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Abstract

Since human pose is one of the most effective and popu-
lar sources for understanding human in various applica-
tions, there have been numerous researches on detecting
keypoints of human body from the image source. How-
ever, when a human body is shown partially in the source
image, estimation range is also restricted causing perfor-
mance degradation in locating keypoints of human body.
In this paper, we propose ‘Position Puzzle’ network and
augmentation to leverage the performance of detecting key-
points including those outside the bounding box. Specifi-
cally, Position Puzzle Network expands the spatial range of
keypoint localization by refining the position and the scale
of the target’s bounding box, and Position Puzzle Augmen-
tation improves the performance of keypoint detector using
the partial image in training. We prepare data by crop-
ping COCO dataset and utilize them in training and eval-
uation. Under the prepared dataset, the proposed method
enhances the performance of baseline network up to 37.6%
and 30.6% in mAP and mAR, respectively, and effectively
localizes keypoints positioned not only inside but also out-
side the bounding box. We also verify that the proposed
method can localize keypoints beyond the bounding box in
the original COCO dataset.

1. Introduction
Keypoint detection is one of the most popular ap-

proaches to estimate human pose by localizing pre-defined
human body parts such as eyes, shoulders, and ankles
[7, 11]. Numerous researches [14, 3, 6, 8, 9, 15, 23, 22, 20]
have accomplished remarkable developments, and their re-
sults lead to the enhancement of subsequent researches on
topic such as human object interaction[5, 21, 2, 28] and per-
son re-identification[19, 13].

Keypoint detection from a partial image often caused by
occlusion or a limited field of view of the camera is an un-
avoidable task. The machine generally shows deteriorated

Figure 1. (a): Example of an image partially cropped by the red
box in the image (c). (b): Coupled information constructed by the
partial image and the complete keypoints. (c): Reference image.

Figure 2. Position of two proposed methods in the top-down based
keypoint detection. Position Puzzle Network is visualized as the
purple pyramid and Position Puzzle Augmentation is involved in a
training process of keypoint detector using cropped data.

performance under the situation due to a lack of information
to localize keypoints. To alleviate the problem, detecting
keypoints within a partial image [22, 8, 4, 27, 16] has been
studied and shown to improve the overall performance.

On the other hand, when human attempt to analyze
someone’s pose from a partial image, we can localize not
only the keypoints in the image but also keypoints outside
the image. Visual clues in the partial image, such as size of
the human, or the angle of a joint, allow us to see or locate
keypoints of the human beyond the partial image. For in-
stance, we can recognize that the man in Fig.1(a) is seated
and so estimate where his hips, knees, and ankles are lo-
cated by collecting cues like the length of his limbs and his
bending knees. Such reasonings that human naturally do are
not easy for Neural Networks, because (i) keypoint detec-
tors have not learned patterns between a partial image and
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complete keypoints like in Fig.1(b), and (ii) a spatial range
of keypoint detection is inevitably restricted by the given
bounding box or image.

In this paper, we mitigate the aforementioned problems
by adding two components to a conventional process of top-
down based keypoint detection like in Fig.2. Position Puz-
zle Network(PPNet) indicated by the purple box in Fig.2
is placed between the object detector and the keypoint de-
tector. PPNet refines a bounding box for allowing the box
to contain those excluded keypoints that might belong to
the target. Consequently, the following keypoint detector
expands its estimation regions and localizes keypoints even
though some of them are located outside the box. Moreover,
we propose a data augmentation method for keypoint detec-
tor namely Position Puzzle Augmentation which provides
augmented data constructed by partial images and complete
keypoints. The data augmentation method maximizes the
effectiveness of PPNet and consequently, it enhances the
performance of detecting keypoints outside the bounding
box. Since there is no dataset to train complete informa-
tion(bounding box and keypoints) from partial images, we
also compile dataset by developing and applying a cropping
method to an existing dataset to train and evaluate the pro-
posed method.

Through various experiments based on the original data
and the cropped dataset, we verify the effectiveness of the
proposed method. The method enhances the performance
of detecting keypoints from the partial image by approx-
imately 37.6% and 30.6% in precision and recall, respec-
tively. The visualizations of the estimation process also sup-
port these improvements. The major contributions of our
work can be summarized as follows:

• We address a problem of localizing keypoints beyond
the bounding box from partial images, and introduce
related approaches to prepare datasets and evaluate
performance.

• We propose a neural architecture called Position Puz-
zle Network which estimates the appropriate position
and scale to refine the bounding box for the machine
to look beyond the bounding box so that those missing
keypoints nearby can be identified.

• We introduce a data augmentation technique called Po-
sition Puzzle Augmentation which enhances the per-
formance of detecting keypoints beyond the bounding
box without adding computational load.

2. Related work
2D keypoint detection for human Top-down based ap-
proach [14, 23, 8, 20] and bottom-up based approach
[3, 9, 15] are two main streams of keypoint detection. In
top-down based approaches using bounding box obtained

by preceding human detector[12, 6, 17, 25], the final output
is probability maps (i.e., heatmaps) which represent possi-
bilities that a certain keypoint could be located at a certain
pixel in the bounding box. Owing to the correspondence be-
tween the region of bounding box and the probability map,
the keypoint detector only focuses on estimating the loca-
tion of keypoints in the bounding box. However, in this
paper, we proposed a method that allows the keypoint de-
tector to expand its estimation range and localize keypoints
beyond the bounding box.
Enhancing keypoint detection from partial image The
bounding box of the target human does not always cover
the complete human object due to occlusions or the lim-
ited field of view of the camera. The uncertainty generally
diminishes the performance of detecting keypoints. Various
studies have attempted to achieve invariant performance un-
der these situations[22, 8, 4, 27, 16] by refining estimations
in the occluded region[4] or applying data augmentation
methods to produce such data [22, 8, 27, 16] for training.
However, the researches still aim to enhance estimating in-
formation within image although the image only shows a
part of the target. Thus, in this paper, we focus on allowing
keypoint detector to expand its spatial range of estimation
to outside the image.

3. Method
In this section, we introduce the definition of the prob-

lem to localize human keypoints beyond the bounding box.
We explain a method of Position Puzzle Network which re-
fines the bounding box to include complete human although
a part of target human is excluded from given image. Then,
we will discuss Position Puzzle Augmentation to train key-
point detector using augmented patterns coupled by partial
image and entire keypoints.

Since we define a novel problem, there is no dataset for
estimating a bounding box nor keypoints of a complete hu-
man body from a partial image given. Therefore, we need
to prepare such a dataset to tackle the problem. We first
explain strategies to prepare the dataset for our study.

3.1. Data preparation: 3×3 Cropping

With an input image I , each human object is repre-
sented by its bounding box B and keypoints K like H =
(I,B,K). Elements of B = (x, y, w, h) indicate relative
2D position of the top-left corner, width, and height accord-
ing to I . K is composed by n keypointsK = {K1, ...,Kn},
and each Ki consists of 2D pixel coordinates and a visibil-
ity status of the keypoint Ki = (px, py, v). Visibility status
v can have three values: 2 denotes the keypoint is visible,
1 denotes invisible but can be estimated, and 0 denotes im-
possible to estimate.

First, we collect Hcomp ⊂ H where Hcomp has human
objects which contain their entire body in the image. We
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Figure 3. (a): Original image is divided into 3×3 grid. (b):
Cropped data are collected from the 3×3 grid by holding one edge
of the bounding box. (c): Cropping examples by maintaining one
corner of the bounding box.

Figure 4. (a): Example of cropping case b visualized in the red
box. (b): Cropped example I(b). (c) The ideal output of PPNet.
PPNet estimates 4D vector R̂ from I(b), and modifies the image
(b) to the image (c). (d): Example of augmented data generated by
PP Augmentation, which consists of the partial image and entire
keypoints (red circles).

assume the object has an entire human body when v of at
least one of keypoints on the head, both wrists, and both
ankles are either 1 or 2. Then, sampling bounding box b ⊆
B from Hcomp, we compose puzzle data P like Eq.1.

P = (Hcomp, b) (1)

In the process of sampling b, we employ a fixed
policy[22] rather than randomized schemes [27, 16] to sta-
bilize the performance achieved by the cropping policy.
Specifically, we first divide B into 3×3 grid and gather
cropped samples by holding one edge or one corner at a
time, such as in like Fig.3(b) and (c) to simulate cases when
only a part of human is in the natural images[16]. Then,
samples of b are refined to optimally contain the segmenta-
tion region of the target. We exclude the sub-bounding box,
which includes a region of the target that is too small (less
than 5%) or too large (larger than 95%). Adding the origi-
nal bounding box itself, we can prepare 25 samples at most
from each of Hcomp. The following sections will introduce
Position Puzzle Network and Position Puzzle Augmentation
utilizing the puzzle dataset P .

3.2. Position Puzzle Network

Notations and architectures. PPNet fPP is a function to
place a given piece of an image to solve position puzzle for
the complete human. For example, if b is sampled according
to Fig.4(a), then the input of PPNet becomes a cropped im-
age I(b), as shown in Fig.4(b). The goal of PPNet is to re-
construct the bounding box to place the given piece(i.e., par-

Figure 5. Architecture of PPNet. The output of PPNet is a 4D
vector and we utilize the output for reconstructing human images.

tial image), such as in Fig.4(c). In detail, PPNet regresses
4D vector R̂ from image I(b) to reconstruct B using b as
shown in Eq. 2.

fPP (I(b)) = R̂

= (rx, ry, rw, rh)

= (
(xb − x)

w
,
(yb − y)

h
,
wb
w
,
hb
h
)

(2)

where B = (x, y, w, h) and b = (xb, yb, wb, hb). All el-
ements of R̂ are bounded from 0.0 to 1.0. For a specific
example, fpz(I(B)) returns (0.0, 0.0, 1.0, 1.0) if B has a
complete human body in the image.

An overview of PPNet’s architecture is visualized in
Fig.5. The backbone of PPNet extracts features of an input
image using a series of convolutional layers and poolings.
Following fully connected layers take the features and nar-
row them to estimate 4D vector R̂ to reconstruct the bound-
ing box. The specific dimensions in Fig.5 can be changed
depending on environmental settings.
Training loss The goal of training PPNet is minimizing loss
L(R, R̂) similar to object detection[12, 6, 17, 25]. Existing
studies have shown that losses based on intersection over
union(IoU) are more effective [24, 18, 26] for training than
using regression losses such as `1 or `2. Among the IoU
based losses, Generalized-IoU(GIoU) loss [18](Eq.3) is em-
ployed by a result of preliminary study.

IoU =
|BR ∩BR̂|
|BR ∪BR̂|

GIoU = IoU −
|S/(BR ∪BR̂)|

|S|
LGIoU = 1−GIoU

(3)

where BR and BR̂ are reconstructed bounding box using R
and R̂, respectively. S is the smallest convex box for BR
and BR̂.

The accuracy of detecting keypoints can deteriorate
when a puzzle becomes too small because the puzzle is the
only source to extract useful features. Therefore, we add an-
other loss named PuzzleSizeLoss, which provides a penalty
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in terms of the relative size of the puzzle (i.e.,rwrh) in the
reconstructed bounding box. Eq.4 denotes PuzzleSizeLoss,
and Eq.5 shows the final loss for PPNet.

Lsize,α = C((α− rwrh), [0, α]) (4)

L = LGIOU + Lsize,α (5)

where α is a constant that is used to control the impact of
size loss, and function C(v, [m,M ]) bounds v between m
and M .

3.3. Position Puzzle Augmentation for Keypoint De-
tector

PPNet modifies input images to create a proper margin
to contain keypoints outside the bounding box, but keypoint
detector is not used to images like Fig.4(c) as its input im-
age. Therefore, we need to provide such training data to
maximize the performance of keypoint detector using the
output of PPNet.

The original keypoint detector learns patterns between
a cropped image by target’s bounding box I(B) and key-
points K for all elements in H . Among them, PP Augmen-
tation is only applied to the data belongs to Hcomp which
has the sampled sub-bounding boxes b created by the 3×3
cropping method. PP Augmentation masks the regionB∩bc
of I(B) in black while maintaining K, and the result of the
alteration is illustrated by Fig.4(d).

As mentioned in Sec.3.1, one element of Hcomp has at
most 25 cropping cases including the original box. While
PPNet treats them as all different training cases, PP Aug-
mentation merges them as a list to handle them as one case
of training. In each actual training epoch, we utilize a prob-
ability paug which represents a chance to use augmented
data rather than the original data as existing works proposed
[27, 22]. For example, when paug = 0.3, the probability
that one of the cropping cases is randomly sampled and de-
livered to the machine as a training data is 30%. Under
the policies we mentioned in this section, PP Augmenta-
tion maintains the number of training data per an epoch,
and consequently, the method does not require additional
computational load after pre-processing for arranging puz-
zle data P .

4. Data and Implementation
Data Among existing datasets [7, 1, 11], we utilize COCO
dataset[11], which is one of the most massive and popu-
lar datasets. Only COCO has a segmentation region of the
target, which is essential to verify whether the sampled sub-
bounding box has a part of the target or not. COCO pro-
vides three subsets, namely, training set, validation set, and
test set, and their scales are approximately 118K, 5K, and
40K, respectively.

Each PPNet and PP Augmentation has its own training
dataset and policy, so we do not employ end-to-end train-
ing. In the training of PPNet, we choose 39,267 and 1,526
human objects as Hcomp from the training set and the val-
idation set of COCO data. Then, the policies in Sec.3.1
collect sub-bounding boxes from Hcomp, and the training
set and the validation set of PPNet consist of 596,810 and
23,149 samples in total. For testing PPNet, we prepare three
test cases which randomly crop the validation set of COCO
while maintaining the cropping policies holding an edge or
a corner like in Fig.4. On the other hand, keypoint detector
is trained by 118K samples whose scale is identical to the
scale of the original training set of COCO, because the crop-
ping cases from the data are merged by a list as mentioned
in Sec.3.3.
Position Puzzle Network PPNet utilizes a light version of
HR-Netw32 [20, 10] as a backbone network to minimize the
computational load of employing PPNet. PPNet uses one
basic block at each module whereas the original architec-
ture is constructed by four blocks. Using a 128×96 input
image, the backbone extracts 32×16×32 dimensional fea-
tures. The following two fully connected layers whose size
are [24576, 1024] and [1024, 4], analyze the features to es-
timate 4D vector R̂. The total GFLOP of the architecture
is 0.775. By using Adam optimizer, we utilize four GTX
1080Ti and set 256 batch size for each. Through 160 total
training epochs, the learning rate starts from 5e-5, and we
divide into half the rate in the 90th, 130th, and 150th epoch.
Preliminary experiments (Sec.5.3.3) show that α = 0.7 is
optimal for PuzzleSizeLoss mentioned in Eq.4.

Data augmentation using random rotation is not applied
in the training because we assume that the input and output
of PPNet are axis-aligned bounding boxes. Instead, we em-
ploy data augmentation that controls the size of the sampled
bounding box in training to compensate for the fixed sam-
pling policy mentioned in Sec.3.1, which may not produce
enough variant training cases. Specifically, each cropping
box changes its width and height up to half of the grid size,
and the ground truth R is also changed according to the al-
terations.
Keypoint Detector and Position Puzzle Augmentation
We use HR-Netw32 for keypoint detector [20, 10]. Using
256×192 input resolution, we utilize three GTX 1080Ti
with 64 batch size for each. The other settings are identi-
cal with the settings in [10]. We employ random rotation,
horizontal flipping, and random scaling, but exclude half-
body augmentation[22]. In addition, all hyper-parameters
for training like learning rate, its schedule, and total epochs
are maintained to minimize alterations of the baseline.

When we apply PP Augmentation, we modify a data
loader to utilize puzzle data P if it is available. Specifically,
the data loader decides to pass whether the original data or
the augmented data to the machine by the probability paug
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Srandom Seasy Smoderate Shard
mAP mAR mAP mAR mAP mAR mAP mAR

HR-Net[20] 21.3 25.8 69.0 73.3 41.2 46.1 11.4 15.8
PPNetα=0.7

+HR-Netaug
29.3 33.7 78.1 81.6 55.6 60.3 21.4 25.1

Table 1. Mean averaged precision(mAP) and mean averaged recall(mAR) comparison in Crop-COCO dataset.

mAPeasy mAPmoderate mAPhard
Crop direction left right top bottom left right top bottom left right top bottom
HR-Net[20] 80.5 79.0 44.9 71.5 57.5 51.6 7.4 48.3 15.6 10.7 0.2 19.2
PPNetα=0.7

+ HR-Netaug
83.3 82.3 63.9 83.0 68.3 64.8 23.0 66.1 29.8 24.2 0.3 31.2

Table 2. Result of mean averaged precision(mAP) on each Crop-COCO dataset by the cropping directions.

mAReasy mARmoderate mARhard
Crop direction left right top bottom left right top bottom left right top bottom
HR-Net[20] 83.2 81.7 52.6 75.5 61.4 56.3 13.7 53.0 21.1 15.7 0.8 25.7
PPNetα=0.7

+ HR-Netaug
85.9 84.8 69.6 85.9 71.6 68.7 30.7 70.3 33.8 28.4 2.2 36.0

Table 3. Result of mean averaged recall(mAR) on each Crop-COCO dataset by the cropping directions.

if the training case has sub-bounding boxes. Preliminary ex-
periments have been performed and we decide paug = 0.5
as the optimal value.

5. Evaluation

We compare the performance of the baseline (i.e., HR-
Net[20]) and our proposed method which consists of PP-
Net with α = 0.7 and HR-Net trained by PP Augmentation
(i.e., PPNetα=0.7 + HR-Netaug). The baseline directly uses
a given image and a bounding box to localize keypoints,
while our method firstly utilizes PPNet to refine the bound-
ing box and then following HR-Netaug uses the refined im-
age to estimate the position of the keypoints. All images
in our experiments are resized according to the input res-
olution of each neural network, and we mask the regions
outside the bounding box in black. We apply a horizontal
flip test for all machines.

Sec.5.1 includes experiments to evaluate the perfor-
mance of localizing keypoints including those outside the
bounding box. Given that COCO has no ground-truth for
excluded keypoints, we arrange ‘Crop-COCO’ dataset by
cropping images in COCO and perform various experi-
ments under the Crop-COCO. In Sec.5.2, we also evaluate
performance on the original COCO to examine performance
changes in the original task which might be affected by our
method. Finally, various experimental results that scrutinize
the effectiveness of our proposed method are introduced in
Sec.5.3.

5.1. Evaluations on Crop-COCO Dataset

The accuracy of the estimations for keypoints outside the
bounding box cannot be evaluated under the conventional
evaluation method and dataset, because they have no ground
truth for such keypoints. Therefore, we construct modified
datasets by cropping the validation set of COCO to evalu-
ate the performance of detecting keypoints including those
positioned outside the bounding box.

5.1.1 Crop-COCO dataset

We employ the cropping method in Sec.3.1 to construct
Crop-COCO dataset. The only difference is that we con-
trol the amount of cropping by random. Srandom is the
name of the dataset and we prepare three random cases to
alleviate bias. Additionally, we create additional datasets
by controlling cropping amount and direction to investigate
performance changes of proposed method in particular cir-
cumstances. Specifically, we crop 20%, 40%, and 60% of
the images from the left, right, top, and bottom edges. For
each 20%, 40%, and 60% cases, we name the sets as Seasy ,
Smoderate, and Shard, respectively. We exclude 80% crop-
ping because localizing entire keypoints using only 20% of
images is too excessive. All cropping results are refined so
that the cropping box optimally contains the segmentation
region of the target object. Meanwhile, we do not modify
the ground truth of keypoints to allow a machine to localize
entire keypoints from the partial image.

1606



Figure 6. Example of 60% crop from bottom in Crop-COCO. The
green box and the red box on the reference image are the ground-
truth and a cropped box, respectively. (a): Input of PPNet. (b):
Input of keypoint detector, and simultaneously the output of PP-
Net. (c): Estimated heatmap by using (b).

5.1.2 Quantitative Evaluation

Table 1 compares the mean averaged precision(mAP)
and the mean averaged recall(mAR) on Srandom, Seasy ,
Smoderate, and Shard. For Srandom, AP and AR from three
random sets are averaged. The proposed method enhances
the performance of keypoint detection for all prepared tests.
In Srandom, the proposed method outperforms the baseline
in mAP and mAR by 37.6% and 30.6% respectively. The
differences are noticeable under the difficult set. Specif-
ically, the proposed method increases mAP and mAR by
approximately 13.2% and 11.3%, 35.0% and 30.8%, and
87.7% and 58.9% on average under the Seasy , Smoderate,
and Shard respectively.

Table 2 and Table 3 show the details of mAP and mAR
according to the cropping directions. Similarly, the pro-
posed method outperforms in all cases, and mAP and mAR
are leveraged by 27.5% and 23.5% on average. When we
examine performance changes according to cropping direc-
tion (i.e., left, right, top, and bottom), mAP enhancements
of each case are 18.1%, 21.2%, 66.1%, and 29.7% on av-
erage, and mAR improvements are 15.4%, 18.3%, 52.8%,
and 24.6% on average. The top-crop case is relatively diffi-
cult, because a large number of keypoints are positioned at
the top of the image such as nose, eyes, ears, and shoulders.

5.1.3 Qualitative Evaluation

Fig.6 depicts estimation results using the Crop-COCO data.
The reference image in Fig.6 illustrates the original bound-

ing box in green, and 60% cropping box from the bottom
in red. Column (b) shows that, without PPNet, the image in
the red box directly becomes the input of a keypoint detec-
tor as it is shown in the 1st row. Consequently, the keypoint
detector is not able to localize keypoints outside the box
such as both hands and both hips of the target. By compar-
ison, PPNet refines the bounding box to allow the modified
bounding box to include more margins below as the 2nd row
at column (b) and to provide an opportunity to keypoint de-
tector so that both hands and both hips are localized by the
detector (column(c)).

5.2. Evaluation on the Original COCO Dataset

Although experimental results in Sec.5.1 show the ef-
fectiveness of our method to localize keypoints beyond
the bounding box, we need to investigate the performance
changes caused by proposed method on the original dataset
and task. In this section, we evaluate our method using the
conventional evaluation of keypoint detection on the origi-
nal COCO dataset.

The table 4 shows the results from the validation set of
COCO(COCO-val) and the test set of COCO(COCO-test).
For COCO-val, using human detection results whose AP is
56.4[20], our proposed method slightly enhances the perfor-
mance of keypoint detection in the validation set of COCO,
and mAP and mAR are improved by 0.6% and 0.5%, re-
spectively. For the test set of COCO, each environment lo-
calizes human keypoints on the basis of the detection re-
sult whose AP is 60.9[20]. The proposed method slightly
outperforms the baseline by 0.8% and 0.9% for mAP and
mAR, respectively. The results from the experiments indi-
cate that our proposed method improves the performance of
detecting keypoints in the image although the method aims
to enhance the performance of localizing keypoints includ-
ing those positioned outside the bounding box.

The visualization of the estimation results from both
environments verifies the effectiveness of the proposed
method. Each row in Fig.7 represents the results of the
baseline and our proposed method. The results verify that
PPNet properly reconstructs the input image to contain key-
points outside the bounding box, and the refinement allows
the excluded keypoints to be possibly estimated by the fol-
lowing keypoint detector. For example, as the 1st and 4th
columns depict, PPNet understands the context of missing
body parts from the partial image and enlarges the given
bounding box to bottom-side and top-side, respectively. Al-
though slight differences are achieved by PPNet in the 2nd
and 3rd columns, we can examine the advantage of PP Aug-
mentation from those columns. The baseline has enough
margin to localize excluded keypoints of the target, but key-
point detector rarely localizes those keypoints. On the other
hand, keypoint detector trained by PP Augmentation es-
timates a position of the excluded keypoints using partial
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mAP AP.5 AP.75 APm APl mAR AR.5 AR.75 ARm ARl

COCO-valAP=56.4
HR-Net 72.5 88.6 78.8 68.6 80.2 78.4 93.0 84.2 73.6 85.3
PPNetα=0.7

+HR-Netaug
73.0 89.1 80.0 69.8 79.6 78.8 93.4 85.2 74.6 84.8

COCO-testAP=60.9
HR-Net 71.8 91.0 78.8 68.0 78.3 77.4 94.5 83.9 73.0 83.6
PPNetα=0.7

+HR-Netaug
72.4 91.3 80.0 69.3 78.2 78.1 94.9 85.0 74.0 83.7

Table 4. Performance on the original COCO’s validation set(COCO-val) and test set(COCO-test). We use the human detection results
whose AP is 56.4 and 60.9, respectively.

Figure 7. Qualitative evaluation on the original validation set of COCO dataset. The first row shows the result of the baseline and the
second row describes the result of our proposed method. In each cell, images on the left side are input images of the keypoint detector, and
the other images are converged probability maps estimated by keypoint detector. The maps are visualized by Jet colormap.

image because the machine already learns the patterns be-
tween partial image and the complete set of keypoints. The
5th column shows an example if the bounding box has the
entire human. PPNet maintains the bounding box because
the training set of PPNet has not only cropping cases but
also the data itself to learn the cases when the bounding box
has the complete human.

5.3. In-depth study

In this section, we introduce further experimental results
to investigate the effect of the proposed method. All experi-
ments in this section utilize the ground truth bounding boxes
from COCO and Crop-COCO to eliminate the changes due
to the accuracy of the bounding box. Sec.5.3.1 will men-
tion experimental results to separately investigate perfor-
mance changes on keypoints in the box and outside the box.
Sec.5.3.2 will introduce the ablation study of PPNet and PP
Augmentation. Lastly, Sec.5.3.3 describes the performance
analysis by controlling α to attain the optimal size of the
impact of PuzzleSizeLoss.

5.3.1 Performance by the location of keypoints

We separately evaluate the performance of our proposed
method by preparing two subsets for evaluation. One is
Crop-COCOin, which has keypoints only in the bounding
box, and the other is Crop-COCOout which is constructed
by only keypoints outside the bounding box.

Crop-COCOin Crop-COCOout
mAP mAR mAP mAR

HR-Net 81.5 85.2 10.2 16.2
PPNetα=0.7

+HR-Netaug
84.1 87.4 24.1 32.0

Table 5. Performance comparison by separating keypoints of
Crop-COCO dataset into two subsets. Crop-COCOin consists of
keypoints in the bounding box, whereas Crop-COCOout is con-
structed by keypoints outside the bounding box.

Table 5 shows the results of the experiment. Although
the experiment on Crop-COCOin focuses on keypoints in
the bounding box, the proposed method slightly enhances
mAP and mAR of keypoint detection up to 3.2% and 2.6%
respectively. Considering PPNet inevitably produces lower
resolution images to the keypoint detector, PP Augmen-
tation effectively compensates for the weakness by train-
ing keypoint detector with partial images. When we com-
pare the detecting performance for keypoints outside the
bounding box, the difference becomes considerable. PPNet
and PP Augmentation leverage mAP and mAR for Crop-
COCOout up to 136.3% and 97.5%, respectively. The re-
sults verify that PPNet, which brings excluded keypoints
into the estimation range of the keypoint detector, and PP
Augmentation, which trains the keypoint detector to local-
ize keypoints outside the box using the partial image, forms
a synergy to increase the performance of the keypoint de-
tection under the Crop-COCO dataset.
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mAP mAR missing kpts(%)
HR-Net[20] 40.5 45.1 24.0
HR-Netaug 42.0 46.7 24.0
PPNetα=0.7

+HR-Net 45.2 49.6 14.1

PPNetα=0.7

+HR-Netaug
51.7 55.7 14.1

Table 6. Ablation study using PPNet and PP Augmentation on
Crop-COCO dataset. ‘missing kpts’ denotes an averaged percent-
age of the keypoints that are excluded from the region of interest
of keypoint detector.

5.3.2 Ablation Study for PPNet and PP Augmentation

We perform an ablation study to examine how much PP-
Net and PP Augmentation contribute to the enhancements.
We define four cases from combinations of PPNet and PP
Augmentation and evaluate them on Crop-COCO dataset.

Table 6 shows changes in mAP, mAR, and the number
of missing keypoints that are outside the estimation range
of the keypoint detector. Specifically, the 1st and 2nd rows
show that PP Augmentation can lead to performance en-
hancement of detecting keypoints from a partial image by
3.7% and 3.5% on average for mAP and mAR, respec-
tively. The increase is attributed to training the patterns be-
tween the partial image and the entire keypoints, which is
the contribution of PP Augmentation. Examining the effect
of PPNet as shown in the 1st and 3rd rows, PPNet improves
the performance without PP Augmentation by 11.6% and
10.0% on average for mAP and mAR, respectively. The
improvement is attributed to the decrease in missing key-
points, as the 3rd column of the table describes. 58.8% of
the missing keypoints are back in the modified bounding
box of PPNet and have the opportunity to be localized by
the keypoint detector. Lastly, the 4th row shows that we
achieve the prominent enhancement by 27.7% and 23.5%
on average for mAP and mAR, respectively, when we em-
ploy both PPNet and PP Augmentation.

5.3.3 Deicidng the optimal impact of PuzzleSizeLoss

We have introduced PuzzleSizeLoss(Eq.4) which prevents
PPNet from making a piece of the image too small, and α
of PuzzleSizeLoss controls the size of impact in training PP-
Net. Table 7 denotes performance changes on Crop-COCO
dataset and the original COCO dataset in various α. The
results of the Crop-COCO dataset indicate a larger α gen-
erally deteriorates the performance because PPNet cannot
sufficiently refine a bounding box by a penalty generated
from PuzzleSizeLoss. However, in the case of the original
COCO dataset, a large α improves performance in detect-
ing keypoints on the standard metric of COCO. When we at-
tempt to decide the optimal α, we consider that keypoint de-

Crop-COCO COCOval
mAP mAR mAP mAR

HR-Net 40.5 45.1 75.2 78.0
HR-Netaug 42.0 46.7 75.9 78.8
PPNetα=0.0

+HR-Netaug
56.0 60.9 71.8 74.7

PPNetα=0.3

+HR-Netaug
56.5 61.4 72.3 75.3

PPNetα=0.5

+HR-Netaug
56.1 60.8 73.7 76.9

PPNetα=0.7

+HR-Netaug
51.7 55.7 75.2 78.2

PPNetα=0.9

+HR-Netaug
46.1 50.6 76.0 78.9

Table 7. Performance changes according to various α based on
Crop-COCO dataset and the validation set of the original COCO
data. The first and second rows are references which do not apply
PPNet.

tector cannot localize all excluded keypoints although PP-
Net perfectly refines the bounding box. For example, with
an image containing a target’s head and shoulders, we can-
not accurately estimate where the target’s ankles are located
because the image does not have enough clues to estimate
their position. Hence, we decide α = 0.7 is the optimal
value which minimizes the performance damage in the orig-
inal COCO and simultaneously maintains the advantage in
Crop-COCO dataset.

6. Conclusion
We have proposed Position Puzzle Network(PPNet) and

Position Puzzle Augmentation(PP Augmentation) to effec-
tively localize human keypoints beyond the bounding box.
We verify that PPNet refines the given bounding box to con-
tain excluded keypoints of a target, and a keypoint detector
trained by PP Augmentation accurately estimates the po-
sition of keypoints that are not only within the image but
also outside the image. The synergy of PPNet and PP Aug-
mentation significantly leverages mAP and mAR of local-
izing keypoints outside the bounding box up to 136.3% and
97.5%, respectively, in Crop-COCO dataset. Furthermore,
the proposed method outperforms the baseline in the ex-
isting COCO test-dataset by 0.8% and 0.9% for mAP and
mAR, respectively. The various experimental results and
visualizations also show the proposed method reasonably
localizes those keypoints outside the image although there
is no ground truth position within the dataset for them.
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