objects will again cause
the uncertainty to resemble the label uncertainty. When the
label uncertainty is high, certain classes exhibit high vari-
ance which will, in turn, lower the loss, and enables the
model to infer a different class, contradicting the target.

Where in the binary case the second term of our loss
function (i.e. the bootstrapping term) was a sum of
BCE(µ, y) and BCE(µ, y∗), it now represents a single
term, that is, the cross-entropy loss w.r.t. the bootstrapped
target: CE(µ, y∗). We know that the label uncertainty is
high when some classes exhibit high uncertainty. Therefore,
if one class exhibits a high variance above a predetermined
threshold τ , then we flip the target y to the model’s output
class (i.e. the class with the highest mean score).

y =

{
argmax(µ) if max(σ2) > τ

y if max(σ2) < τ
(16)

We tested this loss on the CityScapes dataset, segment-
ing the person and car instances. Table 3 shows a sum-
mary of the results. Figure 6 shows some example images
during training with their corresponding bootstrapped tar-
get masks. The proposed loss function works significantly
well, scoring a mean IoU which is only 2% IoU lower
than the baseline using only PP-labels. However, due to
the randomness of the loss function (MCI and setting a suit-
able threshold value), we experience numerical instabilities
when extending the loss to more than 3 classes. This will
be investigated in future work.
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Figure 6. Training output of the multi-class network. From left to right: input image, target masks, car flip mask, person flip mask,
segmentation output. The flip masks indicate within the bounding boxes which pixels have high uncertainty, and receive therefore a flipped
training target (i.e. the output of the model at those pixels).

Loss Dataset IoU (%)
PP BB Mean BG Car Person

CE 2780 / 79.80 98.21 85.82 55.68
500 / 73.36 97.55 79.94 42.58

Ours 500 2280 77.75 98.01 82.05 53.2

Table 3. Multi-class segmentation results. The first two rows show
the cross-entropy loss baseline IoUs for training sets comprising of
2780 and 500 pixel-perfect labeled images respectively. The third
row shows the result of a model trained with our new loss function
on a training set consisting of 500 ground truth and 2280 bounding
box images. Training the model on the mixed PP/BB dataset using
a standard CE loss results in rectangular segmentation output.

5. Discussion

As we have shown in the previous section, the models
trained with our loss function can achieve nearly the same
results as a fully pixel-perfect dataset with now only 18%
pixel-perfect labels. However, for the binary segmentation
case, we have shown that this number can be reduced with
only a small drop in IoU. It is also important to remark the
significance of the uncertainty threshold τ used for boot-
strapping. We have examined that when this threshold is too
small, many foreground pixels get flipped to background,
which disables further learning. However, after finding the
right setting, we haven’t seen this issue anymore, but we ex-
pect that it is different for other segmentation problems or
datasets.

Also, we have to remark that for the multi-class setting,
the loss function uses the Monte Carlo Integration technique
to calculate the uncertainty loss. This introduces random-

ness to the loss and is dependent on the number of sam-
ples taken. During training, this sampling does not intro-
duce significant overhead, since we could get adequate re-
sults with only 20 samples per batch. Taking more samples
will increase the computational overhead, but we are not
sure if this would improve the segmentation performance.
However, when extending the multi-class loss to more than
three classes, we experienced numeric instabilities which
prevented us from training the model on more classes. We
will investigate this in future work.

6. Conclusion

In this paper, we proposed a method for training a seg-
mentation model with bounding box labels without the need
of box-to-mask proposal generators. Our method requires
only a small subset of pixel-perfect labels, which drastically
reduces the annotation cost. The small number of pixel-
perfect labels are used to efficiently learn label uncertainty
for the bounding box labels. With this learned label un-
certainty, the bounding-box labels can be updated during
training to perform online bootstrapping, that is, transform-
ing the boxes into pixel-perfect segmentation masks. Since
these masks continuously improve, so does the segmenta-
tion performance. We have shown the performance of our
method on the binary and multi-class setups. However, due
to the sampling nature of the MCI in our loss function, ex-
tending our method to more than 3 classes is still work in
progress.
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[14] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo.
Erfnet: Efficient residual factorized convnet for real-time
semantic segmentation. IEEE Transactions on Intelligent
Transportation Systems, 19(1):263–272, Jan 2018. 6

[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, pages 234–
241, Cham, 2015. Springer International Publishing. 1

[16] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
”grabcut”: Interactive foreground extraction using iterated
graph cuts. ACM Trans. Graph., 23(3):309–314, Aug. 2004.
2

[17] Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang
Wang. Box-driven class-wise region masking and filling
rate guided loss for weakly supervised semantic segmenta-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, pages 3136–3145. Computer Vision Foundation /
IEEE, 2019. 1, 2

[18] Li Xiaopeng. Tricks of sigmoid function. 4
[19] Chaohao Xie, Dongwei Ren, Lei Wang, Qinghua Hu, Liang

Lin, and Wangmeng Zuo. Learning class-agnostic pseudo
mask generation for box-supervised semantic segmentation,
2021. 1, 2

1686


