
Class-Agnostic Segmentation Loss and Its Application to Salient Object
Detection and Segmentation

Angira Sharma
University of Oxford

angira.sharma@cs.ox.ac.uk

Naeemullah Khan
University of Oxford

naeemullah.khan@eng.ox.ac.uk

Muhammad Mubashar
LUMS

21100158@lums.edu.pk

Ganesh Sundaramoorthi
KAUST

ganesh.sundaramoorthi@kaust.edu.sa

Philip Torr
University of Oxford

philip.torr@eng.ox.ac.uk

Abstract

In this paper we present a novel loss function, called
class-agnostic segmentation (CAS) loss. With CAS loss the
class descriptors are learned during training of the net-
work. We don’t require to define the label of a class a-priori,
rather the CAS loss clusters regions with similar appear-
ance together in a weakly-supervised manner. Furthermore,
we show that the CAS loss function is sparse, bounded, and
robust to class-imbalance. We first apply our CAS loss func-
tion with fully-convolutional ResNet101 and DeepLab-v3
architectures to the binary segmentation problem of salient
object detection. We investigate the performance against
the state-of-the-art methods in two settings of low and
high-fidelity training data on seven salient object detection
datasets. For low-fidelity training data (incorrect class la-
bel) class-agnostic segmentation loss outperforms the state-
of-the-art methods on salient object detection datasets by
staggering margins of around 50%. For high-fidelity train-
ing data (correct class labels) class-agnostic segmentation
models perform as good as the state-of-the-art approaches
while beating the state-of-the-art methods on most datasets.
In order to show the utility of the loss function across
different domains we then also test on general segmenta-
tion dataset, where class-agnostic segmentation loss out-
performs competing losses by huge margins.

1. Introduction

Deep learning based methods have achieved state-of-
the-art results in many vision applications. The success
of these methods is primarily reliant on the fidelity of the
datasets they are trained on. For applications like seg-
mentation, recognition and detection, most deep learning
based methods use a classification based training approach,
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Figure 1. Motivation Example: Traditional segmenta-
tion/detection methods work well in HFD setting (high-fidelity
training data, where class labels are available and accurate) but fail
completely in LFD setting (low-fidelity training data, where class
labels are either not available or incorrect). Our Class-Agnostic
Segmentation (CAS) loss performs well in both cases, since it is
independent of the class label and learns to perform unsupervised
clustering of the learned descriptors during training to obtain class
labels. Whereas, conventional cross-entropy (CE) based methods
completely fail in LFD setting since they are reliant on class label.

where cross-entropy (CE) or a variant of cross-entropy is
used to fit the descriptors (network output) to an arbitrar-
ily pre-assigned class label. Generating these class labels
on a dataset of sufficiently large size is labour-intensive, re-
stricts research and is prone to human errors. For networks
trained with standard loss functions like cross entropy, these
labelling errors result in significant degradation of perfor-
mance (Table 1). We present a class-agnostic segmentation
(CAS) loss using which we can train networks independent
of these class labels and avoid the consequent degradation
of performance.

In segmentation we divide an image into regions of
unique statistics. Segmentation has applications in com-
pression, tracking, and recognition. Classical approaches
of segmentation either relied on region-based descriptors,
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where descriptors were grouped to achieve unique seg-
ments, or on edge-based approach, where edges are ex-
tracted from an image and post-processing steps like wa-
tershed methods are used to obtain region segments.

The current approaches for segmentation and detection,
which conventionally use cross-entropy loss or a variant of
cross entropy loss, have the following drawbacks: 1) The ar-
bitrarily pre-assigned class label might not necessarily cor-
respond to the representation of the class in the descriptor
space. 2) This pre-assignment introduces a hard constraint
in labelling the data where the same object has to be la-
belled with the same label across the entire dataset (thou-
sands of images). For large datasets, data annotation will be
performed by a huge pool of moderately trained annotators
and there will inevitably be errors in label of objects (since
these labels are arbitrary and do not correspond to any fun-
damental notion of appearance). 3) The number of classes
that one can sample is limited and consequently can not be
generalised to the infinite number of classes that exist in
real life scenes. 4) Using the conventional loss functions the
output components of a neural network will have to match
the number of classes for these datasets, which will result
in very large output vector for large number of classes. 5)
The loss functions used are agnostic to the notion of class
appearance and simply learn to group similarly labelled ob-
jects together.

In this paper we tackle the above challenges. We present
a class-agnostic segmentation loss, motivated by metric
learning literature [6], [7], which does not need the class
label for segmentation, rather the loss’s construct is based
on unsupervised clustering of learned descriptor to obtain
unique segments and relies only on forms of inexpensive
ground truth annotations. This allows us to cast the general
segmentation problem with deep networks, since we do not
need the class labels anymore (general segmentation as op-
posed to semantic segmentation divides image into unique
regions and is not limited to a few classes). Rather the net-
work is constructed to cluster similar appearances together
while maximising the inter-cluster distance. This eases the
task of annotation (and data generation) as one can use
off-the-shelf (edge-based) segmentation methods to semi-
automate the data-segmentation task (and assign no class
labels whatsoever).

The contributions of our work are: 1) A new class-
label agnostic segmentation loss function, which relies
on ground truth annotation only and clusters similar seg-
ments together by grouping pixels with similar appearance
(learned descriptor) together. 2) The class-agnostic segmen-
tation loss function is applied to salient object segmentation
and achieves state-of-the-art results despite the fact that we
don’t use any pre-training or data augmentation that other
state-of-the-art methods use. 3) The loss function is applied
to general segmentation task and outperforms cross-entropy

and metric learning based losses by a significant margin.

2. Related Work
Segmentation methods generally follow one of the two

approaches: general approach, where all segments are la-
belled region-wise based on appearance, and semantic ap-
proach, where objects are labelled with class-labels in the
dataset. Hence, semantic approach simplifies a general seg-
mentation task to dense classification problem limited to a
few classes. Successful segmentation models [3] are based
on semantic approach, where the models’ abilities are lim-
ited by the number of pre-defined classes.

General segmentation algorithms can be broadly classi-
fied into region-based methods and edge-based methods.
In region-based methods segments are obtained by group-
ing descriptors together. Traditional region-based methods
suffer from inaccurate segmentation results near the bound-
aries of objects because statistics are aggregated across the
boundaries. In [13] better shape-tailored descriptors were
introduced to tackle this problem. Building on [13], in
[14] continuum scale-space of heat equation was used to
obtain coarse-to-fine segmentation, but the descriptors here
are still hand-crafted and lack the capacity to discriminate
between wide range of textures in natural images.

In edge-based segmentation methods pixels in images
are classified to either belong to the edge class or otherwise.
Post-processing methods like watershed methods are then
applied to the edge maps to obtain region segments. The
regions obtained through these approaches are not based on
descriptor consistency and hence these methods fails partic-
ularly in cases when textures with large textons are present
in images [13].

Deep learning methods for general segmentation are pri-
marily edge-based methods. These approaches have been
shown to achieve better results [38], [2], [17] on edge de-
tection. Such approaches have used deep networks to derive
the probability of a pixel belonging to boundaries between
segments. Despite the fact that these approaches achieve
impressive results on detecting edges, generating segmen-
tation from edges is still hard and relies on hand-crafted
approaches [17], hence, the segmentation problem remains
unsolved.

An attempt to cast general segmentation as a region-
based learning problem came from [15], where the au-
thors tried to tackle the problem of segmentation by learn-
ing a metric to discriminate between shape-tailored descrip-
tors using the Siamese twin networks. However, [15] used
fully connected layers to learn the discrimination metric on
shape-tailored descriptors computed in pre-processing step.
Similar to [15], [18] uses a metric learning scheme to clus-
ter similar pixels together using mean shift algorithm build-
ing on [9]. [18] is a metric (and embedding space) learning
scheme which can discriminate between pixels pair from
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similar region and different regions. These are different
contrastive loss based metric learning schemes [6]. Such
metric learning approaches are computationally very expen-
sive and require O(N2) terms in the loss where N is the
number of pixels in the image (notice pixel pairs are sam-
pled from images in these methods). Also, these methods
suffers severely from class imbalances since the sampling
for pixel pair exacerbates the class imbalance. These meth-
ods also don’t learn a ’class representation’ jointly with the
metric learning. Our method is novel in terms of learning
the ‘class representation’ jointly with the metric learning
without adding any computation overhead. Along simi-
lar lines [7] introduced a discriminative loss. Discrimina-
tive loss is used for instance segmentation where different
instances are clustered in the descriptor space. Discrimi-
native loss does not maximize distance between different
classes. Discriminative loss is based on two hyperparam-
eters for inter/intra class variance and the loss is simply
a penalty which forces the inter/intra class variance to be
close to these hyperparameters. This loss is (can) not (be)
used for differentiating different classes, it can only classify
different instances and to classify classes [7] uses a cross
entropy loss. [26] implements an embedding loss function
for instance segmentation, but relies on learning instance
specific margin and expensive post-processing step. To the
best of our knowledge, ours is the first work to successfully
apply a loss based on distance metric learning principles for
the task of salient object detection and general segmenta-
tion and the first attempt at general region-based segmen-
tation with deep networks where properties of regions are
learned rather than a metric for discriminating pixels. Con-
trary to most metric learning based methods we learn the
proxy class label jointly with the descriptor during training
and the complexity of our method is O(N) where N is the
number of pixels.

Since we apply our class-agnostic loss to the binary seg-
mentation problem of salient object detection, we present
a brief literature review of salient object detection here. In
supervised salient object detection methods, both input im-
ages and ground truth annotations with class labels, are used
for training. The class labels are binary, generally, 1 is used
to represent salient object and 0 for non-salient objects.

Some state-of-the-art salient detection methods like [11],
are based on combining feature maps from different lay-
ers of CNN to obtain saliency map. PFAN network [43]
uses hand-crafted feature extraction method and channel-
wise attention mechanism to extract the most important fea-
tures in the intermediate layers to generate more accurate
saliency maps, however, this results in suboptimal solutions.
Other state-of-the-art methods such as PoolNet [22] aggre-
gate high-level information from customised global mod-
ules built on top of feature pyramid networks coupled with
edge detection at intermediate level of the network. Lat-

est methods like [37] focus on label decoupling framework
by focusing on body and edges of salient objects separately;
[44] uses multilevel gated units and [45] focuses and utilises
correlation between contours and saliency, for salient object
detection.

These current state-of-the-art methods require training
on large datasets containing real-world data, ideally on clut-
tered background. However, this kind of data for salient
object detection is limited, therefore, majority of the meth-
ods such as DeepNet [28] and DeepFix [19] are based on
networks pre-trained on the ImageNet [12] dataset coupled
with data augmentation [43]. On the contrary, almost all
of our models presented in this work do not use any pre-
training or data augmentation to keep the complexity mini-
mal.

In semi-supervised and weakly-supervised frameworks
there are diverse approaches to solve salient object detec-
tion. Some techniques [35] infer potential foreground re-
gions to perform global smooth pooling operation and com-
bine these responses to generate saliency maps. Weak su-
pervision methods, such as CPSNet [42], also rely on multi-
ple sources such as image captions, incomplete or incorrect
labels, and multiple images cues, which are passed to more
than one networks followed by inter-network feature shar-
ing to output the final saliency map. These type of complex
operations result in slow forward computation.

Modified versions of cross entropy loss have also been
explored to solve salient object detection. For instance,
[27] proposes a variant of cross entropy loss using gener-
ative adversarial networks [10]. Another work, BAS-Net
[31], proposes a hybrid loss, which is a combination of cross
entropy, structural similarity index (SSIM) and intersection
over union (IOU). As these loss functions are majorly mod-
ified versions of cross entropy loss, they depend on the true
class labels for computation. This dependence becomes an
obstacle when labelled data is scarce.

Problem Statement: We design a loss function which
trains the network to clusters pixels of similar appearance
together in a weakly-supervised manner. Our loss func-
tion forces the descriptors to have low variance on re-
gions/objects, at the same time the descriptor learns to dis-
criminate between different regions.

3. Class-Agnostic Segmentation (CAS) Loss

In this section we present the class-agnostic segmenta-
tion loss and derive the backpropagation equation when this
loss is applied to standard networks.
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3.1. CAS Loss Function

The class-agnostic segmentation loss is defined as:

CAS =

N∑
i=1

∫
ri

α||s(x)− ŝ(ri)||22
|ri|

dx︸ ︷︷ ︸
Uniformer

−
N∑
i=1

N∑
j=1
i 6=j

(1− α) ||̂s(ri)− ŝ(rj)||22︸ ︷︷ ︸
Discriminator

(1)

where N is the number of regions in the ground truth mask;
r1, ..., ri, rj , ..., rN denotes the region of the ground truth
mask (a particular segment); |ri| denotes the number of
pixels in the region ri; s = {s1, ..., sm, ..., sM} is a vec-
tor of output descriptor components (or softmax output) of
the network; m ∈ {1, ...,M} where M denotes the num-
ber of output (softmax) channels i.e., number of units in the
last layer of the network; α ∈ [0, 1] is a scalar, a weighing
hyper-parameter which assigns weight to each term; for a
region r we have that, ŝ(r) = {ŝ(r)1, ..., ŝm(r), ..., ŝ(r)M}
is a vector containing channel-wise mean of the descriptor
values; where for a channel m, ŝm(r) = 1

|r|
∫
r
sm(x) dx.

In our formulation ŝ(r) acts as a proxy for class label for
region r.

The uniformer term of the loss function reduces variance
of the learned descriptor on the regions (segments). The
discriminator term increases distance between the learned
descriptors for different regions. These are the two essential
properties required of any successful descriptor for segmen-
tation i.e. small intra-class variance and large inter-class
discriminability. The uniformer term ensures invariance of
a descriptor on a region of interest and the discriminator
term ensures that different region have different descrip-
tors. Hence, combination of the two terms trains the model
to perform segmentation based on the appearance (rather
than class labels). One aspect to note is that we have used
squared euclidean distances for both the terms; this is for the
simplicity of implementation, but the general framework of
class-agnostic segmentation loss will work for any suitable
norm.

3.2. Gradient of CAS Loss

The gradient of the loss function with respect to the
weights ω of a deep network is,

∇ωCAS =

N∑
i=1

∫
ri

2
α(s(x)− ŝ(ri))(∇ωs(x)−∇ω ŝ(ri))

|ri|
dx

−
N∑
i=1

N∑
j=1
i 6=j

2(1− α)(̂s(ri)− ŝ(rj))(∇ω ŝ(ri)−∇ω ŝ(rj))

(2)

From Equation 1 we’ve,∇ω ŝ
m(ri) =

1
|ri|

∫
ri
∇ωs

m(x)dx,
where we have ∇ωs

m(x) from the backpropagation of the
network as sm(x) is a component of the softmax output of
the network.

3.3. Properties of CAS loss

The global minima for the uniformer term is any piece-
wise constant descriptor where each component of descrip-
tor is constant on each individual region. This will make
variance (uniformer term) of the descriptor zero on each re-
gion. The discriminator term eliminates the trivial minima
of uniformer term where all descriptors on image are either
zero or equal constant values. Hence the discriminator term
is necessary to introduce the crucial discriminability prop-
erties to the learned descriptor. The discriminator term can
be considered as an optimization problem of the form given
below; the constraints below are due to the softmax layer at
the end of the network.

Setting α = 0 in Equation 1 for a binary segmentation
problem (with regions r0 and r1) leaves us with the task to,

maximize ||̂s(r0)− ŝ(r1)||22

subject to

M∑
m=1

ŝm(r0)= 1

M∑
m=1

ŝm(r1) = 1,

ŝm(r0) ≥ 0 ŝm(r1) ≥ 0 ∀m

(3)

Some useful properties of the CAS loss are:
Sparsity: With the inequality constraints in Eq. 3 we

get the feasible region of the objective. Because of the
equality constraints this feasible region is bounded. In M -
dimensions each inequality constraint will represent a half-
space. With the intersection of these half-spaces we will
get a convex polytope. In this case, the optimal solutions
will occur at the corners of the convex polytope, which are
sparse. Here one component of each ŝ(r0) and ŝ(r1) is 1
and all other components are 0, and the non-zero compo-
nents for ŝ(r0) and ŝ(r1) lie at different indices. Thus, each
unique region (or texture) will be represented by a sparse
descriptor.

Robustness to Class Imbalance: Cross entropy loss
based methods for general and salient object segmentation
methods suffer from class imbalance where the larger class
weighs the learning more [16]. In contrast, the CAS loss
function is immune to class imbalance-induced training is-
sues as all the terms in Eq. 1 used for calculation are nor-
malised by class (region) size. Therefore, regardless of the
size of salient objects (number of pixels they cover), all re-
gions contribute equally to the loss function. Hence, even
a small region will be represented well in the descriptor
space. We didn’t normalise for salient or non-salient class
in CAS loss and achieved state-of-the-art results.

Boundedness: As a consequence of using softmax out-
puts in the last layer of neural network, the CAS loss func-
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tion has a defined upper and lower bound. Since sc ∈
[0, 1]w×h (where w and h are width and height of the out-
put channel respectively), and we have all mean values in
the loss, thus both the uniformer and discriminator terms
are bounded by 1. Thus, the value of loss function lies in a
bounded interval (αNi,−(1− α)Ni], whereNi is the num-
ber of regions in an image i. A loss value of −(1 − α)Ni
indicates perfect segmentation of all samples in the training
set.

4. Experimental Setup

This section describes the experimental setup for the ex-
periments in this paper. The codes were setup in PyTorch
[30] using Python3.7. The experiments were run on Nvidia
Quadro RTX 6000 GPU and Intel Xeon 2.60GHz CPU 1.

4.1. Architecture

The main aim of this work was to present a class-
agnostic segmentation loss, regardless of the architecture.
Therefore, we used standard available architectures as
our models. We used the standard FCN-ResNet-101 and
DeepLab-v3 architecture backbones with softmax layer as
the output layer of the model.

4.2. Saliency Detection Experiments

Datasets For an extensive evaluation of our methods,
we tested our models on 7 datasets: MSRA-B (5000 im-
ages) [34] dataset consists of single salient object in an
image; DUTS [35] dataset has explicit training and test-
ing sets which are DUTS-TR (10553 images) and DUTS-
TE (5019 images) respectively; ECSSD (1000 images)[39]
dataset has semantically meaningful and complex objects,
and textures, containing salient objects of different sizes;
PASCAL-S (850 images) [21] dataset contains natural im-
ages with cluttered backgrounds; HKU-IS (4447 images)
[20] dataset has multiple disconnected salient objects, some
touching the boundary; THUR15k (6232 images)[5] dataset
contains random internet images and does not necessarily
contain a salient object in every image and DUT-OMRON
(5168 images) [40] dataset contains one or two complex
salient objects. The datasets used for training were MSRA-
B [34] (split 6:4 ratio for training and testing) and DUTS-
TR [41].

Pre-processing and Post-processing All images were
resized to 256 × 256 and standardised to have mean 0 and
unit variance. Standardisation ensures that all parts of the
image share equal weights, otherwise the larger pixel val-
ues tend to dominate the weights of the neural network.
After standardisation the distribution of pixels resembles a

1Code available at https://github.com/sofmonk/class_
agnostic_loss_saliency

Gaussian curve centred at zero, which helps in faster con-
vergence of the neural network. The network has 2 sparse
output channels, the correct saliency map S, and 1−S. We
choose the channel for the salient object label by calculating
the correlation of the output channels with the saliency map
on the validation set and selecting the channel with maxi-
mum correlation value as saliency map. In post-processing,
the continuous output saliency map S ∈ [0, 1]256×256 of
the neural network is thresholded using the popular method
[4] to get a binary output map B, which is calculated as
B(x, y) = 1, if S(x, y) > T else 0, if S(x, y) ≤ T where,
T = 2×mean(S) is the threshold, and x and y denotes the
pixel positions on the map.

Evaluation Metrics The standard evaluation metrics
used in salient object detection are Fβ-score and Mean
Absolute Error (MAE). The evaluation metrics are calcu-
lated on the ground-truth mask G ∈ {0, 1}w×h and the
binary map B ∈ {0, 1}w×h extracted from saliency map
S ∈ [0, 1]w×h (where w and h denote the width and height
respectively).
Fβ-score is the weighted harmonic mean of precision

and recall, with a non-negative weight β. The Fβ-score is
computed as, Fβ = (1+β2)Precision×Recall

β2Precision+Recall . Setting β = 1
provides the standard F-score formula. However, because
the traditional F -score suffers from interpolation flaw, de-
pendency flaw and equal-importance flaw [25] which re-
sults in unfair comparison, weighted Fβ score is used [23].
Like all previous works, the value of β2 was set to 0.3.

To address the true negative saliency assignments (i.e.,
correctly marked as non-salient) and reward it, the MAE
score is calculated as the average of absolute error be-
tween the saliency map S and the ground truth mask G.
MAE = 1

w×h
∑w
x=1

∑h
y=1 |S(x, y) − G(x, y)|, where x

and y denotes the pixel positions on the map. It is desired
to be as low as possible.

Models We used two standard models as the backbone
for our experiments, Model-CE model is FCN-ResNet-
101 and DeepLab-v3 architecture with cross entropy loss
and Model-CAS model is FCN-ResNet-101 and DeepLab-
v3 architecture with CAS loss. Hence, in total we get
4 models, 2 with backbone FCN-ResNet-101 and 2 with
DeepLab-v3. For completeness of comparison with CE
based methods, we define a class-agnostic version of the
cross-entropy (CACE) loss function for binary segmenta-
tion as min(−yi log pi,−(1− yi) log pi), where for ith ex-
ample, yi is the true-class label and pi is the predicted prob-
ability of belonging to class. Notice that as we increase the
number of classes the arguments of the min function in-
creases combinatorially in the definition of class-agnostic
version of CE loss. In the low-fidelity data setting we train
the ResNet-CACE model, which is FCN-ResNet-101 archi-
tecture with class-agnostic version of cross entropy loss.
For these models the settings such as architecture, optimis-
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ers, activations functions and hyperparameters were same,
a comparison of these models consequently results in com-
parison of the loss function’s performance.

5. Experiments
We conducted experiments for salient object detection

(SOD) in two settings, low-fidelity data setting we have
noisy labels for regions where and the probability of incor-
rect class labels is 0.5. We also applied our CAS loss to
general segmentation problem to show the general nature
of the loss function for any segmentation application.

5.1. Salient Object Detection (SOD)

Low-fidelity data SOD We implemented our class-
agnostic segmentation loss framework for salient object de-
tection with low-fidelity training data where region labels
are noisy. We control the level of noise by controlling the
amount of error for labels of the region. Notice that the
noise is for the region label and not pixel wise label. We
compared our methods against state of the art methods in
low fidelity data case where the region labels are noisy with
probability of incorrect region label of 0.5. We trained 3
state-of-the-art models PFAN [43], BAS-Net [31] and Pool-
Net [22], and 4 of our models, ResNet-CE, ResNet-CAS,
ResNet-CACE and DeepLab-CAS in this setting. The pur-
pose of this experiment was to empirically prove the class-
agnostic property of CAS loss i.e., even if class labels are
not correct. Consequently, annotators do not need to assign
class labels to the segments as long as labels for different
regions are distinct. We show that even in very noisy region
label case CAS loss works. We also show that the class-
agnostic version of cross-entropy fails in this setting.

High-fidelity data SOD To empirically verify the seg-
mentation ability of CAS loss against the state-of-the-art
methods, we compared these methods in high-fidelity data
setting. Here the training data included the images and
ground truth masks with accurate class labels. Following
the brief discussion in Section 4.2, in total the following
7 models, were trained until convergence: ResNet-m-CE,
ResNet-m-CAS, ResNet-d-CE, ResNet-d-CAS, where m and
d denote training on MSRA-B and DUTS-TR datasets re-
spectively, ResNet101-pre-CAS model was pre-trained on
MSRA-B using cross entropy loss and then trained on
MSRA-B using CAS loss, DeepLab-CE and DeepLab-CAS
models were trained on DUTS-TR dataset, pretrained on
COCO dataset.

5.2. Multi-Region General Segmentation

To show the applicability of CAS loss across domains
we have applied it to the task of multi-region general seg-
mentation, where an input image is divided into a number
of regions based on appearance where the number of re-
gions is not known a-priori. We have tested on BSDS500

[1] and PascalVOC2012 [8] datasets. BSDS500 consists of
200 training and testing images each and 100 validation im-
ages for segmentation. PASCALVOC2012 consists of 1464
training and 1449 testing images. We compare against state
of the art metric learning techniques to show the efficacy of
the propose loss function

5.3. Texture Segmentation

Experiments were conducted on real-world binary seg-
mentation dataset presented in [13]. This is one of the most
challenging binary segmentation datasets [13] with huge in-
trinsic and extrinsic variability of textures. The dataset is
divided into 128 training and 128 testing images. We tested
our CAS loss and CE loss and showed that CAS outper-
forms CE loss by a significant margin. We trained using
CAS and CE loss on multiple state-of-the-art architectures
(ResNet and DeepLab-v3) and showed that CAS is more
suited to general segmentation task compared to CE loss.

6. Results

Salient Object Detection: The quantitative results for
salient object detection in low-fidelity training data setting
are summarised in Tables 1 and a few qualitative samples
are show in Figure 2. Since state-of-the-art methods are
based on CE type loss which is highly reliant on fidelity of
class labels, these methods fail completely in low-fidelity
training data cases, with performance drops of around 50
% on most datasets. This essentially means that pixels are
randomly labelled as salient or non-salient. Our CAS loss
is immune to any performance degradation in low-fidelity
training data (and trains the model in a class-agnostic man-
ner). ResNet-CAS results in low-fidelity case degrades only
slightly whereas for DeepLab-CAS the performance im-
proves.

We also compare performance of our CAS loss with
state-of-the-art methods in high-fidelity training data set-
ting. The quantitative results are summarized in Table 2
and a few qualitative samples are shown in Figure 2. Mod-
els trained using CAS loss perform equally well to the sate-
of-the-art methods and at times superior to these models.
Our models achieve state-of-the-art results on 5 out of the
7 datasets. No other state-of-the-art method performs that
well consistently on that many datasets. For comparison
we also tested on the state of the art in metric learning [7]
using same architecture trained on MSRA-B dataset, the re-
sults are summarised in Table 2, our method being supe-
rior. Another aspect to note is that without any tweak in the
FCN-ResNet101 or DeepLab-v3 architectures our models
beat the state-of-the-art results. There is a good probability
that with further tweak or using different networks we might
beat the state-of-the-art with even larger margins. However,
we would like to restate that the key contribution of this
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Model MSRA-B DUTS-TE ECSSD PASCAL-S HKU-IS THUR15k DUT-OMRON
Fβ ↑ MAE ↓ Fβ ↑ MAE Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

PFAN [43] 0.580 0.502 0.532 0.512 0.588 0.510 0.611 0.493 0.565 0.518 0.541 0.513 0.537 0.511
BAS-Net [31] 0.585 0.619 0.444 0.682 0.572 0.619 0.655 0.623 0.527 0.637 0.431 0.660 0.442 0.686
PoolNet [22] 0.603 0.502 0.566 0.501 0.597 0.503 0.648 0.480 0.582 0.503 0.517 0.505 0.526 0.498

ResNet-CE 0.691 0.140 0.427 0.191 0.625 0.178 0.592 0.206 0.633 0.160 0.670 0.150 0.666 0.147
ResNet-CACE 0.872 0.076 0.808 0.103 0.803 0.114 0.754 0.150 0.822 0.094 0.834 0.108 0.816 0.095
ResNet-CAS 0.920 0.038 0.836 0.077 0.837 0.085 0.773 0.126 0.856 0.067 0.865 0.080 0.846 0.069

DeepLab-CAS 0.937 0.038 0.868 0.064 0.875 0.068 0.810 0.110 0.896 0.050 0.893 0.070 0.871 0.058
red represents our best score value on the dataset; blue represents the second best score on the dataset

Table 1. Results on Low-fidelity training on MSRA-B data: Our method is superior

Model MSRA-B DUTS-TE ECSSD PASCAL-S HKU-IS THUR15k DUT-OMRON
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

BAS-Net [31] - - 0.860 0.047 0.942 0.037 0.854 0.076 0.921 0.039 - - 0.805 0.056
PoolNet [22] - - 0.892 0.036 0.945 0.038 0.880 0.065 0.935 0.030 - - 0.833 0.053
CPSNet [42] - - - - 0.878 0.096 0.790 0.134 - - - - 0.718 0.114
PFAN [43] - - 0.870 0.040 0.931 0.032 0.892 0.067 0.926 0.032 - - 0.855 0.041
PAGENET+CRF[36] - - 0.817 0.047 0.926 0.035 0.835 0.074 0.920 0.030 - - 0.770 0.063
PAGENET[36] - - 0.815 0.051 0.924 0.042 0.835 0.078 0.918 0.037 - - 0.770 0.066
HED [11] 0.927 0.028 - - 0.915 0.052 0.830 0.080 0.913 0.039 - - 0.764 0.070
DNA [24] - - 0.873 0.040 0.938 0.040 - - 0.934 0.029 0.796 0.068 0.805 0.056
GateNet [44] - - 0.898 0.035 0.952 0.035 0.888 0.065 0.943 0.029 - - 0.829 0.051
LDF [37] - - 0.910 0.034 0.930 0.034 0.848 0.060 0.914 0.027 0.764 0.064 0.773 0.051
[29] - - 0.825 0.037 0.911 0.033 0.821 0.064 0.899 0.028 - - 0.738 0.055
ITSD [45] - - 0.883 0.041 0.947 0.035 0.871 0.071 0.934 0.031 - - 0.824 0.061
Discriminative loss [7] 0.905 0.052 0.829 0.082 0.829 0.093 0.756 0.134 0.840 0.077 0.846 0.086 0.834 0.072

ResNet-CAS (ours) 0.985‘ 0.010‘ 0.871+ 0.071+ 0.888+ 0.071‘ 0.840+ 0.112‘ 0.939+ 0.050+ 0.931+ 0.073+ 0.876‘ 0.066‘

ResNet-CE (ours) 0.958∗ 0.030∗ 0.919+ 0.055+ 0.905∗ 0.068∗ 0.876+ 0.091+ 0.928+ 0.044+ 0.935+ 0.057+ 0.920∗ 0.059∗

DeepLab-CAS (ours) 0.931 0.040 0.850 0.070 0.864 0.072 0.800 0.111 0.882 0.054 0.888 0.069 0.865 0.060
DeepLab-CE (ours) 0.928 0.039 0.847 0.070 0.867 0.069 0.805 0.110 0.880 0.052 0.881 0.070 0.856 0.061

* represents model trained on MSRA-B dataset, + represents model trained on DUTS-TE dataset, ‘ represents model pre-trained on cross-entropy, red represents the best score
value on the dataset, blue represents the second best score on the dataset, - represents the dataset was not tested by the method

Table 2. Numerical Results on High-fidelity data setting: Despite being designed for low-fidelity setting, our method performs equally
well and at times superior to the state of the art method in high-fidelity setting as well.

Image Ground Truth ResNet-pre-CAS ResNet-m-CAS ResNet-d-CAS ResNet-m-CE ResNet-d-CE ResNet-CAS ResNet-CE ResNet-CACE BAS-Net [31] PoolNet [22] CPSNet [42] PFAN [43] Low-fidelity trained sota

High-fidelity trained Our Models Low-fidelity trained Our Models State-of-the art

1 (PFAN)

2 (BasNet)

3 (BasNet)

4 (PoolNet)

5 (PFAN)

Figure 2. Visual Results for High-fidelity and Low-fidelity Data Training, and Comparison with State-of-the-art methods

work is the introduction of the CAS loss, and hence we did
not tune the network architectures for superior results.

It is also worth mentioning that we performed the most
basic level of distortion to the class labels to generate low-
fidelity training data; even if the class label 1 was misla-

belled as 10 in some images, the CAS loss would still work.
This is a consequence of dependence of CAS loss on s(ri)
and |ri| but not the label of ri (Equation 1).

Multi-Object Segmentation The results for multi-
object segmentation are summarised in Table 5. Our loss
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ResNet-CAS ResNet-CE
% of low-fidelity data Fβ ↑ MAE ↓ % of low-fidelity data Fβ ↑ MAE ↓

2 0.903 0.055 2 0.903 0.051
5 0.921 0.046 5 0.901 0.055

10 0.904 0.053 10 0.858 0.068
30 0.906 0.520 30 0.647 0.159
50 0.920 0.038 50 0.691 0.140

Table 3. Results: models trained on varying lfd MSRA-B data

Region metrics
GT-cov.↑ Rand. Index ↑ Var. Info. ↓
ODS ODS ODS

[7] 0.36 0.68 2.12
[32] 0.28 0.65 3.23
[33] 0.37 0.69 2.05
CAS (ours) 0.38 0.71 1.98

Table 4. Results for BSDS500 dataset [1]: Higher ground truth
covering (GT-cov), and rand index, and lower variation of infor-
mation (Var. Info) indicates a better fit to ground truth.

Method [7] [32] [33] CAS (ours)
Average Precision ↑ 0.61 0.12 0.61 0.71

Table 5. Results for PASCAL VOC 2012 dataset [8]

Contour Region metrics
F-meas. ↑ GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS
FCN-ResNet101-a-CE 0.04 0.04 0.79 0.79 0.55 0.55 1.39 1.39
FCN-ResNet101-a-CAS 0.48 0.48 0.87 0.87 0.87 0.87 0.50 0.50
FCN-ResNet101-t-CAS 0.17 0.17 0.83 0.83 0.66 0.66 0.94 0.94
DeepLab-d-CE 0.18 0.18 0.82 0.82 0.67 0.67 1.35 1.35
DeepLab-d-CAS 0.07 0.07 0.73 0.73 0.54 0.54 1.64 1.64

-a- denotes trained on the 7 saliency datasets; -t- denotes trained on texture data;
-d- denotes trained on DUTS-TR data

Table 6. Results on Texture Segmentation Datasets of Deep Net-
works: Evaluated using contour and region metrics.

Images

Ground Truth

FCN-ResNet101-a-CE

FCN-ResNet101-a-CAS

Figure 3. Sample representative results on Real-World Texture
Dataset: Visual results for texture segmentation experiments; -a-
denotes trained on the 7 saliency datasets

Table 7. Results different values of α trained and tested on DUTS
dataset with FCN-ResNet101

function out-performs state of the art metric learning meth-
ods by a significant margin.

Texture Segmentation Results for texture segmentation
experiments are summarised in Table 6. Notice that CE

loss fails to learn any useful descriptor with both ResNet
and DeepLab architectures because the real-world texture
dataset is annotated with region segments and not region
class labels. On the other hand, CAS loss outperforms CE
loss and performs reasonably well in capturing complex tex-
ture segments (in majority of cases). Undeniably the results
are not perfect since we have a very small texture segmen-
tation training set at hand, nonetheless the point about the
strength of CAS loss over CE loss is well demonstrated in
this experiment.

Ablation Study for Hyperparameter α The CAS loss
(Equation 1) has one hyperparameter, α, which sets the
weights on the uniformer and discriminator terms. As ar-
gued in Section 3, the discriminator term has more impor-
tant properties, consequently we weighed this term more.
α was set to 0.1. This was validated by testing for various
values of α as shown in Table 7. The learning rate was 1e-3
with Adam [16] optimizer.

7. Conclusion

We presented class-agnostic segmentation loss function
which allows us to cast the problem of region-based general
segmentation problem with deep networks. We tested on
7 salient object segmentation datasets against 15 methods
(in HFD and LFD settings) and on challenging multi-object
general segmentation dataset and a texture dataset. Using
the class-agnostic segmentation loss function we tackled the
problem of salient object segmentation in low-fidelity train-
ing data case and showed state-of-the-art results, around
50% better than the next best methods. This huge perfor-
mance gain is due to the fact that CAS loss forces learn-
ing of descriptors through the deep network which are in-
variant on similar looking regions, which also shows in the
high-fidelity setting. We also applied CAS loss to high-
fidelity training data case as well as texture segmentation
and multi-object segmentation and showed state-of-the-art
results. This shows that our CAS loss performs well in mul-
tiple scenarios for general segmentation across domains.

Although standard CE based loss functions perform
satisfactorily in salient object detection with high-fidelity
training data, they fail completely in low-fidelity training
data case with a performance drop of around 50%. Likewise
the CE based loss functions fail to learn any significant fea-
ture in texture segmentation dataset, and CAS outperforms
competing metric learning based methods on multi-object
segmentation task. Notice, that we have used saliency de-
tection and general segmentation as applications for our
class-agnostic segmentation loss. However, the utility of
our loss is not restricted to these applications and it can be
applied to any general segmentation problem.
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