
Self-improving classification performance through GAN distillation

Matteo Pennisi Simone Palazzo Concetto Spampinato
PeRCeiVe Lab

Department of Electrical, Electronic and Computer Engineering – University of Catania, Italy
matteo.pennisi@studium.unict.it, {simone.palazzo,concetto.spampinato}@unict.it

Abstract

The availability of a large dataset can be a key factor
in achieving good generalization capabilities when training
deep learning models. Unfortunately, dataset collection is
an expensive and time-consuming task, especially in spe-
cific application domains (e.g., medicine). In this paper, we
present an approach for overcoming dataset size limitations
by combining a classifier with a generative adversarial net-
work (GAN) trained to synthesize “hard” samples through
a triplet loss, to encourage the model to learn class features
which may be under-represented or ambiguous in a small
dataset. We evaluate the proposed approach on subsets of
CIFAR-10 in order to simulate a low data availability, and
compare the results achieved by our method with those ob-
tained when training in a standard supervised setting over
the same reduced set of data. Performance analysis shows
a significant improvement in accuracy when training the
model on GAN-generated hard samples: our GAN distil-
lation approach improves accuracy in the reduced dataset
scenario by about 5 percent points, compared to standard
supervised training. Ablation studies and feature visualiza-
tion confirm that our generative approach is able to con-
sistently produce synthetic images that allow the model to
improve its performance even with low data availability.

1. Introduction
The availability of large datasets can be a key factor

when training deep learning model, whose learning capabil-
ities easily lead the model to overfit the data, thus causing
generalization issues. Large datasets help to better model
the variability of the process under analysis and prevent the
network from employing spurious information (e.g., noise
and artifacts) as a shortcut to solve the task at hand. How-
ever, building datasets of a size that is large enough to suc-
cessfully train a deep model may be a complex task. Data
collection is usually costly and time-consuming; moreover,
in certain domains — e.g., medical imaging — collecting
additional samples may become impractical for several rea-

sons, such as privacy concerns and machinery availabil-
ity. Hence, when it is not possible to effectively increase a
dataset’s size, countermeasures to overfitting must be taken
on the methodological side.

A common technique employed to increase the apparent
size of the dataset — especially in vision tasks — is data
augmentation, i.e., creating multiple versions of a sample
by applying random modifications (e.g., cropping, flipping,
color jittering). Of course, the main information content of
the edited sample is the same, so the impact of data augmen-
tation, though significant, is limited. Another approach that
helps to reduce overfitting on small datasets is to use pre-
trained model (for instance, on ImageNet [11]). In this case,
training starts from a stable configuration in the parameter
space and from a meaningful set of features, leading to a so-
lution to the current task that is less likely to focus on non-
relevant signal components in the attempt to bypass general
feature learning. This behavior can also be strengthened by
freezing some portions of the model, reducing its learning
capability but at the same time preventing it from moving
too far from the starting solution. However, even when us-
ing pre-trained models, their complexity leads nonetheless
to overfitting, if the size of the dataset is not large enough.

Recently, some solutions have been explored that em-
ploy generative adversarial networks (GANs) [3] to synthe-
size data samples in order to artificially increase the dataset
used to train a model [1, 9, 10, 13], but the gain in perfor-
mance obtained with current techniques is limited (about
0.2%); for this reason, this type of methods have not gained
momentum.

We here resume the idea of leveraging the capability of
generative models to synthesize high-quality and diverse
images in order to enhance classification performance with-
out requiring new, manually-annotated, samples. Indeed,
dataset diversity is the key for successful real-world de-
ployment: regardless from the size of the dataset, mod-
elling or generating long tails of the data distribution may
allow classifiers to boost their performance. Thus, in the
attempt to answer the question of whether GANs can be ef-
fectively employed to accomplish this task, we here propose

1640



an approach that enforces synthetic images represent hard
samples for the classifier according to hard mining learn-
ing strategy. The key intuition behind this work is that hard
sample synthesis makes it possible to provide more infor-
mative training samples for increasing robustness and better
accuracy.

Indeed, the contribution of augmenting a dataset with
images belonging to the mode of the data distribution is rel-
atively limited and has more of a regularization effect (akin
to standard data augmentation). Hard sample generation,
on the contrary, may actually help the model to learn the
most confounding features and input patterns and that are
closer to the boundary with other classes, thus providing
more informative samples than “easy” data points. We refer
to this process as GAN distillation, since the trained gener-
ator, rather than simply approximating the data distribution,
has to learn to distill the information related to input pat-
terns that the model is not able to classify, and synthesize
original samples from that specific data distribution.

We therefore propose a framework where multiple mod-
els — classifier, generator, discriminator, feature extractor
— interact in a multi-objective optimization task, where the
generator is trained to synthesize realistic images (with the
discriminator providing the corresponding error signal) that
follow a feature distribution (estimated by the feature ex-
tractor) that is similar to samples which the classifier is not
able to classify correctly. By combining a standard cross-
entropy classification loss, an adversarial loss for image
generation and a triplet loss for feature alignment, we are
able to synthesize samples that provide information content
that is either under-represented in the original dataset or that
encodes features at the boundary between classes.

We test our approach on subsets of CIFAR-10, in order
to simulate low data availability, using multiple state-of-the-
art model architectures. Our results show that our method
improves by a significant margin performance in settings
where a small fraction of data is available. Moreover, it
is also able to yield an accuracy gain on the full dataset,
demonstrating that our hard sample generation approach is
well-founded and may boost, in a self-training fashion, per-
formance also in large dataset scenarios.

2. Related work
Our approach mainly pertains the synthetic generation of

image samples to enhance the performance of visual clas-
sifiers. Training over generated data and analyzing classi-
fication performance has been investigated in recent stud-
ies [9, 10, 13]. However, these works have revealed how
popular GANs, when employed as a data augmentation
technique, significantly under-perform when compared to
classifiers trained on real images [13]. Even when training
classifiers with highly realistic images, such as those gen-
erated by BigGAN [2], performance is still far from being

satisfactory [9, 10], while a minor gain (about +0.2%) is
observed when mixing real and synthetic images in specific
settings. Thus, generated samples seem to act as regulariz-
ers during training, but do not add any additional knowledge
to models.

In this work we leverage hard mining, a popular metric
learning method based on the identification of hard samples
among the set of training data. A related strategy has been
recently applied in [1], where GANs are employed for gen-
erating hard samples, following a similar motivation as the
one underlying our work. The key difference between [1]
and our approach stands in the way hard samples are gener-
ated. In [1], hard mining is done through a latent code op-
timization, while the GAN model remains unaltered during
training, and only the latent space is updated. This results in
navigating the GAN input latent space to seek the samples
corresponding to the most complex images. We, instead,
force the GAN model (thus it is updated during training) to
generate hard samples through a triplet loss by ensuring that
their features are closer to those of the most confounding
samples for the classifier. Thus, while in [1] only a subset
of the input latent space allows for the generation of hard
samples, in our approach all input latent values ideally lead
to hard samples, ensuring variability in the generated data.
Furthermore, [1] uses their approach for training classifiers
using only synthetic data, while our method is specifically
thought to increase the performance of an already-trained
classifier without using any additional annotated sample.

3. Method

The objective of this work is to generate synthetic images
purposefully crafted to enhance the performance of the clas-
sifier in a limited data setting, by encouraging the generator
model to synthesize data points representing hard examples
for the generator, whose distribution in the original dataset
may be under-represented or close to the boundary between
classes.

Formally, our architecture consists of a classifier C, a
feature extractor F, a generator G and a discriminator D,
as shown in Fig. 1: C is trained to classify input sam-
ples, while G and D are trained in a generative adversarial
framework [3]. The input dataset D is annotated with la-
bels from c, i.e., D = {(xi, yi)}i=1...N , with N being the
dataset size.

The whole training procedure is divided into three
stages, described in the following.

3.1. Classifier pre-training and hard/easy sample
labeling

In the first training stage of the proposed framework, we
initialize the classifier C by training it on dataset D in a

1641



Figure 1: Architecture of the proposed framework. In the first stage, we pre-train the classifier on the dataset, and label
training data between easy and hard samples. We then pre-train the GAN using a triplet loss that encourages the model to
generate realistic samples that match the feature distribution of hard samples. Finally, we train both models simultaneously,
fine-tuning the GAN to approximate the changing hard sample feature distribution.

standard supervised setting with cross-entropy loss:

LCE = −E(xi,yi)∼D
[
logC (xi)yi

]
(1)

where C (·) is the softmax output computed by the classi-
fier, and yi addresses the softmax component of the correct
class.

During training, we also monitor the model’s perfor-
mance on a validation set: model selection for use in the fol-
lowing training phases is carried out by choosing the model
at the lowest validation loss. Then, we go through the train-
ing set and divide samples between a hard sample set Dh

and an easy sample set De, such that Dh ∩ De = ∅ and
Dh ∪ De = D. A sample xi ∈ D is hard if the predicted
label is wrong or if the predicted label is correct but the con-
fidence of the prediction (estimated with softmax) is lower
than a certain threshold ph; otherwise, xi is labeled as an
easy sample.

The objective of this pre-training stage is to identify the
sets of easy and hard samples, and isolate the distribution of
samples that the model struggles with, so that we can train
the generator to match such distribution. An alternative to
pre-training would be to jointly train the classifier and the
GAN from scratch and adapt the distribution estimated by
the generator to match a simultaneously-learned distribu-
tion of hard samples. However, in our preliminary experi-
ments the models were not able to converge to a solution.
Most likely, the data distribution synthesized by the gener-
ator in the initial training phases does not actually reflect
the distribution of “hard samples” (i.e., encoding features
that are either under-represented or located proximally to
class boundaries), rather the initial “confusion” of the clas-
sifer. As a result, generated samples do not help improve
the performance of the classifer, but negatively affect it by

introducing noisy associations between synthetic data and
labels.

3.2. GAN pre-training

We then separately initialize the GAN generator and dis-
criminator, by training the former to synthesize realistic im-
ages and the latter to distinguish between real and gener-
ated samples. We therefore follow the standard GAN train-
ing procedure, training the discriminator D on real images
from the entire training set D and on fake images generated
by G, with a binary cross-entropy loss function that aims
at teaching it to distinguish between real and generated im-
ages:

LD =− Ex∼D
[
log (D (x))

]
−

− Ez∼N (0,I)

[
log (1−D (G (z)))

]
,

(2)

where D(·) and G(·) compute the output of the generator
and discriminator networks, and z is a Gaussian noise vec-
tor used as input to the generator.

The generator G is trained adversarially to fool D into
thinking that synthetic images are real:

LG = −Ez∼N (0,I)

[
log (D (G (z)))

]
. (3)

The overall adversarial loss Ladv is simply defined as:

Ladv = LD + LG. (4)

In our preliminary experiments, we attempted to train
the generator and discriminator from scratch while carry-
ing out the GAN distillation step (described in the follow-
ing). However, similarly to what explained above concern-
ing the joint training of classifier C, GAN training suffered

1642



its random initialization, generating samples which lacked
the desired realism requirements and further degrading the
performance of the classifier through the presentation of un-
realistic examples.

3.3. GAN distillation

The set of hard samples Dh represents a portion of the
data distribution that the model is not able to learn correctly;
hence, we would like our generator G to be able to syn-
thesize samples from that distribution and help classifier C
to learn features from hard samples that make them more
distinguishable from other classes. While the adversarial
loss Ladv encourages the generator G to synthesize realis-
tic samples, we also need to enforce that generated samples
match the hard sample distribution.

To this aim, we employ an additional distillation loss
Ldist, designed to push features of generated images to be
similar of those of hard samples from Dh. Our feature
extractor F shares the same weights as classifier C — in
practice, it is obtained by extracting output features at one
of C’s intermediate layers. The definition of Ldist is based
on a triplet loss [12]: given the anchor generated samples
xg = G(z) (for a random z), positive hard sample xh ∈ Dh

and negative easy sample xe ∈ De, we want to make xg’s
features closer to xh than to xe. The resulting constraint is
implemented by the following loss function:

Ldist =Ez,xh,xe

[
max(∥F (G(z))− F (xp)∥2−

− ∥F (G(z))− F (xe)∥2 +m, 0)
]
,

(5)

where F extracts unit-normalized features from a given in-
put (real or generated) sample and m is a margin value.
Intuitively, the aim of the triplet loss is to encourage the
generated anchor sample to have features whose distance
to positive (hard) samples is lower by a certain margin (set
to 1) than to negative (easy) samples, therefore mapping the
generator’s latent space to F’s feature space where the sep-
aration between classes is complex or not well represented
in the dataset.

At training time, we jointly fine-tune the whole frame-
work to let the classifier improve by training on the syn-
thetic hard samples, while in turn encouraging the genera-
tor G to produce “harder” samples in order to adapt to C’s
feature changes. At this stage, we therefore train C and G
alternately, one epoch each. GAN training is carried out by
simultaneously optimizing Ladv and Ldist; when training the
classifier to minimize LCE, we prepare input batches that in-
clude a fraction pr of real samples and a fraction pg = 1−pr
of generated samples, to prevent the classifier from focusing
too much on hard samples and forgetting easy ones.

The pseudo-code of our GAN-distillation approach is
shown in Algorithm 1.

Algorithm 1: Gan Distillation Approach
Input : C, G, D pretrained on D; ph
// Compute hard and easy samples
Dh = ∅,De = ∅
foreach xi, yi ∈ D do

ŷi, prob = C (xi)
if ŷi ̸= yi or prob ≤ ph then
Dh ← xi

else
De ← xi

end
end
// GAN distillation
F = C without last fully-connected layer
while Training do

// GAN Training Epoch
foreach xi, yi ∈ D do

xg = G(z; yi)
Compute LD(D(xi, xg))
Backpropagate LD and update D
Sample xe ∈ De with ye = yi
Sample xh ∈ Dh with yh = yi
fg = F(xg)
fe = F(xe)
fh = F(xh)
Compute LG(D(xg))
Compute Ldist(fg, fh, fe)
Ltot = Ldist + LG

Backpropagate Ltot and update G
end
// Classifier Training Epoch
foreach xi, yi ∈ D do

Sample xi, yi ∈ D
xg = G(z; yi)
x = [xg, xi]
y = [yi, yi]
Compute LCE(x, y)
Backpropagate LCE and update C.

end
end

4. Experiments

4.1. Dataset

We carry out our experiments on the CIFAR-10 dataset,
including 50,000 training images and 10,000 test images, at
32×32 pixel resolution. In order to simulate a limited data
scenario, we employ only 20% of the training set for actual
training, and 10% as a validation set. Generalization perfor-
mance is evaluated on the entire test set. In the following,
we will refer to “training set” as the 20% subset of the orig-

1643



inal training set. We also include experiments showing how
the performance of our approach varies when using differ-
ent fractions of the original training set.

4.2. Architecture and training details

As classifier C, we employ state-of-the-art deep convo-
lutional architectures, namely, AlexNet [8], ResNet-50 [5]
and DenseNet-121 [6]. The choice of these models is meant
to test the effectiveness of the proposed learning strategy
w.r.t. model capacity. Feature extractor F is obtained by
reading the output of the classification model before the last
fully connected layer (which projects to class scores). Since
we are replicating a scenario of limited availability of data,
we adopt Data-Efficient GAN [15] as our generative model,
as it is purposely designed to deal with limited amount of
training data.

Classifier C is pre-trained using a batch size of 512 and
a learning rate of 10−4, Adam [7] is used as optimizer with
default hyperparameters. Training is carried out for 200
epochs; as already mentioned, we select the model’s param-
eters at the lowest validation loss in order to initialize the
sets of hard and easy samples. Hyperparameter ph (thresh-
old of prediction confidence estimated with softmax, below
which we identify a sample as hard) is set to 0.6.

GAN pre-training is carried out using a batch size of 64
and the Adam optimizer, with a learning rate of 2·10−4. We
train for 600 epochs, alternating discriminator and generator
mini-batch updates. Using our default dataset configuration
(20% fraction of training samples from the original CIFAR-
10 training set), we achieve a Fréchet Inception Distance
(FID) of 20.05.

In the final stage, we train the full framework, including
the GAN distillation loss, by alternating, at each epoch, be-
tween training the classifier and the GAN. Hyperparameter
pr (the fraction of real samples used to build a mini-batch) is
set to 0.5. In this stage we train each model for 250 epochs.

4.3. Results

The first battery of tests assesses the contribution that
our GAN distillation approach provides to classification ac-
curacy when using only a fraction of the entire training set
(20% of the original CIFAR-10 training set). Table 1 re-
ports the results of these tests with different state-of-the-art
classification backbones, namely AlexNet, ResNet-50 and
DenseNet-121. In all cases, there is a gain in accuracy;
however, while with lower capacity models the increase is
higher (about 5 percent points), with DenseNet-121 we ob-
serve a gain of about 2 percent points. This can be expected,
as the baseline itself yields a higher classification accuracy
with more complex model, reducing the room for improve-
ment that can be provided by our method.

We then evaluate the performance of our GAN distilla-
tion method with respect to the training set size. Indeed,

Table 1: GAN distillation performance with different clas-
sification backbones using only 20% of the original CIFAR-
10 training set. Results are computed on the test dataset, at
the training epoch yielding the highest validation accuracy.
The baseline corresponds to standard supervised training on
real samples.

AlexNet ResNet-50 DenseNet-121

Baseline 69.63 71.85 79.41
GAN distil. 74.56 77.48 81.50

Gain + 4.93 +5.63 +2.09

Table 2: Performance of GAN distillation, compared to
standard supervised training on real samples only, while in-
creasing the training set size. AlexNet is used for all the
evaluations. Results are taken at the highest validation ac-
curacy. Baseline refers to standard supervised training using
only real samples.

% of Training Set

30% 40% 50% 60% 90%

Baseline 74.92 77.12 79.38 81.37 83.60
GAN distil. 80.04 82.70 84.25 85.21 86.46

Gain +5.12 +5.58 +4.87 +3.84 +2.86

increasing the size of the available training set helps the
model learn better features: it is therefore interesting to
measure the impact of GAN distillation when data avail-
ability becomes less critical. Hence, we estimate the per-
formance of AlexNet using different fractions of the train-
ing set, gradually increasing from 20% to 90% (note that
10% is always reserved for validation). Results are given in
Table 2, and compare our GAN distillation approach with
standard supervised training on real samples only (Baseline
in Table 2). It can be noticed that GAN distillation improves
performance even at larger fractions of the available train-
ing data. Moreover, the gain in accuracy has an interesting
trend: when up to 40% of the training set is used, GAN dis-
tillation provides a higher and higher improvement in ac-
curacy; from 50% on, GAN distillation yields decreasing
returns. This is not surprising, since a larger data avail-
ability leads to a better sampling of the data distribution,
thus helping the baseline training to capture “hard” features
from input samples. Nevertheless, even in this case GAN
distillation proves useful in identifying complex cases and
achieving higher classification accuracy.

The presented results show that the augmenting a dataset

1644



(a) Easy samples before GAN distillation (b) Hard samples before GAN distillation (c) Hard samples generated by GAN

Figure 2: t-SNE executed on features extracted on: (a) easy samples, (b) hard samples before GAN distillation and (c) hard
samples after GAN distillation.

.

with GAN-generated hard samples helps improve perfor-
mance. However, one can wonder whether the benefits
are provided by our specific hard mining formulation of
the GAN distillation approach, or by the simple inclusion
of synthetic samples, acting as an augmentation and reg-
ularization technique. We therefore evaluate the contribu-
tion of our GAN distillation technique, compared to using
a GAN simply as a data augmentation tool, on the setup
with AlexNet as a backbone when using 20% of the original
training set. As it can be seen from Table 3, data augmenta-
tion using standard GAN yields an increase in accuracy of
about 2.5 percent points, whereas adding the distillation loss
leads to an accuracy gain of about 5 percent points. Hence,
this shows that the proposed framework is able not only to
generate realistic images that augment the apparent training
data size, but also to distill images that are more informa-
tive for classification than those generated with a standard
generative adversarial objective.

We also evaluate the impact of hyperparameter pr, i.e.,
how the ratio between real/fake samples in a batch affects
classification performance in GAN distillation. Intuitively,
a high value of pr is a more conservative choice, as more
real samples are included in a batch: as a result, the training
process focuses more on learning the distribution of avail-
able data, limiting the exploration of synthetic hard sam-
ples. On the contrary, a low value of pr forces the classifier
to mostly use generated samples, which can be more useful
for identifying difficult class boundaries, but may “distract”
it from the main data distribution. The results of this ex-
periment are reported in Table 4. The results justify our
choice of pr = 0.5 for our default configuration in our ex-
periments, although other settings around that point yield
similar performance. As expected, it is still necessary to in-
clude real samples to make the classifier work, highlighting
that we are not yet at the point to train a classifier with fake
(GAN-synthesized) samples only.

We continue our evaluation by observing whether the
distribution of samples generated through GAN distillation

Table 3: Ablation study to assess the contribution of our
GAN distillation loss, compared to the baseline approach
(standard supervised training) and to the use of a GAN sim-
ply as a data augmentation tool. Results are reported when
training on 20% of the original training set, using AlexNet
as classification backbone.

Accuracy Accuracy Gain

Baseline 69.63 -
GAN augmentation 72.17 +2.54
GAN distillation 74.56 +4.93

Table 4: Classification performance of our GAN distillation
method w.r.t. the ratio between true and fake samples in
batches of 512 samples. Results are reported when train-
ing on 20% of the original training set, using AlexNet as
classification backbone.

Real/fake (%) Accuracy

100/0 69.63
75/25 74.15
50/50 74.56
25/75 74.45
0/100 58.55

matches that of hard samples. In this experiment, carried
out when using 20% of the original training set, we em-
ploy t-SNE [14] to visualize features of easy and hard sam-
ples after the initial classifier pre-training stage, and com-
pare such features with those extracted by synthetic hard
samples provided by the generator after the GAN distilla-
tion stage. Fig. 2 shows the t-SNE visualization of feature
vectors extracted by F, revealing how, initially, easy sam-
ple are well-clustered (Fig. 2a), while hard samples are not

1645



(Fig. 2b). After GAN distillation, the set of synthetic sam-
ples, showed in Fig. 2b, appears to be distributed similarly
to real hard samples, as is the objective of the approach. It is
interesting to note that, besides enhancing classification ac-
curacy, our GAN distillation approaches is also able to pre-
serve data semantics. Indeed, by closely inspecting Fig. 2c,
it can be observed that all inanimate objects (e.g., truck, car,
ship, plane) lie in a region different (bottom-left in Fig. 2c)
from the one (top-right in Fig. 2c) of the animate objects
(e.g., bird, cat, deer, dog). This demonstrates the capability
of the GAN distillation loss to group features meaningfully,
besides pushing the generator to synthesize hard samples.

It is also interesting to evaluate the progress of GAN and
classifier training during the distillation phase; in particu-
lar, how the quality of generated hard samples affects clas-
sification accuracy. To do so, we evaluate the Frèchet In-
ception Distance (FID) [4], measuring the realism of gener-
ated images, and test classification accuracy at correspond-
ing epochs. In Fig. 3 we report the two quantities at each
epoch of the GAN distillation stage, when training on 20%
of the original training set. As it can be observed, the GAN

Figure 3: (Top image) FID of the GAN model and (bottom
image) test classification accuracy during models’ training.
Despite mode collapse of the GAN (around epoch 75), the
classifier yields good generalization performance, even bet-
ter than when the GAN does not collapse.

initially achieves a low FID, i.e., it is able to generate re-
alistic diverse images. However, at around epoch 75 in
Fig. 3) it starts to exhibit signs of mode collapse — gen-
erating the same images for different latent codes — and,
accordingly, its FID increases significantly. Nevertheless,
it is interesting to note how the classifier performance does
not degrade, as expected; rather, it continues to increase, de-
spite marginally. This seems to suggest that the GAN model
collapses to a subset of synthesized images that somehow
still summarizes hard sample features.

In order to investigate this occurrence, we plot the t-SNE
feature visualization of synthetic hard samples generated af-
ter mode collapse over the distribution of easy samples. In-
terestingly, as shown in Fig. 4, it is possible to observe that
collapsed examples lie at the borders of each class cluster,
confirming our previous interpretation and explaining how
they still provide meaningful information for training the
classifier. To further verify this behavior, we also compare

Figure 4: t-SNE visualization of collapsed images. They
lies in the border of each cluster, showing their properties
of summarizing hard sample features.

classification performance when using a) using collapsed
images and, b) synthesized images (in the following, non-
collapsed images) with the GAN model performing well
(i.e., before epoch 75 in Fig. 3). In particular, given that

Table 5: Classification accuracy comparison when using
collapsed and non-collapsed images in our GAN distillation
approach.

Accuracy

Collapsed images 74.56
Non-collapsed images 70.37

with GAN collapse there is no variability in the generated
images per class, we feed the classifier with only one non-
collapsed image per class, modified through a small Gaus-

1646



sian noise, to replicate the same tiny variability observed in
the collapsed ones. Results in Table 5 clearly indicate that
the collapsed images retain more information useful to help
the classifier than the non-collapsed ones. Indeed, when
using a random non-collapsed image, there is almost no im-
provement in performance.

Fig. 5 shows some examples of images generated before
the generator’s mode collapse (top) and after mode collapse
(bottom).

Figure 5: Synthesized images when the GAN does not col-
lapse (top image) and when it does (bottom image).

5. Conclusion

We presented an approach for improving classification
performance in low data-availability scenarios, by training
a generative adversarial network to synthesize data points
belonging to the hard sample distribution for a classifier. We
formulated the distribution constraint on the GAN by means
of a triplet loss that encourages the generator to synthesize
samples whose features (extracted from the classification
network) are closer to hard samples than easy samples.

The resulting model achieves better classification perfor-
mance than standard supervised training, both in low data-
availability settings and when the entire training dataset is
used, demonstrating that the proposed approach is able to
improve generalization of models, regardless of the avail-
able amount of data. Moreover, we showed that our
GAN distillation approach successfully generates images
that match the target distribution of hard samples and that
significantly contribute to performance improvements, even
after mode collapse of the generator.

These results represent a promising starting point for
methods that attempt to use generative models to improve
classification accuracy. In the future, we aim at extend-
ing our approach to deal with high-resolution images (e.g.,
ImageNet) in even more complex scenarios with low data-
availability.

References
[1] Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu

Cord, and Patrick Pérez. This dataset does not exist: training
models from generated images. In ICASSP, 2020. 1, 2

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019. 2

[3] Ian J. Goodfellow et al. Generative adversarial nets. In
NeurIPS, 2014. 1, 2

[4] Martin Heusel et al. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS, 2017.
7

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[6] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 5

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 5

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 5

[9] Suman Ravuri and Oriol Vinyals. Classification accuracy
score for conditional generative models. In NeurIPS, 2019.
1, 2

[10] S. Ravuri and O. Vinyals. Seeing is not necessarily believ-
ing: Limitations of biggans for data augmentation. In ICLR
Workshop, 2019. 1, 2

[11] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Fei-Fei Li. Imagenet large scale visual recognition chal-
lenge. Int. J. Comput. Vis., 115(3):211–252, 2015. 1

[12] Matthew Schultz and Thorsten Joachims. Learning a dis-
tance metric from relative comparisons. In NeurIPS, 2004.
4

[13] K. Shmelkov, C. Schmid, and K. Alahari. How good is my
GAN? In ECCV, 2018. 1, 2

1647



[14] Laurens van der Maaten. Accelerating t-sne using tree-based
algorithms. JMLR, 2014. 6

[15] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient GAN
training. In NeurIPS, 2020. 5

1648


